Chapter 12

Statistical Thermodynamics

Min Soo Kim Seoul National University

- Toy model: Configuration of molecules in a room
 - > Initial state which 4 molecules exist at left side
 - > How many rearrangement if one molecule moves to right side?

 $w = {}_{4}C_{3} \times {}_{4}C_{1} = 16$: sixteen rearrangements!

• Rearrangements for all states

• What if there are large number of molecules and spaces?

For a large system, only most probable state is possible. Nature always converge to most probable state.

• Equilibrium of macroscopic system

Macro State (# of molecules in each energy level)

Thermodynamic probability : # of microstates which leads a given microstate (# of ways) #

D

12.2 Coin-Tossing Experiment

• Coin tossing experiment: A simplified model of thermodynamic system

How many coins of heads when tossing 4 coins on the floor?

macro state : number distribution of coins of head and tails

micro state : rearrangements of coins of head and tails

http://splatter.com/

12.2 Coin-Tossing Experiment

Macro state level		o state		Micro	state	Thermodynamic probability	True probability	
k	N_1	N ₂	coin 1	coin 2	coin 3	coin 4	w_k	p_k
1	4	0	н	н	н	н	1	1/16
2	3	1	Н	Н	Н	Т		4/16
			Н	Н	т	Н	4	
			н	т	н	Н	4	
			т	н	н	Н		
3	2	2	Н	Н	Т	Т		6/16
			Т	Т	Н	Н		
			Н	Т	Н	Т	6	
			Т	Н	Т	Т	Ū	
			Н	Т	Т	Т		
			Т	н	Н	Т		
4	1	3	Н	т	т	т		4/16
			Т	Н	Т	Т	4	
			Т	Т	Н	Н	7	
			Т	Т	Т	н		
5	0	4	т	т	т	т	1	1/16

12.2 Coin-Tossing Experiment

A macro state with $N_1 = N/2$ has largest number of μ -state.

The maximum value of thermodynamic probability: $w_{max} =_N C_{N/2} = \frac{N!}{(N/2)! (N/2)!}$

When tossing 1000 times, $w_{max} = \frac{1000!}{(500)!(500)!}$

For such a large numbers, Stirring's approximation can be used

 $\ln(n!) = n \ln(n) - n$

Then

$$\ln(w_{max}) = \ln(1000!) - 2\ln(500!) = 693$$
$$\log(w_{max}) = \log(e)\ln(w_{max}) = 0.4343 \cdot 693 \approx 300$$
$$\therefore w_{max} = 10^{300}$$

For a large system, the total number of microstates is very nearly equal to the maximum number; $\Omega = \sum w_k \approx w_{max}$

12.3 Assembly of Distinguishable Particles

• Distribution among energy levels for equilibrium state

12.3 Assembly of Distinguishable Particles

• Ex) N= 3, U= 3 ϵ with ϵ_i = 0, ϵ , 2 ϵ , 3 ϵ

Macro state level	Macro state specification				Micro state specification			Thermodynamic probability	True probability	
k	N ₀	N_1	N_2	N_3	А	В	С	w_k	p_k	
1	2	0	0	1	0	0	3ε	3	0.3	
					0	3ε	0			
					3ε	0	0			
2	1	1	1	0	0	3	2ε			
					0	2ε	3			
					3	0	2ε	6	0.6	
					3	2ε	0		0.0	
					2ε	0	3			
					2ε	3	0	Most Probabl	$e \rightarrow Fauil$	ibrium
3	0	3	0	0	3	3	3	1	0.1	

12.4 Thermodynamic Probability and Entropy

• Statistical concept of entropy

Ludwig Boltzmann constructed the connection between the classical concept of entropy and the thermodynamic probability.

He interpreted entropy as a degree of organization of microscopic energy.

$$S = f(w)$$

There are a few characteristics for the function of entropy.

