Rock Mechanics & Experiment **암석역학 및 실험** - Introduction to Rock Mechanics/Geomechanics 암석역학/지오메카닉스 소개

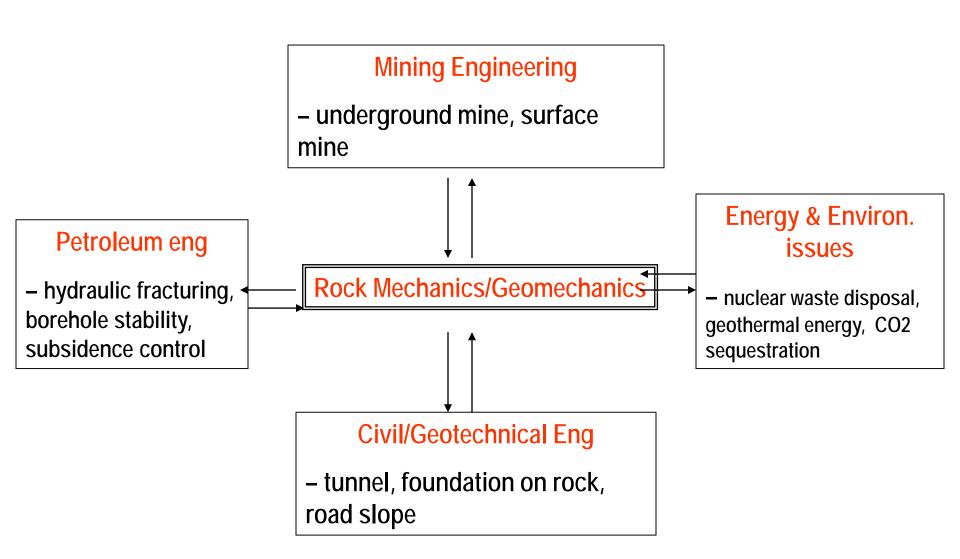
Ki-Bok Min, PhD

Associate Professor Department of Energy Resources Engineering Seoul National University

SEOUL NATIONAL UNIVERSITY

Outline

- Introduction to Rock Mechanics/Geomechanics
 - Terminology
 - Area of Applications
 - Nature of Rock Mechanics/Geomechanics
- Applications of Rock Mechanics/Geomechanics
- Methodology to solve Rock Mechanics/Geomechanics problems


Terminology Rock Mechanics/Geomechanics

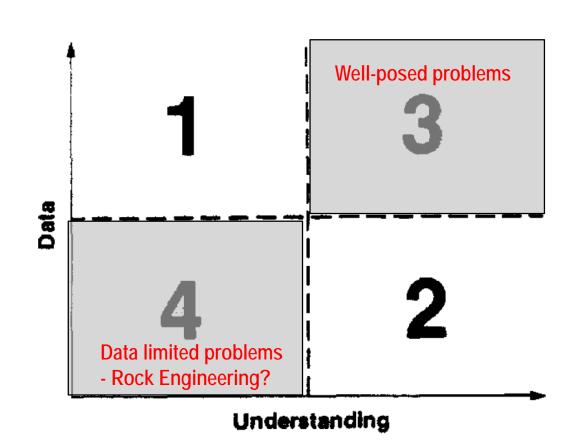
- <u>Rock mechanics</u>: discipline concerned with the stressing, deformation and failure of rock
- <u>Geomechanics</u>: Rock mechanics + Soil Mechanics ← becoming more popular in energy industry
- <u>Rock Engineering</u>: Rock mechanics + application to engineering
- <u>Geotechnical Engineering</u>: (Rock mechanics + soil Mechanics) + application to engineering ← used more by civil engineering industry
- Specialized Rock Mechanics/Geomechanics: Mining ---, Petroleum ---, Reservoir ---, Borehole ---,

