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Methodology in Rock Engineering  sou s

 Empirical Method
- RMR, Q, empirical system
* Analytical Method

— Mathematical exact solution

* Experimental Method

— Conduct experiment in the lab and insitu

* Numerical Method or Numerical Analysis

— Solve equations (often PDE) numerically using computer to obtain
solution (either with commercially available or bespoken codes)

— Apply the numerical method for rock mechanics/geomechanics
problem
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Numerical Methods
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» Continuum method
— Finite Element Method
— Finite Difference Method
— Boundary Element Method

* Discontinuum Method
— Discrete Element Method (explicit & Implicit)

* Hybrid Continuum/Discontinuum Method
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Physical variables for THMC problems
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Physical problem Conservation State Variable Flux Material Source Constitutive
Principle u o properties f equation
V-q=0 k o= ku'
ici Conservation of Displacement Stress Young’s modulus | Body Hooke’s law
Elasticity
linear momentum | u o & Poisson’s ratio | forces
(equilibrium)
Conservation of Temperature Heat flux Thermal Heat Fourier’s law
Heat p
. energy T Q conductivity sources
conduction c
i Conservation of Hydraulic head Flow rate Permeability Fluid Darcy’s law
Porous media
flow mass h Q k source
Mass Conservation of Concentration Diffusive | Diffusion Chemical | Fick’s law
mass C flux coefficient source
transport q D

Structure of state variables and fluxes are mathematically similar -
a convenient truth!
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Governing Equation - Elasticity ot o, e
« Strain-displacement relationship (6) 1
+ Stress-strain relationship (6) “i75 (Ui j +U53)

. . A — C..

+ Equation of motion (3) i = i tu 22,
o teb=p 8’[2I

Navier's equation

Gu; ; +(A+G)u; ;; + pb, =0

L

G| —L+ y+azu2yJ+(ﬂ+G){X +—+ Z}F,Oby:
GVAU+(1+G)VV.-u+pb=0 (&%

— Three governing equations for three displacement components 1 = Ev

(1+v)(1—2v)
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Governing Equation - Elasticity vs Diffusion equation - Heat_  ~ ""‘{
L] [} L} 1 ’ I
+ Diffusion equation * Navier's equation
5C 2 2 2 2 2 2
A—+V-(-DVc)=R 7, | Ty, O, T T
ot ( ) e " PYARr JH/HG)[ ox? +8x8y+8xaz}r'obxo
2 2 2 62uy 82uy 62uy o%u, 62uy oy, _
k(a r, ot ot j _ ol ey Jreol S G
2 2 2 2 2 2 2 2 2
8X ay az 81: G aux+8ux+6ux +(1+G) 8ux+auy+8uz +pb, =0
ot oy oz oxdz  oyor 72

— Time-dependent — Not time-dependent

— One parameter k is

necessary for steady state
behaviour — Two parameters (isotropy)

— Three coupled equations

* Alternative form.

V. (cVU)=F e e 6

o B s
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Advantage/Usefulness — analytical approach o s e

An example of analytical solution: Kirsch solution (1898)

o = SH max +Shmin (1_ R2J+ SH max _Shmin (1_ 4R2 4 3R4JC0520

r 2 r2 2 r2 r4
2 . _ 4
Cy= SH max;'Shmin (1_|_ l?z )_ SH max2 Shmm [1_|_ 3:\:1 JCOSZH

2 4
Ty = St max — Shmi [1+ 2R”_3R Jsin 20

2 r? r*
R: radius of well o
r: radial distance from the center of -
the well
SH,max
0: measured from S, .,

SHmax and Sy jpa,: Maximum and
minimum horizontal insitu stress
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Advantage/Usefulness — analytical approach
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Kirsch solution Diametral compression

Stress & Stability Contour B 15
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 Numerous analytical solutions exist — fast evaluation & still powerful

» However, 1) complex geometry, 2) multiple formation, 3) complex
boundary condition, 4) complex process cannot be handled accurately.

