2021 Spring

"Phase Equilibria in Materials"

05.04.2021 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Chapter 10. Ternary phase Diagrams Four-Phase Equilibrium

a. THE TERNARY EUTECTIC EQUILIBRIUM ($l = \alpha + \beta + \gamma$)

b. THE QUASI-PERITECTIC EQUILIBRIUM $(l + \alpha = \beta + \gamma)$

c. THE TERNARY PERIECTIC EQUILIBRIUM $(l + \alpha + \beta = \gamma)$

THE TERNARY EUTECTIC EQUILIBRIUM ($l = \alpha + \beta + \gamma$)

10.1. THE EUTECTIC EQUILIBRIUM $(l = \alpha + \beta + \gamma)$

• **Isothermal section** $(T_A > T > T_B)$

10.3. THE QUASI-PERITECTIC EQUILIBRIUM $(l + \alpha = \beta + \gamma)$

Both three phase monovariant equilibria preceding the quasi-peritectic reaction are peritectic

> abP peritectic lαβ equilibrium acP peritectic lαγ equilibrium

decreasing temperature

> **bcP eutectic Ιβγ equilibrium abc peritectic α**βγ equilibrium

10.3. THE QUASI-PERITECTIC EQUILIBRIUM $(l + \alpha = \beta + \gamma)$

Isothermal section

 $T_B > T > P$

T = P

 $P > T > T_c$

abP	peritectic	Ιαβ	equilibrium
acP	peritectic	Ιαγ	equilibrium)
bcP	eutectic	Ιβγ	equilibrium
abc		αβγ	equilibrium)

descending to the four-phase plane;

descending from the four-phase plane.

 $aPc(\alpha\gamma L) \rightarrow \underline{a_2c_2P_2} / Pcb(L\gamma\beta) \rightarrow \underline{P_3c_3b_3} / abc(\alpha\beta\gamma) \rightarrow fgh(\alpha\beta\gamma)$

10.4. THE TERNARY PERIECTIC EQUILIBRIUM $(l + \alpha + \beta = \gamma)$

10.4. THE TERNARY PERIECTIC EQUILIBRIUM $(l + \alpha + \beta = \gamma)$

10.3.2. one of the three phase monovariant equilibria preceding the quasi-peritectic reaction is eutectic and one peritectic * Ternary system involving an incogruently-melting binary intermediate phase: Quasi-peritectic diagram and ternary eutectic diagram e.g. Au-Ge-Sb ternary in which the δ phase is intermediate phase AuSb₂. $P_1d_1b_1$ →dbp (δβL)/ $b_3e_3c_3$ →bpc (βLγ) $d^{1}\epsilon c(\delta + \gamma + L) / gfn(\beta + \delta + \gamma)$ $d^{1}\varepsilon c^{1}(\delta \gamma L) / a_{1}e_{1}d_{2} \rightarrow a^{1}\varepsilon d^{1}(\alpha \delta L) / a_{2}e_{2}c_{2} \rightarrow a^{1}\varepsilon c^{1}(\alpha L \gamma)$ Y $\beta + \delta + \gamma$ Jkm $(\alpha + \gamma + \delta)$ 4++++ ar + 2

Fig. 189. Ternary system involving an incongruently-melting binary intermediate phase.

Tabular representation of ternary equilibria: interlinks the binary and ternary reactions in tabular form

Ternary Binary AC Binary BC Binary AB $l + \beta \rightleftharpoons \delta$ $l \rightleftharpoons \beta + \gamma$ Lβδ tie triangle Lβγ tie triangle $l + \beta \rightleftharpoons \gamma + \delta$ $l \rightleftharpoons \delta + \gamma$ Lδγ tie triangle $l \rightleftharpoons \alpha + \delta$ $l \rightleftharpoons \alpha + \gamma$ $L\alpha\delta$ tie triangle $L\alpha\gamma$ tie triangle $l \rightleftharpoons \alpha + \gamma + \delta'$ $\beta\gamma\delta$ tie triangle $\alpha_{\gamma}\delta$ tie triangle $\beta + \gamma + \delta$ $\alpha + \gamma + \delta$

Quasi-peritectic diagram and ternary eutectic diagram

Chapter 11. Ternary phase Diagrams Intermediate Phases

Intermdediate phases may melt congruently or incongruently. They may occur as either binary or ternary phases.