Area of Applications

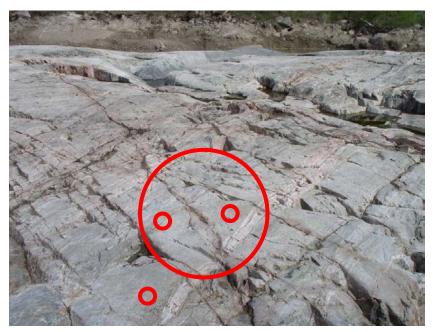
Nature of problem Data limited problem

Rock cutting from Pohang EGS site. ~few mm ▲

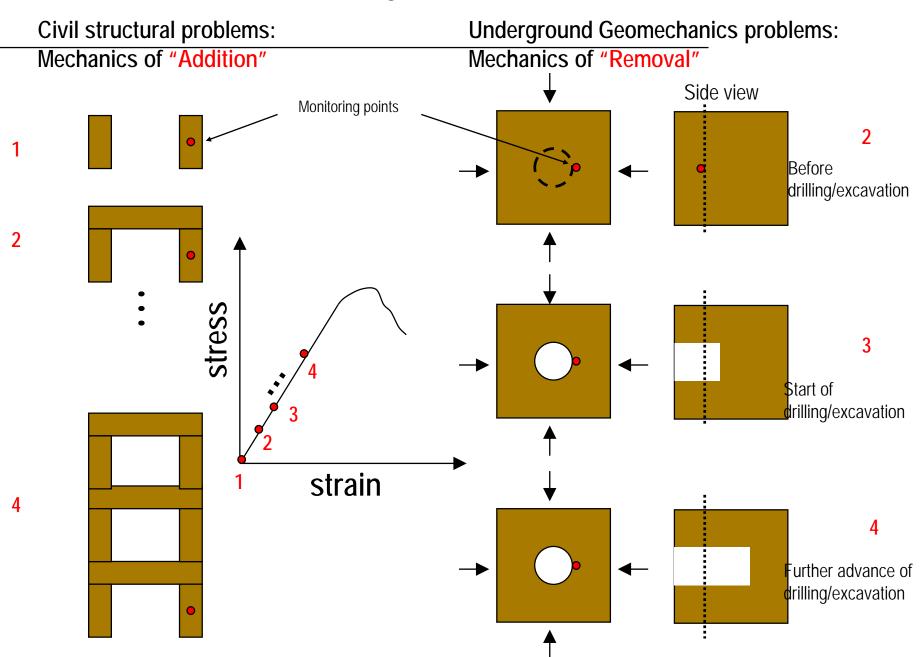
| REALITY


One of the biggest rock core in the world at AECL URL in Canada (2002). ~ 1m

DREAM


Nature of problem Data limited problem

Nature of problem Effect of fractures & Scale



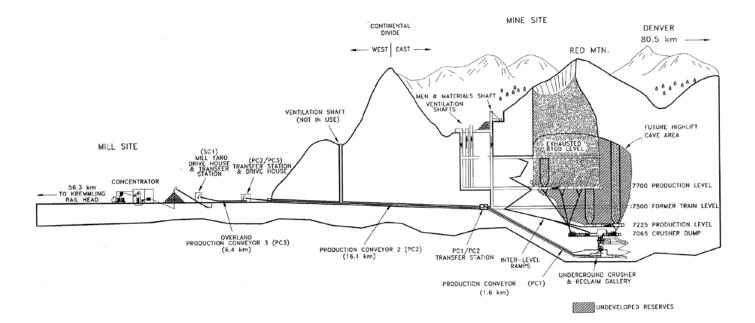
Forsmark, Sweden, 2004

Nature of Underground Geomechanics

	건축/토목 구조문제	암석역학
	Civil Structural Problem	Geomechanics
재료 및 물성 Material & nature of its properties	철강 혹은 콘크리트 Steel, Concrete - 인공물질 (Man-made material) - 균질(Homogeneous) - 연속체(Continuum)	암석 및 토질 (Rock & Soil) - 자연물질 (Natural material) - 불균질 (Heterogeneous) - 불연속체 (Discontinuum) (절리를 함유, contain joints)
경계조건 Boundary condition (loading condition)	자중 + 서비스 하중 (Weight + service load) - 불확실성 적음 (low uncertainty)	현지응력 (In situ stress) - 불확실성 큼 (great uncertainty)
하중재하의 경로 Stress Concentration source	재료의 추가 (상재) (Addition of material)	재료를 없앰 (굴착, removal of material: excavation or drilling)
지하수의 영향 Groundwater	-	매우 중요함 very important
크기 효과 Size effect	-	매우 중요함 Very important