- (1) f(w) must be a single valued, monotonically increasing function.
- (2) Entropy is an extensive property. That is, $S_{A+B} = S_A + S_B$
- (3) Configuration of the system satisfies, $w_{A+B} = w_A w_B$

 $f(w_{A+B}) = f(w_A) + f(w_b)$

12.4 Thermodynamic Probability and Entropy

The only function for which this statement is true is the logarithm. Thus, Ludwig Boltzmann postulated the function of entropy as below.

 $S = k \ln w$

- k : Boltzmann constant (= 1.38 x 10⁻²³ J/k)
- w : Number of rearrangements

• Schrödinger's Equation (Postulate)

$$\Psi(x, y, z, t) = \psi(x, y, z)\phi(t)$$
 \cdots time dependent
wave function

$$|\Psi|^2$$
 ... probability distribution function
[probability density]

$$-\frac{h}{2\pi i}\frac{\partial\Psi}{\partial t} = -\frac{h^2}{8\pi^2 m}\left(\frac{\partial^2\Psi}{\partial x^2} + \frac{\partial^2\Psi}{\partial y^2} + \frac{\partial^2\Psi}{\partial z^2}\right) + V\Psi$$

$$\downarrow$$

$$h : \text{Planck constant} \qquad \text{potential energy}$$

Postulated by Schrödinger based on physical phenomena of matter wave Also, Max born suggested statistical meaning of wave function.

• Schrödinger's Equation

$$-\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) + V\Psi = -\frac{h}{2\pi i} \frac{\partial \Psi}{\partial t}$$

Separation of variables

$$\Psi(x, y, z, t) = \psi(x, y, z)\phi(t)$$
Energy of the particle (constant)

$$\frac{1}{\psi} \left[-\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + V\psi \right] = -\frac{h}{2\pi i} \frac{1}{\phi} \frac{d\phi}{dt} = E$$

$$\frac{f(x, y, z)}{(\text{space})}$$

$$f(t)$$
(time)

• Time dependent part

$$\frac{d\phi}{dt} = -\frac{2\pi i E}{h}\phi \quad \longrightarrow \quad \phi = -ce^{-\frac{2\pi i E}{h}t} \qquad \left[e^{i\theta} = \cos\theta + i\sin\theta\right]$$

Spatial part

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0 \qquad \qquad \frac{1}{2}mv_z^2$$

$$\psi(x, y, z) = X(x)Y(y)Z(z), \qquad E = E_x + E_y + E_z$$

$$\longrightarrow \qquad \frac{\partial^2 X}{\partial x^2} + \underbrace{\frac{8\pi^2 m E_x}{h^2}}_{p^2} X = 0 \qquad \longrightarrow \qquad X = A\cos px + B\sin px$$

• Boundary condition

B.C.
$$| \xrightarrow{X(0) = 0} X(L) = 0$$

$$\left(\begin{array}{c} x=0, X=0\\ x=L, X=0 \end{array}\right)$$

from

$$X = A\cos px + B\sin px$$

$$PL = n\pi$$
 (*n* = 0,1,2,...)

$$P = \frac{2\pi\sqrt{2mE_X}}{h}$$

For linear motion of a free particle

$$X = X_0 \sin \frac{n\pi}{L} x = X_0 \sin \frac{2\pi\sqrt{2mE_X}}{h} x$$

The last step is to normalize the wave function

$$\int_0^L X^2 dx = 1 \to X_0 = \sqrt{\frac{2}{L}}$$

Thus, the wave function is given as below

$$X = \sqrt{\frac{2}{L}} \sin \frac{2\pi \sqrt{2mE_X}}{h} x$$

For a particle in a box,

- constrained to stay in a box
- = no external force

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 mE}{h^2} \psi = 0$$

• Outside the box $\psi = 0$ $(V \to \infty)$

 \rightarrow continuous wave function

$$\rightarrow \psi = 0 \text{ at } x = 0, a \\ y = 0, b \\ z = 0, c \end{bmatrix} B.C.$$

$$X = A \sin\left[\left(\frac{8\pi^2 m E_X}{h^2}\right)^{1/2} x\right] + B \cos\left[\left(\frac{8\pi^2 m E_X}{h^2}\right)^{1/2} x\right]$$

$$\psi = 0$$
 at $x = 0 \rightarrow B = 0$

$$\psi = 0$$
 at $x = a \rightarrow 0 = A \sin\left(\frac{8\pi^2 m E_X}{h^2}\right)^{1/2} a$