Courtesy of Kwon S
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Advantage/Usefulness — analytical approach . .5

* Analytical solution is of limited value when,
— When geometry is not simply circular,

— Domains are divided into regions of distinct
properties

— When fractures around rock is considered
especially when fractures are not regular

— Boundary/initial conditions are not simple

— Complex constitutive relations are
associated — stress dependent permeability
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* Reasons for popularity in numerical modeling

— Easy-to-access powerful PC
{Positive /negative

| Tool is a means to a solution.(not the solution itself!)
— Dramatic increase in ability to include geological detail in models

‘s More detail imply better model?

] The art of modeling lies in determining what aspects of the geology are
essential.

— Predictive capability in physical process

— Success of modeling in other branches of engineering

| Similarity & differences with aerospace eng?

*Starfield, A.M. and P.A. Cundall, 1988, TOWARDS A METHODOLOGY FOR ROCK MECHANICS MODELING. Int J Rock Mech Min Sci &
Geomech Abstr, 25(3): p. 99-106
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* Problems in applying numerical approach

— Misuse
{|Use in a wrong way:

‘Need to be familiar with the theory of the numerical methods

— Abuse or overuse
‘“Numerical tool is not a magic box

[ Appropriate modeling methodology needed
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Verification vs. Validation
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1.
2.
3.

* Verification: the provision of assurance that a code correctly performs
the operations it specifies (e.g., PDE)".

— A common method of verification is the comparison of a code’s results with
solutions obtained analytically (Kirsch solution, Boussinesq...)

— |s the program doing what it claims to be doing
— Are we getting the answers that we think we are getting?
» Validation: the determination that the code or model indeed reflects the
behavior of the real world 2

— Validated model is the one that provides a good representation of the actual
processes occurring a real system .

— Are we getting the answers that we need?

US Nuclear Regulatory Commission (NRC, NUREG-0865, 1990)
US Department of Energy (DOE/RE-0073, 1986)
IAEA, Radioactive waste management glossary (IAEA-TECDOC-264, 1982)
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Verification vs. Validation
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Reality of Interest
p it, Sub bly, A bly, or System)

Abstraction

Conceptual

Model )

I 1
Mathematical Physical
Modeling Modeling

Physical
Model

Implementation

Preliminary Experiment
Calculations Design
’

1
Calculation

Experimentation
Verification

Experimental
Data

Uncertainty Validation Uncertainty
Quantification 4 Y. Quantification

¢ \,
Simulation Quantitative Experimental
Outcomes Comparison Outcomes
Acceptable
Agreement?

Yes

*

( Next Reality of Interest in the Hierarchy i

Modeling, Simulation

& Experimental Activities No

- = = = Asgsessment Activities

Revise
Appropriate
Model
or
Experiment

NM-11050-32

Schwer, L.E. (2006): An overview of the ASME guide for verification and validation in computational solid mechanics, Prod. 5. LS-DYNA

Anwenderforum, A-ll: 111-122
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Validation vs. Prediction
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 Validation domain

— Relevant physics are
understood in this region

* Application domain

— Region where predictive

capability is needed

physical and geometrical complexity

A|E£alicatlon
main

\" Validation
% Domain
\
N
~ s
= -_— - -

_—

system or environmental parameter

a) Complete Overlap

Application

physical and geometrical complexity
\

"/ Domain
\ \Validation
. Domain
s
- -

_ . =

system or environmental parameter

b) Partial Overlap

physical and geometrical complexity

Application

omain
5
Validation 3
ain ]

-
-
e

system or environmental parameter

c) No Overlap

Oberkampf, W.L. et al. (2003): Verification, validation and predictive capability in computational engineering and physics, SANDIA report

SAND2003-3769
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* Error

— A recognizable deficiency in any phase or activity of modeling and
simulations that is not due to lack of knowledge

— Acknowledged error

| Characterized by knowledge of divergence from an approach or ideal
condition that is considered tobe a baseline for accuracy.