Applications Mining Engineering (1) – Surface Mine

Prominent Hill, Australia, 2008



Pasir Mine, Indonesia, 2010

Applications Mining Engineering (2) – Underground Mine

- 헨데센 광산 (Hendersen Mine), 콜로라도, 미국
 - 1976 년 운영시작 (시작전 10년간 약 \$500 million 투자)
 - 세계최대의 몰리브덴 광산
 - 1000 미터 하부에 광체, 최대심도 1,600 미터

Hustrulid & Bullock, 2001

Applications Mining Engineering (2) – Underground Mine

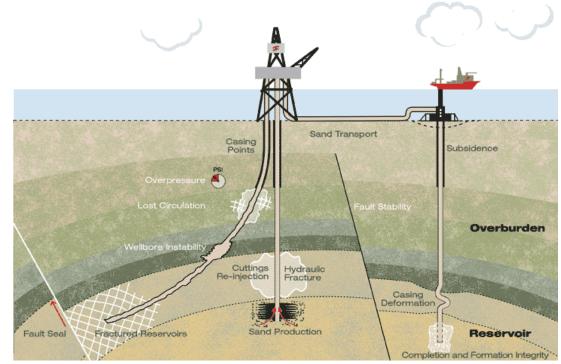
• Drawpoints

Applications Mining Engineering (2) – Underground Mine

Relatively large ore size and intact concrete lining

Slabbing at the side of opening (production level)

Applications Mining Engineering (3) – Quarry


• Dalhalla Concert hall in Sweden – abandoned limestone quarry

Applications Petroleum Engineering (1)

- Areas of Reservoir Geomechanics
 - Hydraulic Fracturing
 - Borehole Stability
 - Fault reactivation
 - Subsidence
 - Sand Production

http://www.helix-rds.com/EnergyServices/HelixRDS/Capabilities/Geomechanics/tabid/178/Default.aspx

Applications Petroleum Engineering (2) – Shale Gas production

Treatable Groundwater Aquifers Private Well Pump capacity: 20 – 30,000 HP Municipal Water Well: Pump pressure: ~10,000 psi < 1.000 ft. Water: 4-6 m gallon proppant: 2-3000 ton** Additional steel casing and cement to protect groundwater In situ stress Hydraulic Fracturing **Protective Steel Casing** Shale Fractures **Borehole stability** X 10 (← 셰일) Not to scale Approximate distance from surface: 7,700 feet Chesapeake Energy, 2011, Hydraulic Fracturing Fact Sheet, April

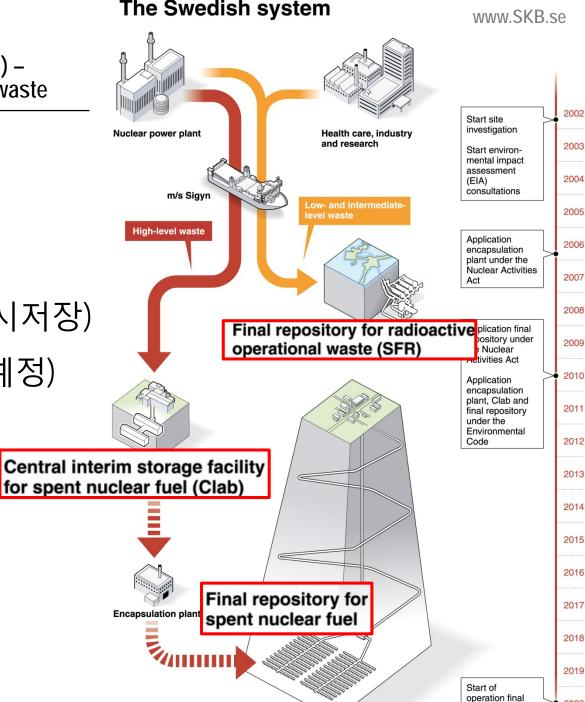
** O'Sullivan, 2012, GHGT-2012, Kyoto, Japan