 $n_x \pi (n_x:integer)$

 \rightarrow Energy of a particle is quantized!

$$E_X = \frac{h^2 {n_x}^2}{8ma^2}$$

$$\implies E = E_X + E_Y + E_Z = \frac{h^2}{8m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right)$$

• Wave function

$$\psi = X_0 Y_0 Z_0 \sin \frac{n_x \pi x}{a} \sin \frac{n_y \pi y}{b} \sin \frac{n_z \pi z}{c}$$

$$\iiint \psi \psi^* dV = 1$$

$$X_0^2 Y_0^2 Z_0^2 = \frac{8}{abc}$$

$$E = \frac{h^2}{8m} \frac{1}{a^2} \left(n_x^2 + n_y^2 + n_z^2 \right)$$

• Degeneracy (statistical weight of the energy level)

• Hydrogen atom in quantum mechanics

Because there exist only one proton and one electron, hydrogen atom is an easiest model to examine quantum state of an electron

Coulomb's potential :

$$V_{elec} = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$$

Schrödinger's equation :

$$\nabla^2 \psi_{elec} + \left(\frac{8\pi^2 m_e}{h^2}\right) + (\epsilon_{elec} - V_{elec})\psi_{elec} = 0$$

Bohr's hydrogen model

Wave function of an electron in spherical coordinate :

$$\psi_{nlm}(r,\theta,\varphi) = \sqrt{\left(\frac{\rho}{r}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}} e^{-\frac{\rho}{2}} \rho^l L_{n-l-1}^{2l+1}(\rho) Y_l^m(\theta,\varphi)$$

The wave state is discretized with 3 quantum numbers, n, l, and m

• Hydrogen electron orbitals

http://chemwiki.ucdavis.edu/ogen orbitals

12.6 Density of Quantum States

- Degeneracy of energy state
 - For an energy level of a particle, there exist several states that meet the energy condition.
 - This number of state for an energy level is defined as degeneracy, $g(\epsilon)$
 - For example, degeneracy of first excited energy level is as below

12.6 Density of Quantum States

$$\frac{8ma^2\varepsilon}{h^2} = n_x^2 + n_y^2 + n_z^2$$

$$\frac{8mV^{\frac{2}{3}}\varepsilon}{h^2} = n^2 = R^2$$

 $g(\varepsilon)d\varepsilon$

: number of quantum state $\varepsilon < \ < \varepsilon + d\varepsilon$

$$g(\varepsilon)d\varepsilon = n(\varepsilon + d\varepsilon) - n(\varepsilon) = \frac{dn(\varepsilon)}{d\varepsilon}d\varepsilon$$

$$+ d\varepsilon$$

 $n_y \uparrow$

ε

12.6 Density of Quantum States

$$n(\varepsilon) = \frac{1}{8} \left(\frac{4}{3}\pi R^3\right) = \frac{1}{8} \frac{4}{3}\pi \left(\frac{8mV^{2/3}\varepsilon}{h^2}\right)^{3/2} = \frac{\pi}{6}V \left(\frac{8m}{h^2}\right)^{3/2} \varepsilon^{3/2}$$

$$\downarrow$$
Positive integer area

Degeneracy

$$g(\varepsilon)d\varepsilon = \frac{\pi}{6}V\left(\frac{2^{9/2}m^{2/3}}{h^3}\right)\frac{3}{2}\varepsilon^{\frac{1}{2}}d\varepsilon = \frac{4\sqrt{2}\pi V}{h^3}m^{\frac{3}{2}}\varepsilon^{\frac{1}{2}}d\varepsilon$$

of integer point