] EX) finite precision arithmetic in a computer, conversion of PDEs into
discrete equations

— Unacknowledged error
{Blunders or mistakes
‘| Programming errors, input data erors, and compiler errors
’ Code verification mainly deals with unacknowledged errors

Oberkampf, W.L. et al. (2003): Verification, validation and predictive capability in computational engineering and physics, SANDIA report
SAND2003-3769
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Error vs. Uncertainties
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 Uncertainties

— First meaning (often called, aleatory uncertainty)
{estimated amount may differ from its true value
[lnherent variation associated with physical system
] Often handled by probability distribution

{EXx) data experiments

— Second meaning (often called, epistemic uncertainty)

{Related to the lack of knowledge about physical systems

[ Ex) Failure criterion

Oberkampf, W.L. et al. (2003): Verification, validation and predictive capability in computational engineering and physics, SANDIA report

SAND2003-3769
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Issues in Geomechanics
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Uncertainty in Geological Feature

Uncertainty in Boundary Condition

— In situ stress not easy to characterize

Hard to obtain data in Rock/Fracture properties

— Costly, unavailable

Up-scaling issue

— measure in the lab may not represent the values in large scale
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Data limited problems =
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Well-posed problems

Data

Data limited problems
- Rock Engineering?

4 | 2

Understanding

Recited from Starfield and Cundall (1988)
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Numerical Approach in Rock Engineering
Data limited problems
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» Fitting rock engineering problem into region 3 (lots of data
plus good understanding)

— Impossible to have sufficient data

— We loses control of intellectual control of the model

Understanding
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* Apply the tools developed for region 3 to rock engineering
problem

— Numerical tool is a means to a solution!

Understanding
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Modeling guidelines
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* Differences between well-posed and data-limited problems
— Resolution
— Validation

— Once validated, can it be used routinely?

| Well-posed problem
l
|

1 1 3
|

[ ot e e - o . — — — — — — — — —— w—

Data

Data{limited problem !

Understanding
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Modeling guidelines e
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 Data-limited problems

— “A model is a simplification of reality rather than an imitation
of reality. A model is an intellectual tool.”

— The design of the model should be driven by the questions that the
model is supposed to answer rather than the details of the system.
—> helps in simplifying and controlling the model

— More appropriate to build a few very simple models than one
complex model.

— Try to gain confidence in the model and modify it as one uses it.
Approach to the model is that of a detective (not mathematician)

— Purpose is to gain understanding and to explore potential trade-
offs and alternatives. (not absolute predictions)
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Modeling guidelines
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» Data-limited problems

— One progresses slowly from region 4 to region 3 < from simple to
complex model, suggest new data or new models. < Adaptive
modeling

Well-posed problem

—h
W

—l-—-—-————--!———-—u—b———-

4 | 2

Data{limited problem !

Data

Understanding
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Modeling guidelines [l
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* Clear about why you are building a model and what questions
you are trying to answer

 Use a model at the earliest possible stage in a project to
generate both data and understanding.

— Do not delay while waiting for field data. You need a conceptual
model in place as soon as possible.

* Look at the mechanics of the problem.

— ldentify important mechanisms

* Try to visualize qualitatively what the answer of your modeling
would be
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* Design the simplest model that will allow the important mechanisms to
occur € serve as a laboratory for the thoughts experiments

* Implement your simplest modeling — run it — and improve it.
— Proceed to more complex modeling
— Or, identify the weakness and remedy them before continuing

— If your model has weakness that you cannot remedy = make a series of
simulations that will bracket the true case.

 Numerical modeling is very similar to laboratory work

» Visualizing and anticipating solutions before running a model is an
important discipline.

