2.2 Cell Construction

- Elemental composition of typical bacterial cell
 - C 50%, O 20%, N 14%, H 8%, P 3%, S 1%, and others (K⁺, Na⁺, Ca²⁺, Mg ²⁺, Cl⁻, vitamin)
- Molecular building blocks
 - Lipids
 - Carbohydrates
 - Proteins
 - Nucleic acid
 - DNA (deoxyribonucleic acid)
 - RNA (ribonucleic acid)

Molecular Components of Cells

Subunits of Biological Molecules

Class of Molecule	Examples	Smallest Repeating Unit
Lipid	Fats, oils	Glycerol, fatty acid
Carbohydrate	Sugars, starch, cellulose	Simple sugars
Nucleic acid	DNA, RNA	Nucleotide
Proteins	Enzymes	Amino acids

Amino Acids and Primary Structure

- Amino acids
 - Amino group
 - Carboxyl group
 - R group; 20 Side chains
- Peptide bond
 - Between NH₂ and COOH
- Polypeptide
 - A chain of amino acids
 - N terminus and C terminus

Proteins

- Amino acids
 - Building blocks of proteins
 - Hydrophilic backbone
 + 20 side chains
- Polypeptide
 - Amino acid chains linked by peptide bond
- Three-dimensional structure
 - Determines protein function
 - Determined by amino acid sequence

Amino Acids

Biological Function of Proteins

- Structural proteins
- Catalytic proteins
- Transport proteins
- Regulatory proteins
- Protective proteins

Primary and Secondary Structure

Primary structure

- Linear arrangement (sequence) of amino acids
- Secondary structure
 - Core elements of protein architecture
 - Local folding of polypeptide chain
 - α helix, β sheet : 60% of the polypeptide chain
 - Random coils and U-shaped turn

Three Dimensional Structure of Protein

- Primary structure
- Secondary structure
- Tertiary structure
- Quaternary structure
 - only proteins with multiple polypeptides

Common Hydrogen Bonds in Biological Systems

α -Helix

- Hydrogen bond between O (C=O, n) and H (NH, n+4)
- Directionality on the helix : The same orientation of H bond donor
- Side chains point outward : Determine hydrophobic or hydrophilic quality

β-Sheet

- Hydrogen bonding between β strands
 → β sheet, pleated sheet
- Usually not flat, but twisted

Tertiary Structure

- Overall folding of a polypeptide chain
- Stabilization
 - weak interaction
 - Hydrophobic interaction between nonpolar side chains
 - Hydrogen bond between polar side chains and peptide bonds
 - Disulfide bond formation

Quaternary Structure

- Association of multiple polypeptide chains
 - Lambda repressor : dimer
 - E. coli RNA polymerase : Five polypeptide chains

2.2.3 Carbohydrates: Mono- and Polysaccharides

- C: H: O = 1:2:1
- Simple sugars (monosaccharide)
- Disaccharide
 - sucrose (glucose + fructose)
 - lactose (galactose + glucose)
- Polysaccharide
 - pectin, starch, cellulose --- from glucose
 - agar, carrageenan (thickener for ice cream)

Linear and Ring Structure

- p 34 (glucose structure)
- Monosaccharide may be present in the form of a linear or ring structure.
- In solution, it is in the form of a ring structure.

Mono- and Disaccharides

A. Simple sugars

Polysaccharides

Amylose (α-1,4-Glycosidic linkage)

Cellulose (β-1,4-Glycosidic linkage)

Polysaccharides

Amylopectin (branched chain, α-1,6-Glycosidic linkage)

Roles of Carbohydrates

- Carbohydrates in molecular recognition
 - Often found connected to other molecules on the outsides of cells --- cellular recognition, cell signaling, cell adhesion
 - e.g. blood typing : sugar chains in the membrane of RBC