Applications Petroleum Engineering (3) – wellbore stability

Oseberg in North Sea (Norway)

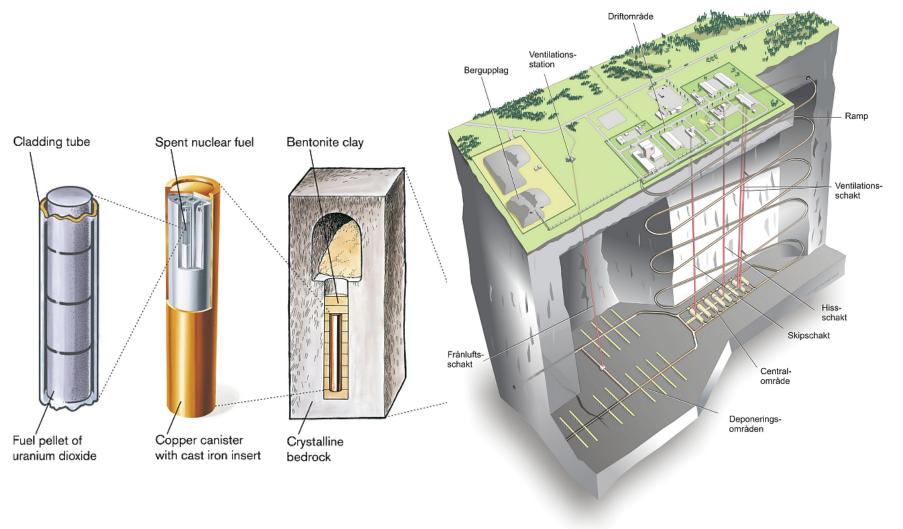
- Extended Reach Drilling (ERD) has been employed for increasing oil recovery.
- Total Depth = 9,327 m
- Since 1979, total depth for wells has increased steadily.

Okland & Cook, SPE, 1998


Applications Petroleum Engineering (3) – wellbore stability

Slide not publishable

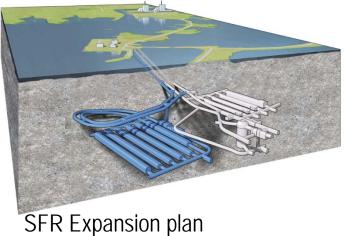
Applications Geo-Environmental Engineering (1) – Geological repository for nuclear waste

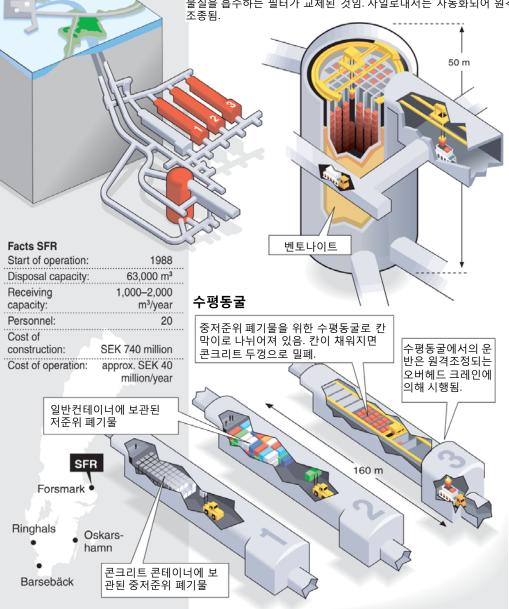

- 지하처분시설:
 - SFR(중저준위)
 - CLAB (고준위 임시저장)
 - 고준위 처분장 (예정)
- ・지하연구시설
 - Stripa Mine (1980-1992)
 - Äspö HRL (1995)