* Modeling in a cautious way actually generate new knowledge
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Modeling guidelines

* Considerations - 0

* Appropriate numerical modeling technique ~ ;
* Initial and boundary conditions

 Appropriate model size

» Choice of constitutive models
* Meshing and mesh-dependency

« 2Dvs. 3D

»  Coupled process | ‘

Modeling sequence

* Continuum vs Discontinuum
» Calculation efficiency vs. Accuracy

« Static vs. Dynamic

Konietzky, 2021, Ch.9 Practical hints for using numerical methods in rock mechanics, Introduction into geomechanics
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. . . onceptual Model -
Modeling guidelines

)

Small test models

Detailed data analysis and
A conceptual idea of reporting

* Numerical model workflow

Definition
(1) model geometry and mesh structure
{I1) boundary conditions
(111} initial conditions
(IV) constitutive law and parameters
(V) calculation sequence

A

Y

Mumerical model

Y

Numerical calculations according to simulation sequences

Y

Check
(1) plausibility
(Il) experience
() experimental data / observations
(V) comparison with other models

Reporting le——1 3] Additional calculations

Konietzky, 2021, Ch.9 Practical hints for using numerical methods in rock mechanics, Introduction into geomechanics

Y —_
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* General description

Name of used numerical code including version (and sub-version) number

Numerical method (e.g. FEM, DEM, ..) and calculation scheme (explicit vs. implicit)

 Specific model description:

Model size, meshing, calculation time (run time)
Constitutive models and parameters

Initial and boundary conditions

Calculation sequence (construction stages etc.)

Usage of small or large strain calculation scheme

« Graphical presentation of simulation results:

— Any plot should contain a coordinate system

For each presented physical quantity the corresponding units m be given

— Sign (+ vs. -) for physical quantities like stresses, inflow

Konietzky, 2021, Ch.9 Practical hints for using numerical methods in rock mechanics, Introduction into geomechanics
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« Graphical presentation of simulation results:

— Specific physical quantities may be plotted in form of vectors or magnitudes (filled colour
plots or isoline plots)

—  Documentation of initial state (e.g. virgin stress state, initial pore water pressure distribution etc.) as
well as all relevant subsequent modelling stages

« Evaluation / Interpretation of simulation results:

— Simulation results have to be interpreted according to the modelling task (description + figures +
diagrams + tables).

— Results have to be checked using different other available techniques, like comparison with practical
experience, in-situ measurements, analytical solutions, calculations with other methods etc.

— May include sensitivity, uncertainty and robustness analysis.

— The potential problem of mesh-dependency should be discussed.

— Choice and calibration of parameters has to be discussed.

— Model simplifications and their potential impact on modelling results should be discussed.

— Chosen initial and boundary conditions should be justified.

Konietzky, 2021, Ch.9 Practical hints for using numerical methods in rock mechanics, Introduction into geomechanics
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Case Studies (EGS hydraulic stimulation)
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* Fluid flow enhancement due to P mm
hydraulic stimulation in a EGS oY

project in Cornwall (Pine, 1985) \&
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Recited from Starfield and Cundall (1988)
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Case Studies (Rock Slope Stability)
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* S0 obvious? Easy to say...detective novel...

Recited from Starfield and Cundall (1988)
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Job Title: L=280+270m, Lo=100+100m, I=10m, He=60m, P.=4MFa
FLAC3D 2.00
'EEEEEE "‘I[Hi{m]
Block Plot of State
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(xxx,2002)
~ -1
- 150
Fig. 7. Indication of the fracture zones in the foor and roof stmita on a sectional plane along the stike, Above Bouing

Temperature
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-
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Clear legend

Clear plot 44— | 1 '\<
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* High level nuclear waste repository in Sweden

— What would be the stress, displacement and temperature around
repository when ~6000 canisters are placed in the deposition holes

Section View

B1 C1
A2 ¢

L] [ ]
B2 C2
A3 | repository .
B3 C3
ZL
X
Plan View
.
repository e D1,D2, D3
C1,C2,C3 y
X

Al,A2,A3 B1,B2,B3

Locations of monitoring points

Min KB, Lee JW, Stephansson O, Implications of Thermally-Induced Fracture Slip and Permeability Change on the Long-term Performance of a
Deep Geological Repository, Int J Rock Mech Min Sci, 2013;61:175-288.
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50°C
, Max ~ 45°C
Maximum temperature around 45 °C.

