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12.1  Introduction

• Toy model: Configuration of molecules in a room

 Initial state which 4 molecules exist at left side

 How many rearrangement if one molecule moves to right side?  

Case 3

• • • • •

w = 4C3 × 4C1 = 16 : sixteen rearrangements!  

Case 1 Case 2
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12.1  Introduction

• Rearrangements for all states

0 1 2 3 4

Nleft 4

Nright 0

w 1

Nleft 3

Nright 1

w 16

Nleft 2

Nright 2

w 36

Nleft 1

Nright 3

w 16

Nleft 0

Nright 4

w 1

w

Nleft

State with 2 molecules at left is most probable. 
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Nleft

w

12.1  Introduction

• What if there are large number of molecules and spaces?

100 molecules with 200 spaces 1000 molecules with 2000 spaces

Nleft

For a large system, only most probable state is possible.

Nature always converge to most probable state. 

w
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12.1  Introduction

• Equilibrium of macroscopic system

Energy level Microstate

(# of molecules in each energy state)

Macro State ( # of molecules in each energy level )

N

ɛ

: degeneracy

: energy state (quantum state)

Thermodynamic probability

( # of ways )

: # of microstates which leads a given microstate 
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12.2  Coin-Tossing Experiment

• Coin tossing experiment: A simplified model of thermodynamic system

How many coins of heads when tossing 4 coins on the floor?

macro state : number distribution of coins of head and tails

micro state  : rearrangements of coins of head and tails

http://splatter.com/
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Macro state

level

Macro state

specification
Micro state

Thermodynamic

probability

True 

probability

k 𝑁1 𝑁2 coin 1 coin 2 coin 3 coin 4 𝑤𝑘 𝑝𝑘

1 4 0 H H H H 1 1/16

2 3 1

H H H T

4 4/16
H H T H

H T H H

T H H H

3 2 2

H H T T

6 6/16

T T H H

H T H T

T H T T

H T T T

T H H T

4 1 3

H T T T

4 4/16
T H T T

T T H H

T T T H

5 0 4 T T T T 1 1/16

12.2  Coin-Tossing Experiment
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Nleft

w

A macro state with 𝑁1 = 𝑁/2 has largest number of μ-state.

𝑤𝑚𝑎𝑥 =𝑁 𝐶𝑁/2 =
𝑁!

𝑁/2 ! 𝑁/2 !
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𝑤𝑚𝑎𝑥 = 6 𝑤𝑚𝑎𝑥 = 70

𝑁𝑐𝑜𝑖𝑛 = 4 𝑁𝑐𝑜𝑖𝑛 = 8

Repeating numerous times 

most probable micro state (equilibrium)

12.2  Coin-Tossing Experiment

The maximum value of

thermodynamic probability:
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When tossing 1000 times, 𝑤𝑚𝑎𝑥 =
1000!

500 ! 500 !

For such a large numbers, Stirring's approximation can be used

Then

For a large system, the total number of microstates is very nearly equal 

to the maximum number;  Ω = σ𝑤𝑘 ≈ 𝑤𝑚𝑎𝑥

ln 𝑛! = 𝑛 ln 𝑛 − 𝑛

ln 𝑤𝑚𝑎𝑥 = ln 1000! − 2ln 500! = 693

log 𝑤𝑚𝑎𝑥 = log e ln 𝑤𝑚𝑎𝑥 = 0.4343 ∙ 693 ≈ 300

∴ 𝑤𝑚𝑎𝑥= 10300

12.2  Coin-Tossing Experiment
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12.3  Assembly of Distinguishable Particles

• Distribution among energy levels for equilibrium state 

N

ɛj

ɛ3

ɛ2

ɛ1

Nj

N3

N2

N1

𝑁𝑖 = 𝑁

𝑁𝑖𝜀𝑖 = 𝑈

Particle conservation

Energy conservation
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• Ex)  N= 3 , U= 3ɛ  with ɛj = 0, ɛ, 2ɛ, 3ɛ 