2.2.4. Lipids, Fats, and Steroids

- Hydrophobic fats, oils, and cholesterol etc.
- High energy C-H, C-C bonds \rightarrow good energy storage
- Fats : glycerol + fatty acids (Table 2.6 example of fatty acid)

Lipid

Fatty acid

- Saturated: tight packing → solid at room temperature
- Unsaturated: more double bonds \rightarrow liquid

C. A polyunsaturated fatty acid

B. A monounsaturated fatty acid

Phospholipid

- Glycerol backbone
- two fatty acids (hydrophobic)+ phosphate (hydrophilic)

Steroids

CH₃

CH₃

CH₃

CH₃

- Cyclic hydrocarbon compounds
- Cholesterol (well-known steroid)
 - Component of animal cell membranes
 - Increase membrane fluidity
 - Starting material for steroid hormones and bile synthesis

2.2.5. Nucleic Acids, RNA, and DNA

Nucleotides

- Building blocks of nucleic acids
- (deoxy)ribose + phosphate group
 + base
- Bases: adenine (A), guanine (G), cytosine (C), thymine (T)

Terminology

- Base
- Nucleoside : sugar + base
- Nucleotide : sugar + base + phosphate

Nucleotides

AMP, ADP, ATP

A. Adenosine monophosphate (AMP)

AMP = Adenylate (cf. dAMP)

Nucleotide Chains

Linkage of 5' carbon to 3' carbon through phosphodiester bond

Nucleotide Chains

- Fig. 2.15 Structure of Bases
- Base pairing
 - C=G, T=A : hydrogen bonding
 - Complementary base pairs
 - Antipararallel strand in DNA molecule

Chromosome

Tightly packed complex of DNA and histone proteins

DNA Replication

- Synthesis of a complementary strand using the other strand as a template
- DNA polymerase

2.3 Cell Nutrients

Macronutrient

- Necessary in concentrations > 10⁻⁴ M
- C, N, O, H, S, P, Mg²⁺, K²⁺

Micronutrient

- Necessary in concentrations < 10⁻⁴ M
- Trace elements such as Mo²⁺, Zn²⁺, Cu²⁺, Mn²⁺, Ca²⁺, Na⁺

2.3.2. Macronutrients

- Carbon
- Microorganisms are classified in two categories on the basis of their carbon source.
 - Heterotroph --- organic compounds as a carbon source
 - Autotroph --- CO₂ as a carbon source
 - Mixotroph --- grows under both autotrophic and heterotrophic conditions
 - Chemoautotroph --- CO₂ as a carbon source, energy from inorganic compounds such as H₂, CO, NH₃, NO₂⁻, Fe²⁺, H₂S, S, S₂O₃²⁻
 - Photoautotroph --- CO₂ as a carbon source, energy from light

Carbon sources

- Common carbon sources in the laboratory fermentation
 - Glucose, sucrose, fructose
- Common carbon sources in industrial fermentation
 - Molasses (sucrose), starch (glucose, dextrin), corn syrup, waste sulfite liquor (glucose)
- In aerobic condition
 - 50% carbon \rightarrow cell material, 50% carbon \rightarrow energy
- In anaerobic condition
 - Small fraction of C \rightarrow cell material, Large fraction of C \rightarrow product

Nitrogen Sources

- Inorganic Nitrogen Sources
 - Ammonia
 - Ammonium salts (NH₄Cl, (NH₄)₂SO₄, NH₄NO₃)
- Organic Nitrogen Sources
 - Yeast extract, peptone --- amino acids
- Nitrogen Sources in Industrial Fermentation
 Table 2.8

2.3.3. Micronutrients

- Most widely needed trace elements
 - Fe, Zn, Mn
- Trace elements needed under specific growth conditions
 - Cu, Co, Mo, Ca, Na, Cl, Ni, Se, Cu
- Rarely needed trace elements
 - B, Al, Si, Cr, V, Sn, Be, F, Ti, Ga, Ge, Br, Zr, W, Li