After 100 years
Max ~ 40°C

=

After 1,000 years

-200 |-

10¢

0 year 10,000

/

i QG B1 32(:811;(:2'(:3 YI_X‘
g monitoring point

-800

V

DEPTH (m)
N
3
T

0 10 40 50

20 30
TEMPERATURE (°C)

Temperature profile along the center of the repository After 5,000 years 500

Min KB, Lee JW, Stephansson O, Implications of Thermally-Induced Fracture Slip and Permeability Change on the Long-term Performance of a
Deep Geological Repository, Int J Rock Mech Min Sci, 2013;61:175-288.
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Continuum - TM anaIySis SEOUL NATIONAL UNIVERSITY

LS
=

25

Maximum compressive g, repository level
[ e |

:%\. 20 55 . A3 ‘l’? 2 |
5 MPa tensile el / (0 a °f
\\ i A3 BIC3 = [ D1 (s)
\ _ | [ ]
© =
L g5 2 ST St~
H = I 14 3 N~ 77
20 MPa compressive = | = ~ i
@ | o 2f NI
2T B3 (o) 3 | NN L
E‘]O? ) S = 4 ALBICT \\ c1(s) /
» | 7 B3 (o) ~ 2 [ Bl
/ 7 N g [ section View ~ (j)/
5 €3 (o) N DO:
T

I sk

/// u\\\ of - N/

. D3 (s,0,) =~ B

Horizontal stress at 100 years ] e R Y S b T
TIME (YEAR) ° TIME1(0YEAR)

= 1‘ ‘ M‘I‘O"
Maximum tensile o, surface

« Maximum compressive stress ~ 20 MPa near repository at ~ 100 years

« Maximum tensile stress ~10 MPa at surface at ~ 1,000 years

Min KB, Lee JW, Stephansson O, Implications of Thermally-Induced Fracture Slip and Permeability Change on the Long-term Performance of a
Deep Geological Repository, Int J Rock Mech Min Sci, 2013;61:175-288.
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TOUGH-FLAC simulator

= TOUGH2 (Lawrence Berkeley National Laboratory, LBNL) + FLAC3D (ITASCA™)

Thermal & hydraulic result

Temperature (T)
Pressure of phase (3 (P;)
Saturation of phase B (Sg)

Hydraulic input

o Potosity.change (AP)

A
it S —

Mechanical )
prope rty Mechanical

Bulk modulus (K) Properties

Shear modulus (G) K,G, C, l;l
Cohesion (C) 5

Friction coefficient ()

Mechanical input

Biot coefficient (a)

|
Hydraulic | 1 i
properties |Rydraulic property

|
|
|
|
:
: ¢9k’PC
‘:

i Porosity (®)
I Permeability (k)
Capillary pressure (P.)

Mechanical result

Effective stress (0')

FLAC3D

Strain (g)

Pressure of phase 8 (Ps)  Simulation Iogic (RuthiSt, 2011)

Thermal strain (¢;)
Swelling strain (ggy)

Rutqvist, J. (2011). "Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations." Computers &

Geosciences 37(6): 739-750.
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Continuum - Code coupling THM analysis o
* Models .

— Rock mass zone: constant T
permeability %‘L 3
— Fracture zone: permeability
changes by effective normal stress - =T
| PX-1: shearing + jacking gngn 3

Schematic plan view

& PX-Z: jaCking Top view View towards the north towsrds the stike
Initial and boundary condition and model geometry

stress dependent aperture
after shear slip and dilation

b\‘lu‘m' hrh:\ru t [)\3“'(“

Equivalent aperture

Initial state

Effective normal stress

Yoo, H., Park, S., Xie, L., Kim, K.-I., Min*, K.-B., Rutqvist, J., Rinaldi, A. P. Hydro-mechanical Modeling of the First and Second Hydraulic Stimulations in a
Fractured Geothermal Reservoir in Pohang, South Korea. Geothermics, 2021, 89:101982
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Continuum - Code coupling THM analysis
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 Coupled hydromechanical modeling of hydraulic stimulation