Macro state

level

Macro state

specification

Micro state

specification

Thermodynamic

probability

True 

probability

k 𝑁0 𝑁1 𝑁2 𝑁3 A B C 𝑤𝑘 𝑝𝑘

1 2 0 0 1

0 0 3ɛ

3 0.30 3ɛ 0

3ɛ 0 0

2 1 1 1 0

0 ɛ 2ɛ

6 0.6

0 2ɛ ɛ

ɛ 0 2ɛ

ɛ 2ɛ 0

2ɛ 0 ɛ

2ɛ ɛ 0

3 0 3 0 0 ɛ ɛ ɛ 1 0.1

Most Probable → Equilibrium

12.3  Assembly of Distinguishable Particles
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12.4  Thermodynamic Probability and Entropy

• Statistical concept of entropy

Ludwig Boltzmann constructed the connection between the classical 

concept of entropy and the thermodynamic probability.

He interpreted entropy as a degree of organization of microscopic energy.

𝑆 = 𝑓(𝑤)
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There are a few characteristics for the function of entropy.

System A

① 𝑓(𝑤) must be a single valued, monotonically increasing function.

② Entropy is an extensive property. That is,  𝑆𝐴+𝐵 = 𝑆𝐴 + 𝑆𝐵

③ Configuration of the system satisfies,  𝑤𝐴+𝐵 = 𝑤𝐴𝑤𝐵

System B

𝑆𝐴 = 𝑓(𝑤𝐴) 𝑆𝐵 = 𝑓(𝑤𝐵)

𝑓 𝑤𝐴+𝐵 = 𝑓 𝑤𝐴 + 𝑓(𝑤𝑏)

12.4  Thermodynamic Probability and Entropy
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The only function for which this statement is true is the logarithm. Thus, 

Ludwig Boltzmann postulated the function of entropy as below.

𝑆 = 𝑘 ln𝑤
𝑘 : Boltzmann constant ( = 1.38 x 10-23 J/k)

𝑤 :  Number of rearrangements

12.4  Thermodynamic Probability and Entropy
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12.5  Quantum States and Energy Levels

−
ℎ

2𝜋𝑖

𝜕Ψ

𝜕𝑡
= −

ℎ2

8𝜋2𝑚
(
𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
+
𝜕2Ψ

𝜕𝑧2
) + 𝑉Ψ

ℎ : Planck constant

Postulated by Schrödinger based on physical phenomena of matter wave

Also, Max born suggested statistical meaning of wave function.

• Schrödinger’s Equation  (Postulate)

Ψ 𝑥, 𝑦, 𝑧, 𝑡 = 𝜓(𝑥, 𝑦, 𝑧)𝜙(𝑡)
time dependent

wave function

Ψ 2 probability distribution function

[probability density]

potential energy
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12.5  Quantum States and Energy Levels

−
ℎ2

8𝜋2𝑚

𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
+
𝜕2Ψ

𝜕𝑧2
+ 𝑉Ψ = −

ℎ

2𝜋𝑖

𝜕Ψ

𝜕𝑡

• Schrödinger’s Equation

• Separation of variables

Ψ 𝑥, 𝑦, 𝑧, 𝑡 = 𝜓(𝑥, 𝑦, 𝑧)𝜙(𝑡)

1

𝜓
−

ℎ2

8𝜋2𝑚

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+ 𝑉𝜓 = −

ℎ

2𝜋𝑖

1

𝜙

𝑑𝜙

𝑑𝑡
= 𝐸

𝑓 𝑡
(time)

𝑓 𝑥, 𝑦, 𝑧
(space)

Energy of the particle

(constant)
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12.5  Quantum States and Energy Levels

𝑑𝜙

𝑑𝑡
= −

2𝜋𝑖𝐸

ℎ
𝜙

• Time dependent part

𝜙 = −𝑐𝑒−
2𝜋𝑖𝐸
ℎ 𝑡 𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin 𝜃

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝑚

ℎ2
𝐸 − 𝑉 𝜓 = 0

• Spatial part

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑥 𝑌 𝑦 𝑍 𝑧 , 𝐸 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧

1

2
𝑚𝑣𝑧

2

𝜕2𝑋

𝜕𝑥2
+
8𝜋2𝑚𝐸𝑋

ℎ2
𝑋 = 0 𝑋 = 𝐴 cos 𝑝𝑥 + 𝐵 sin 𝑝𝑥

𝑝2
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• Boundary condition

12.5  Quantum States and Energy Levels

𝑋 0 = 0

𝑥 = 0, 𝑋 = 0
𝑥 = 𝐿, 𝑋 = 0

𝑃𝐿 = 𝑛𝜋 (𝑛 = 0,1,2, … )

𝑋 𝐿 = 0

B.C.

𝑃 =
2𝜋 2𝑚𝐸𝑋

ℎ

𝑋 = 𝐴 cos 𝑝𝑥 + 𝐵 sin 𝑝𝑥

from
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12.5  Quantum States and Energy Levels

Thus, the wave function is given as below

𝑋 = 𝑋0 sin
𝑛𝜋

𝐿
𝑥 = 𝑋0 sin

2𝜋 2𝑚𝐸𝑋
ℎ

𝑥

න
0

𝐿

𝑋2𝑑𝑥 = 1 → 𝑋0 =
2

𝐿

𝑋 =
2

𝐿
sin

2𝜋 2𝑚𝐸𝑋
ℎ

𝑥

For linear motion of a free particle

The last step is to normalize the wave function
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12.5  Quantum States and Energy Levels

0 𝐿

𝜓 𝑛 = 1 𝑛 = 3

𝑛 = 2

𝑛 = 3

0 𝐿

𝜓2 𝑛 = 1 𝑛 = 2

at high E level,

almost equally distributed
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• Energy of a particle in 3-D space

12.5  Quantum States and Energy Levels

For a particle in a box,

− constrained to stay in a box

= no external force

𝑥

𝑧

𝑦

𝑏
𝑎

𝑐

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝑚𝐸

ℎ2
𝜓 = 0
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• Outside the box 𝜓 = 0 (𝑉 → ∞)

12.5  Quantum States and Energy Levels

→ continuous wave function

→ 𝜓 = 0 at 

𝑋 = 𝐴 sin
8𝜋2𝑚𝐸𝑋

ℎ2

ൗ1 2

𝑥 + 𝐵 cos
8𝜋2𝑚𝐸𝑋

ℎ2

ൗ1 2

𝑥

ൡ
𝑥 = 0, 𝑎
𝑦 = 0, 𝑏
𝑧 = 0, 𝑐

B.C.

𝜓 = 0 at   x = 0 → B = 0
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12.5  Quantum States and Energy Levels

𝜓 = 0 at   x = 𝑎 → 0 = 𝐴 sin
8𝜋2𝑚𝐸𝑋

ℎ2

Τ1 2

𝑎

𝑛𝑥𝜋 𝑛𝑥: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

→  Energy of a particle is quantized!

𝐸𝑋 =
ℎ2𝑛𝑥

2

8𝑚𝑎2

𝐸 = 𝐸𝑋 + 𝐸𝑌 + 𝐸𝑍 =
ℎ2

8𝑚

𝑛𝑥
2

𝑎2
+
𝑛𝑦

2

𝑏2
+
𝑛𝑧

2

𝑐2
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• Wave function

12.5  Quantum States and Energy Levels

𝜓 = 𝑋0𝑌0𝑍0 sin
𝑛𝑥𝜋𝑥

𝑎
sin

𝑛𝑦𝜋𝑦

𝑏
sin

𝑛𝑧𝜋𝑧

𝑐

ම𝜓𝜓∗𝑑𝑉 = 1

𝑋0
2𝑌0

2𝑍0
2 =

8

𝑎𝑏𝑐

If a=b=c,  (cube)