2020

repository

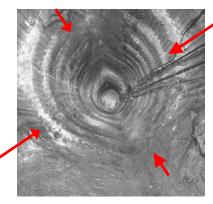
Applications Geo-Environmental Engineering (1) – Geological repository for nuclear waste


www.skb.se

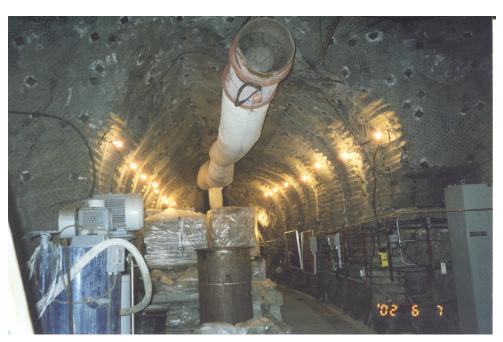

Applications Geo-Environmental Engineering (1) – Geological repository for nuclear waste

다. 다부분의 폐기물은 사일로에 보관하며 주요 폐기물은 원자로의 방사능 물질을 흡수하는 필터가 교체된 것임. 사일로내서는 자동화되어 원격 -조종됨.

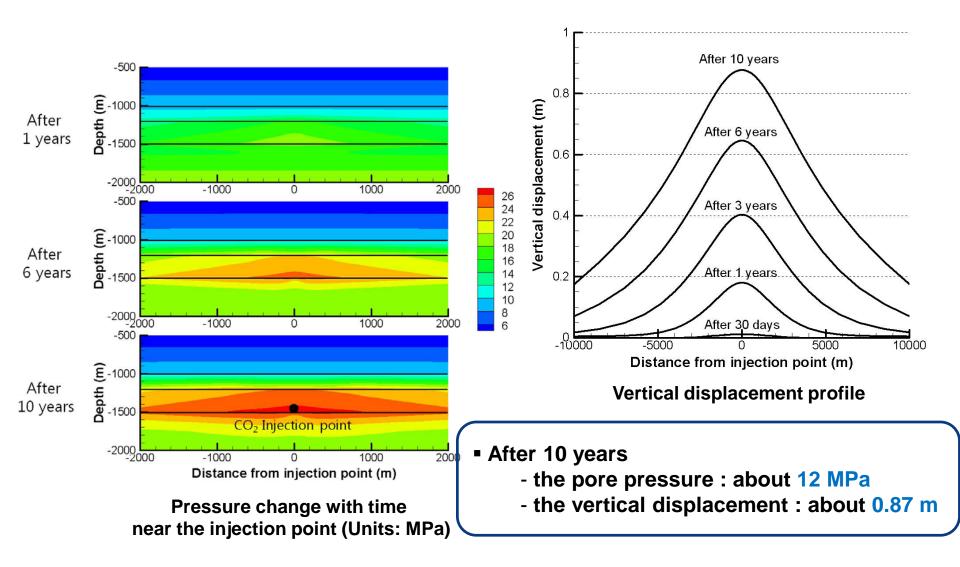
- 스웨덴 SFR
 - 심도:60 m
 - 운영시작:1988년
 - 저장용량: 63,000m³
 - 30 m x 70 m


www.skb.se의 Mats Jerndahl 에서 한글 번역 추가

Applications Geo-Environmental Engineering (1) – Geological repository for nuclear waste



 Underground Research Laboratory in Winnipeg, Canada -Similar observation can be found in underground construction/mining



V notched failure due to high in situ stress (400 m, Winnipeg, Canada, Chandler, 2004)

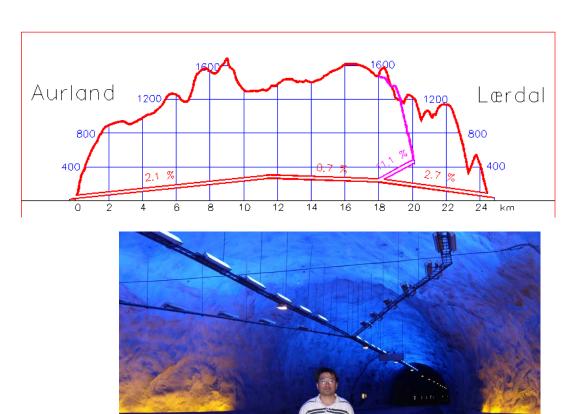
Winnipeg, Canada (Min, 2002)

Applications Geo-Environmental Engineering (2) – CO2 Geosequestration_{seoul National UNIVERSIT}