11.1. Binary intermediate phases

- Assume the AB system contains an intermediate phase δ .
- The ternary will contain the five phases α , β , γ , δ and liquid.
- <u>Since the maximum number of phases which can coexist is four,</u> <u>there must be more than one four-phase equilibrium in the ternary.</u>

$$l \leftrightarrow \alpha + \beta + \gamma$$
$$l \leftrightarrow \alpha + \beta + \delta$$
$$l \leftrightarrow \alpha + \gamma + \delta$$
$$l \leftrightarrow \beta + \gamma + \delta$$

- The more usual combination is of the last two equilibria, implying equilibrium in the solid state between $\alpha\gamma\delta$ and $\beta\gamma\delta$.
- This can be envisaged if there is direct equilibrium between γ and δ, splitting the ternary system into two partial system AδC and BδC. It often happens that the δ phase forms 1) a quasi-binary system with component C.

11.1. Binary intermediate phases

1) Quasi binary eutectic δC

11.1. Binary intermediate phases

Fig. 78. Phase diagram with a congruent intermediate phase.

the eutectic point e5 on the quasi-bniary section δC is saddle point.

the straight line is the quasi-binary eutectic horizontal c5e5d5.

Fig. 199. The Al-Mg-Si system (schematic).

11.1. Binary intermediate phases

Mg-Si binary phase diagram

• Binary intermediate phases

3) No quasi binary eutectic : two ternary eutectic

 $L \rightarrow \alpha + \beta + \gamma$

- $L \rightarrow \alpha + \beta + \delta$
- e₅: saddle point

11.1 Congruently-melting intermediate phases

- Binary intermediate phases
- 4) (a) containing congruent intermediate phases on each binary system(b) corresponding equilibria for eutectic reaction

binary eutectic points: 1, 2, 3, ..., 9/ternary eutectic points: I, II, III, IV

11.1 Congruently-melting intermediate phases

- Binary intermediate phases
- 4) (a) containing congruent intermediate phases on each binary system
 - (b) corresponding equilibria for eutectic reaction

binary eutectic points: 1, 2, 3, ..., 9/ternary eutectic points: I, II, III, IV

(a) 4

G

IV

27

(b) 4

- a) Binary intermediate phases
 - : Quasi binary eutectic rxn. between Ga, As and Zn

- The region in which GaAs is the primary phase to crystallize from the liquid is lightly shaded.
- It illustrates the dominating behavior of the high melting phase GaAs in this system
- For clarity, no solid solubility between any of the phases has been indicated.

quasi-binary eutectic $l \rightleftharpoons \text{GaAs} + \text{Zn}$	at	414 °C,
quasi-binary eutectic $l \rightleftharpoons GaAs + Zn_3As_2$	at	972 °C,
quasi-binary eutectic $l \rightleftharpoons \text{GaAs} + \text{ZnAs}_2$	at	754 °C,
ternary eutectic $l \rightleftharpoons GaAs + Zn + Ga$	at	~ 20 °C,
ternary eutectic $l \rightleftharpoons \text{GaAs} + \text{Zn} + \text{Zn}_3\text{As}_2$	at	~410 °C,
ternary eutectic $l \rightleftharpoons GaAs + Zn_3As_2 + ZnAs_3$	2 at	~750 °C,
ternary eutectic $l \rightleftharpoons GaAs + ZnAs_2 + As$	at	~720 °C.

As-Ga-Zn system

Tabular representation of the ternary equilibria in the As-Ga-Zn system:

Tabular representation of the ternary equilibria in the As-Ga-Zn system:

The four three-phase equilibria underlined are stable down to room-temperature.

- **11.1 Congruently-melting intermediate phases**
- Binary intermediate phases: Kurnakov rule
 - 1) Case1: with only binary congruent intermediate phases

 $K = E = c_2 + 1 = q + 1 = m + 1$

K = # of secondary triangles E = # of ternary eutectic points c_2 = binary congruent intermediate phases q = quasi binary reaction m = saddle point

2) Case2: with only ternary congruent intermediate phases

 $K = E = 2c_3 + 1 = 2/3q + 1 = 2/3m + 1$

 $c_3 =$ ternary congruent intermediate phases

3) Case3: with both binary and ternary congruent intermediate phases

$$K = E = 1 + c_2 + 2c_3 = q + 1 - c_3 = m + 1 - c_3$$

 Isothermal section at a temperature just above the lowest melting ternary eutectic (III)

 $l + \eta + \varepsilon$

 $\eta + \varepsilon + \gamma$

 $\beta + \delta + \varepsilon$

 Rhines has noted that the relation k=1+c₂+2c₃ can be used to check ternary isothermal section irrespective of whether they contain congruent or incongruent phases.