𝐸 =
ℎ2

8𝑚

1

𝑎2
𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2
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12.5  Quantum States and Energy Levels

ɛ2

ɛ1

4

2

1

Excited

state

Ground

state

• Degeneracy (statistical weight of the energy level)

ɛj

gj
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• Hydrogen atom in quantum mechanics

12.5  Quantum States and Energy Levels

Because there exist only one proton and one electron, hydrogen atom 

is an easiest model to examine quantum state of an electron

Bohr’s hydrogen model

+

𝑉𝑒𝑙𝑒𝑐 = −
𝑒2

4𝜋𝜖0

1

𝑟

Coulomb’s potential :

n=1

n=2

n=3

-

𝛻2𝜓𝑒𝑙𝑒𝑐 +
8𝜋2𝑚𝑒

ℎ2
+ 𝜖𝑒𝑙𝑒𝑐 − 𝑉𝑒𝑙𝑒𝑐 𝜓𝑒𝑙𝑒𝑐 = 0

Schrödinger’s equation : 
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12.5  Quantum States and Energy Levels

Wave function of an electron in spherical coordinate :

The wave state is discretized with 3 quantum numbers, n, l, and m

𝜓𝑛𝑙𝑚 𝑟, 𝜃, 𝜑 =
𝜌

𝑟

3 𝑛 − 𝑙 − 1 !

2𝑛 𝑛 + 𝑙 !
𝑒−

𝜌
2𝜌𝑙𝐿𝑛−𝑙−1

2𝑙+1 (𝜌)𝑌𝑙
𝑚(𝜃, 𝜑)

𝑟 − coordinate, n 𝑛 = 1,2,3⋯∞

𝜃 − coordinate, 𝑙 𝑙 = 1 𝑠 , 2 𝑝 , 3 𝑑 ⋯𝑛 − 1

φ − coordinate,𝑚 𝑚 = 0,±1,±2 ⋯ + 𝑙
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• Hydrogen electron orbitals

12.5  Quantum States and Energy Levels

http://chemwiki.ucdavis.edu/ogen orbitals

Probability densities of 

hydrogen electron 
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• Degeneracy of energy state

12.6  Density of Quantum States

− For an energy level of a particle, there exist several states that meet the

energy condition.

− This number of state for an energy level is defined as degeneracy, g(𝜖)

− For example, degeneracy of first excited energy level is as below

𝜖1 =
ℎ

8𝑚𝑉2/3
𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2 =
3ℎ

4𝑚𝑉2/3
= 2𝜖0

n-combinations

𝑛𝑥 𝑛𝑦 𝑛𝑧

State 1 2 1 1

State 2 1 2 1

State 3 1 1 2

𝑔(𝜖1) = 3
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12.6  Density of Quantum States

8𝑚𝑎2𝜀

ℎ2
= 𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2

𝑛𝑥

𝑛𝑦

𝜀 + 𝑑𝜀

𝜀

8𝑚𝑉
2
3𝜀

ℎ2
= 𝑛2 = 𝑅2

𝑔 𝜀 𝑑𝜀

: number of quantum state 𝜀 < < 𝜀 + 𝑑𝜀

𝑔 𝜀 𝑑𝜀 = n ε + 𝑑𝜀 − 𝑛 𝜀 =
𝑑𝑛(𝜀)

𝑑𝜀
𝑑𝜀
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12.6  Density of Quantum States

𝑛 𝜀 =
1

8

4

3
𝜋𝑅3 =

1

8

4

3
𝜋

8𝑚𝑉2/3𝜀

ℎ2

ൗ3 2

=
𝜋

6
𝑉

8𝑚

ℎ2

ൗ3 2

𝜀3/2

Positive integer area

g 𝜀 𝑑𝜀 =
𝜋

6
𝑉

29/2𝑚2/3

ℎ3
3

2
𝜀
1
2𝑑𝜀 =

4 2𝜋𝑉

ℎ3
𝑚

3
2𝜀

1
2𝑑𝜀

Degeneracy

# of integer point