— Numerical modeling in general matches the pressure response

PX-2 (Jan 29-30, 2016) __PX-1 Doc 15-17, 2016)
T

[
(4]

T T T T 25

100 T 50 Ly T T T
w —— Measured WHP K stagel stage Stage Il ——Measured WHP
S ——Simulated WHP =20 —Simulated WHP|| 59 —
i I3 = Injection rate =
e = S =
g 60 = g 15 g
2 e =3 c
S 40H s 10 §
° = o 2
@ 8 s @
3 8 2 &
£ 20 £ £ 5 £
4 7]
= =
: 0
15:28 100
Jan 29 Dec
100 25
g g
S 60 % Sa0t @
3 - 0 3
g eor ® 2150 @
= o ]
g = ¢ 8
S 40t 5 .l :
3 ® k=] 2
2 Q. @ 3
£ 2 = 3 3
& 8 g
ES 5 £
0 L 1o I | U | =
19 20 21 22 23 24 25 70k 0 y
[]: Bleed-off Elapsed time since injection initiation (h) Jan 30 27 32 37 2 08:05

Elapsed time since injection initiation (h) Ooc 17

Yoo, H., Park, S., Xie, L., Kim, K.-I., Min*, K.-B., Rutqvist, J., Rinaldi, A. P. Hydro-mechanical Modeling of the First and Second Hydraulic Stimulations in a
Fractured Geothermal Reservoir in Pohang, South Korea. Geothermics, 2021, 89:101982
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Continuum - (T)HM analysis —
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* How much heaving is expected after injecting xxx tons of CO2

at a given geological formation? o
B After 10 years
o) 74
TOUGH-FLAC 5{ A ZA 1} -
0B e NG
_500_ : |
5-1000 : S i After 6 years
After < [ — — — L o By i S
1 years §'-1500 ' ‘ 8 I
o
2000: . _________| g | After 3 years
772000 ~1000 0 7000 2000 - = s S S e e A s
-500 ” 3 L
22 <
E-1000 20 i
atter = B TR P " a—-—t After 1.years. N\ N\ :
6 years g 1500 —————— 14
o 12
R I T ;0 After 30 days
'2282000 -1000 0 1000 2000 6 Do 5000 — 0 5000 10000
E-1000 F AKXl e Jal=
After £ - =& H2| Jefj=
10 years 5 1a00 T —
A : CO, Injection point - 10"& _'?':
N I | T R | N S S | S " ——
~2009000 ~1000 0 1000 2000 - ﬂ'% -J'“-?:.l' : °_||= 12 MPa
Distance from injection point (m) A o
- X Y2k 0.87m

FUE FHOM2| Zh= +f #He} (TH9: MPa)

Lee JW, Min KB, Rutqvist J, Probabilistic Analysis of Fracture Reactivation Associated with Deep Underground CO, injection, Rock Mechanics
and Rock engineering, 2013, 46(8):801-820.
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Discontinuum - BIOCky DEM (M anaIySis) SEOUL NATIONAL UNIVERSITY

» Underground ice hockey stadium in Norway — discontinuum
method was used for design

displacement vectors
maxtmum = 1.920E~-02

Barton, N., et al. (1994). "Predicted and measured performance of the 62 m span Norwegian olympic ice Hockey Cavern at Gjgvik."
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31(6): 617-641.
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Discontinuum - Blocky DEM (M analysis)
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AN
- A

displacement vectors
maximum = 3.660E-02

£
Ly

UDEC 4.01 g \\.; n :__ { / ,:,'::
C—}rcle 118000 b L ’;"l‘.“ “ \
Time 8.530E+00 sec L Na=WH / 5o ’
block plot % " . & = e e
ety =

f X
S

He|H opEzk 25

Min KB, Lee JW et al., 2011, Unpublished report

Z2C|HOorEZ 35
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» Geometry and fractures (Kwon and Min, 2020)