- K: # of 3 phase tie triangles,

- C₂: # of single phase regions joined to a binary edge (excluding the α, β, γ terminal solid solutions based on components A, B and C),
- C₃: # of single phase regions completely within the ternary system.

$$K = E = 1 + c_2 + 2c_3 = 1 + 3 + 2 = 6$$

<u>The Kurnakove and Rhines' rules are useful in checking the construction of ternary</u> systems and their isothermal sections when intermediate phases are involved.

 $\alpha + \delta + \eta$

77

2021 Spring

"Phase Equilibria in Materials"

05.06.2021 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Chapter 11. Ternary phase Diagrams Intermediate Phases

Intermdediate phases may melt congruently or incongruently. They may occur as either binary or ternary phases.

11.1. Binary intermediate phases

1) Two ternary eutectic reactions

Fig. 78. Phase diagram with a congruent intermediate phase.

the eutectic point e5 on the quasi-bniary section δC is saddle point.

the straight line is the quasi-binary eutectic horizontal c5e5d5.

- Binary intermediate phases
 - : Quasi binary eutectic rxn. between Ga, As and Zn

- The region in which GaAs is the primary phase to crystallize from the liquid is lightly shaded.
- It illustrates the dominating behavior of the high melting phase GaAs in this system
- For clarity, no solid solubility between any of the phases has been indicated.

quasi-binary eutectic $l \rightleftharpoons GaAs + Zn$	at	414 °C,
quasi-binary eutectic $l \rightleftharpoons GaAs + Zn_3As_2$	at	972 °C,
quasi-binary eutectic $l \rightleftharpoons \text{GaAs} + \text{ZnAs}_2$	at	754 °C,
ternary eutectic $l \rightleftharpoons GaAs + Zn + Ga$	at	~ 20 °C,
ternary eutectic $l \rightleftharpoons \text{GaAs} + \text{Zn} + \text{Zn}_3\text{As}_2$	at	~410 °C,
ternary eutectic $l \rightleftharpoons GaAs + Zn_3As_2 + ZnAs_2$	at	~750 °C,
ternary eutectic $l \rightleftharpoons GaAs + ZnAs_2 + As$	at	~720 °C.

As-Ga-Zn system

• Binary intermediate phases

3) No quasi binary eutectic : two ternary eutectic

 $L \rightarrow \alpha + \beta + \gamma$

 $L \rightarrow \alpha + \beta + \delta$

e₅: saddle point

- **11.1 Congruently-melting intermediate phases**
- Binary intermediate phases: Kurnakov rule
 - 1) Case1: with only binary congruent intermediate phases

 $K = E = c_2 + 1 = q + 1 = m + 1$

K = # of secondary triangles E = # of ternary eutectic points c_2 = binary congruent intermediate phases q = quasi binary reaction m = saddle point

2) Case2: with only ternary congruent intermediate phases

 $K = E = 2c_3 + 1 = 2/3q + 1 = 2/3m + 1$

 $c_3 =$ ternary congruent intermediate phases

3) Case3: with both binary and ternary congruent intermediate phases

$$K = E = 1 + c_2 + 2c_3 = q + 1 - c_3 = m + 1 - c_3$$

 Isothermal section at a temperature just above the lowest melting ternary eutectic (III)

 $l + \eta + \varepsilon$

 $\eta + \varepsilon + \gamma$

 $\beta + \delta + \varepsilon$

 Rhines has noted that the relation k=1+c₂+2c₃ can be used to check ternary isothermal section irrespective of whether they contain congruent or incongruent phases.

- K: # of 3 phase tie triangles,

- C₂: # of single phase regions joined to a binary edge (excluding the α, β, γ terminal solid solutions based on components A, B and C),
- C₃: # of single phase regions completely within the ternary system.

$$K = E = 1 + c_2 + 2c_3 = 1 + 3 + 2 = 6$$

<u>The Kurnakove and Rhines' rules are useful in checking the construction of ternary</u> systems and their isothermal sections when intermediate phases are involved.