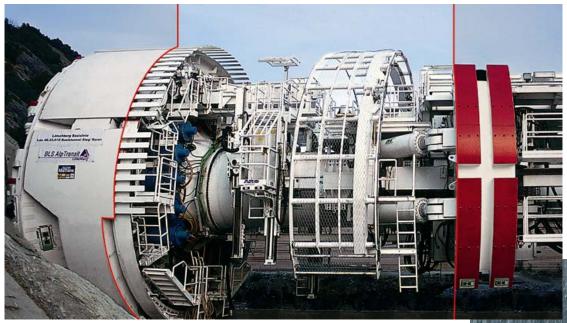
Lee, Min, Rutqvist (2012), RMRE

Applications Civil/Infrastructure (1) – Tunnels

- Civil/Infrastructure
 - Tunnel
 - Slope
 - Dam
 - Oil/Gas Storage Cavern
 - Foundation


T-centralen, Stockholm subway (Per Olof Ultvedt 1975)

Applications Civil/Infrastructure (1) – Tunnels


- 24.5 km long, 10m wide
- Three 30 m wide mountain hall
- Over 1 km overburden

Applications Civil/Infrastructure (1) – Tunnels

✓ Tunnel Boring Machine (TBM)

스위스 Gottard Base Tunnel 에 사용

Applications Civil/Infrastructure (2) – Slopes

Slopes to be scaled

Youngyang, Korea (1999)

Goksong, Korea (1999)

Applications Civil/Infrastructure (2) – Slopes

Reinforcement: Rock Anchor

Chunchon, Korea (1999)

Artificial tunnel

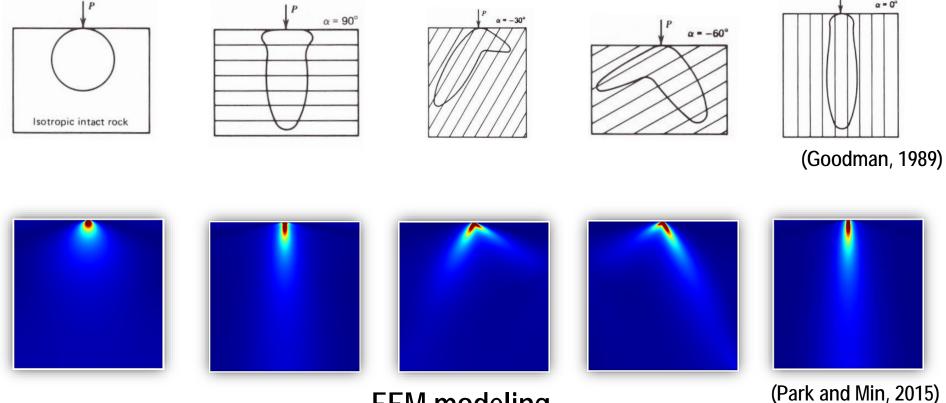
Inje, Korea (1998)

Applications Civil/Infrastructure (3) – Dams

Three Gorges Dam (Christoph Filnkößl)

Ship locks for river traffic

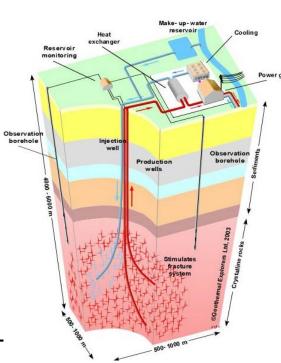
Applications Civil/Infrastructure (4) – Oil/Gas Storage Cavern



Applications Civil/Infrastructure (5) – Foundations

Foundation under line load on transversely isotropic rock (radial stress is shown)

FEM modeling

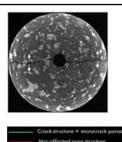

Goodman R, Introduction to rock mechanics, 1989, 2nd ed., Wiley

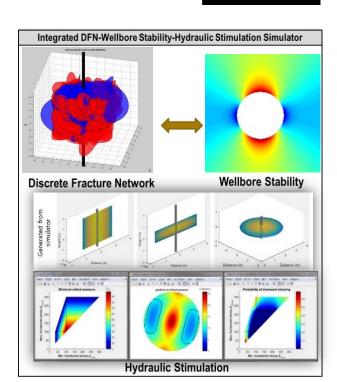
Park, B. and Min, K.B., Discrete element modeling of transversely isotropic rock applied to foundation and borehole problems, 13rd ISRM Congress, 2015, Vancouver, Canada