71 Fractures

50m
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volox

Kwon S, Min KB*, Fracture Transmissivity Evolution around the Geological Repository of nuclear waste caused by Excavation Damage Zone, Thermoshearing
and Glaciation, Int J Rock Mech Min Sci 2020, 137:104554
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o Stress path during thermal loading (Shear dilation)

— Irreversible change by shear dilation

— Effects of shear dilation could be more significant after the dissipation of heat
(normal closure)

Fracture #60
o 8 i
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Kwon S, Min KB*, Fracture Transmissivity Evolution around the Geological Repository of nuclear waste caused by Excavation Damage Zone, Thermoshearing

and Glaciation, Int J Rock Mech Min Sci 2020, 137:104554
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K=10

——a—— kx (MC model)

- —m— - kx (elastic)
———s—— ky (MC model)
- =0= = Ky (elastic)

Contribution

from dilation
kx
~
\D\
~ Contribution
S ¢ from dilation
,,,,,, - - ky
Development of S e
anisotropic permeability ®©

1 2 3 4 5
Ratio of horizontal to vertical stress, k

- Shear induced permeability

increase
- This partly explains why fluid

flow in a few fractures are

dominating the fluid behaviour

K=1.0 K=2.0

K=4.0
Min, Rutqvist, Tsang, & Jing (2004). "Stress-dependent permeability of fractured rock masses: a numerical study." International Journal of Rock
Mechanics and Mining Sciences 41(7): 1191-1210.
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Shear Failure along

the Weak Planes

ensile Failure
along the Weak
Planes

f /
Red: Tensile Cracks on ContactIParaIIeI Bond
Blue: Shear Cracks on Contact/Parallel Bond
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Park, B. and Min, K.B., 2015, Bonded-Particle Discrete Element Modeling of Mechanical Behavior of Transversely Isotropic Rock, IJIRMMS, Int J Rock Mech Min Sci 76: 243-255
Park B, Min KB*, Thompson N, Horsrud P, Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock, Int J Rock Mech
MNMin A1 29019 11N19N 129
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Discontinuum - Bonded Particle DEM (M analysis) "““’"
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Park, B. and Min, K.B., 2015, Bonded-Patrticle Discrete Element Modeling of Mechanical Behavior of Transversely Isotropic Rock,
IJRMMS, International Journal of Rock Mechanics and Mining Sciences 76: 243-255.
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» TOUGH-UDEC Simulator * Verifcation - {Lee etal,, 2018)

1) 1D consolidation 2) Heating of a hollow cylinder
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Lee J, Kim KI, Min KB*, Rutqvist J, 2019, TOUGH-UDEC Simulator for Coupled Multiphase Fluid Flows, Heat Transfers and Discontinuous Deformations in
Fractured Porous Media, Computers and Geosciences, 126:120-130



Numerical Approach in Rock Engineering
Discontinuum - Code coupling THM analysis

SEOUL NATIONAL UNIVERSITY

» Geometry and slip modeling

Case 1
(lower friction angle)
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Lee J, Kim KI, Min KB*, Rutqvist J, 2019, TOUGH-UDEC Simulator for Coupled Multiphase Fluid Flows, Heat Transfers and Discontinuous Deformations in
Fractured Porous Media, Computers and Geosciences, 126:120-130
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 Numerical method is a indispensable part of engineering analysis —
needs a thorough understanding

* Numerical method has a unique role that other analytical or
experimental methods cannot play.

* Thorough understanding on the principle of numerical method is
prerequisite in the analysis using them

» However, we must bear in mind that numerical methods is only a means
not the answer itself.
— (Garbage in, garbage out - The results is only as good as the data
— A model is an aid to thought, rather than a substitute for thinking

— Plan the modeling exercise in the same way as you would plan a laboratory
experiment
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