 $\alpha + \delta + \eta$

77

b) Ternary intermediate phase: <u>behaves as a pure metal</u> in that it freezes isothermally and its appearance is associated with a maximum on the liquidus/solidus surfaces

quasi-binary eutectic $l \rightleftharpoons Bi + BiCuMg$	at	~271 °C
quasi-binary eutectic $l \rightleftharpoons Cu + BiCuMg$	at	690 °C
quasi-binary eutectic $l \rightleftharpoons Bi_2Mg_3 + BiCuMg$	at	695 °C
quasi-binary eutectic $l \rightleftharpoons Bi_2Mg_3 + Cu_2Mg$	at	655 °.C
quasi-binary eutectic $l \rightleftharpoons Bi_2Mg_3 + CuMg_2$	at	557 °C
ternary eutectic $l \rightleftharpoons Bi + Cu + BiCuMg$	at	265 °C
ternary eutectic $l \rightleftharpoons Bi + Bi_2Mg_3 + BiCuMg$	at	255 °C
ternary eutectic $l \rightleftharpoons Cu + Bi_2Mg_3 + BiCuMg$	at	630 °C
ternary eutectic $l \rightleftharpoons Bi_2Mg_3 + Cu_2Mg + CuMg_2$	at	546 °C
ternary eutectic $l \rightleftharpoons Mg + Bi_2Mg_3 + CuMg_2$	at	470 °C
quasi-peritectic $l + Cu_2Mg \rightleftharpoons Cu + Bi_2Mg_3$	at	660 °C

a) ternary system formed when two of the Binaries contain incongruent intermediate phases

(a) Equilibria when the quasi-peritectic point P is located in the partial system AδC

(b) Equilibria when the quasi-peritectic point P is located in the partial system Cδε

Tabular representation of the ternary space model (a) :

- 11.2 incongruently-melting intermediate phases
- Binary intermediate phases : ternary space model of (b)

ß.

δ

b) one ternary intermediate phase and all three binary eutectic

Ternary space model

Projection on the concentration triangle

Tabular representation of the ternary equilibria, e.g. Al-Mg-Zn system

Vertical section along tiel line 1-2-3

Chapter 12. Ternary phase Diagrams Liquid Immiscibility

Liquid immiscibility in one or more of the binary systems can lead to either three-phase or four-phase equilibria in the ternary system.

Immiscibility can arise if either <u>monotectic or syntectic reactions</u> occur in the binary system; <u>true ternary immiscibility</u> is also possible.

- 1) Liquid immiscibility in binary system
- * Monotectic reaction:
 - Liquid1 ↔Liquid2+ Solid

L2+S

* Syntectic reaction:
 Liquid1+Liquid2 ↔ α

K-Zn, Na-Zn, K-Pb, Pb-U, Ca-Cd

2) One binary liquid miscibilty gap in ternary system

• Binary Monotectic, syntectic and metatectic reactions in combination with each other as well as with binary eutectic and peritectic reactions.

12.1. Two Binary Systems are Monotectic

• The AB and BC binaries are monotectics, the AC binary is eutectic.

* Tabular foam of the system when two binaries contain monotectics

where L_{Ga} is the heat of fusion of Ga (1336 cal/g.-atom), T_0 is the m.p. of Ga (302.93 °K), T is the ternary eutectic temperature, R the gas constant, and X_{Ga} the Ga content of the ternary eutectic E_1

12.2. One Binary System is Monotectic

Liquid immiscibility in ternary system

a) Projection of the system when only one binary is monotectic and two binaries are simple eutectic.

12.2. One Binary System is Monotectic

* Tabular foam of the system when two binaries contain monotectics

* ex) Fe₃C-FeS-Fe: partial system of C-Fe-S ternary

quasi-binary system Fe-Fe₃C: monotectic/ Fe-Fe₃C & Fe-FeS: simple eutectic

12.3. None of the Binaries contain liquid miscibility gaps but <u>True Ternary Liquid Immiscibility Appears</u>

27

12.3. True Ternary Liquid Immiscibility Appears

* Tabular foam of the system when true ternary liquid immiscibility appears

Binary AB	Binary BC	, Ternary	Binary AC	
		$l_{c_2} \rightleftharpoons \alpha_1$ $l_1 + l_2 + \alpha$ $l_1 \rightarrow \gamma_1$		
		I_1	$\frac{l_1 \rightleftharpoons \alpha + \gamma}{4}$	
		$\begin{matrix} \downarrow \\ l_{1(M)} \rightleftharpoons \underline{l}_{2} + \underline{\alpha} + \underline{\gamma} \end{matrix} \qquad M$		
$(l_2) \rightleftharpoons (\alpha) + (\beta)$	$\frac{\langle l_2 \rangle \rightleftharpoons \langle \beta \rangle + \langle \gamma \rangle}{4}$	$l_2 \rightleftharpoons \alpha + \gamma$		
		$l_{2(E)} \rightleftharpoons \alpha + \beta + \gamma = E$		
×	•	$\frac{\alpha + \beta + \gamma}{\alpha + \beta + \gamma}$	28	