Geothermal Energy

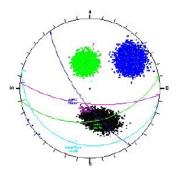
Applications

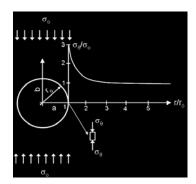
- EGS (Enhanced Geothermal System, 인공저류층 지열시스템): 투수율이나 공극률이 낮은 암반 이 경제적인 지열 생산을 가능하 도록 투수율을 높힌 인공저류층을 대상으로 한 지열에너지 개발시스템
- EGS 의 핵심기술
 - 심부시추(3~5 km)
 - 인공저류층 형성(수리자극)
 - 저류층 특성화
 - 저류층 모니터링(미소진동 관리)
- 심부지열발전 핵심기술은 석유 가스 등의 자원개발에 필요한 탐사, 개발, 생산 기술과 매우 유사함




Applications Geothermal Energy – example

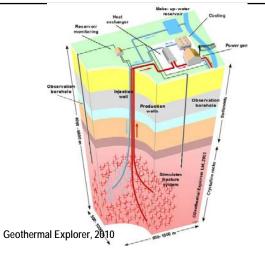
- Laboratory scale experiment
 - Hydraulic fracturing on cylindrical rock sample (~ 5.4 cm diameter) inside CT-chamber
 - Basis for conceptual design of hydraulic stimulation
- Thermal performance
 - Conceptual calculation by analytical solution
- Hydraulic shearing initiation and propagation analysis
 - Condition for upward and downward migration of hydroshearing
- Hydraulic shearing and fracturing simulator
 - DFN-Hydraulic stimulation-borehole stability



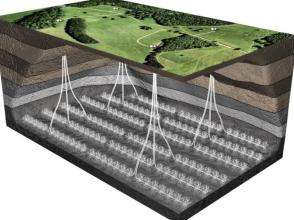

Methods for Rock Mechanics/Geomechanics Analysis

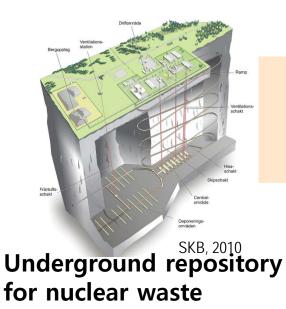
- 해석적 방법 (Analytical method)
 - 알려져 있는 수학적 해를 이용하여 응력과 변위를 계산
 - 커쉬해 (Kirsch solution) 등이 원형공동주위의 응력상태를 알려주는 대표적인 수학적 해임.
- 경험적 방법 (Empirical method)
 - 축적된 경험을 이용하여 여러 범주에 점수를 부여하여 해석
 - 암반분류법이 대표적인 예 (RMR (Rock Mass Rating), Qsystem)
- 수치해석적 방법 (Numerical Method)
 - 주어진 경계조건과 형상에서 컴퓨터 시뮬레이션을 이용하여 응력과 변위를 계산 (편미분방정식을 푸는 것임)
 - 복잡한 형상에서 효과적임
 - 유한요소법 (Finite Element Method, FEM), 유한차분법 (Finite Difference Method, FDM), 개별요소법 (Discrete Element Method, DEM)

Example of streographic projection method

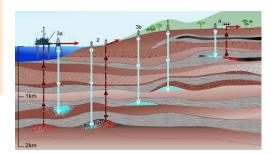


Stress distribution around a circular opening


Aitik Mine, Sweden, Min, 2012


Mining Engineering Depth : ~ 2.5 km Enhanced Geothermal System

http://www.statoil.com/en/NewsAndMedia/News/2010/Pages/26MarMarcellus.aspx



Shale gas production & oil/gas depth: ~ 3.0 km

depth: 0.5 ~ 5.0 km

THINK BIG! GO DEEP!!

IPCC, 2005

CO₂ sequestration depth: ~ 2.5 km