

Keywords and Network Analysis

Keyword Analysis

Basic Process

- Data Collection
- Text Preprocessing
 - To extract words or expressions

Keyword Weighting

- To calculate the importance of words or expressions
- e.g., Term Frequency (TF), Term Frequency Inverse Document Frequency (TF-IDF)

Visualization

- To represent keywords considering the importance of each keyword
- e.g., Word Cloud, Word Network

Keyword Analysis

Keyword Weighting: Term Frequency (TF)

Basic frequency: most popular in keyword analysis

$$TF(t,d) = f(t,d) = count(t)$$
 in d (t : $term$, d : $document$ where the $term$ t $appears$)

Boolean frequency

$$: TF(t,d) = 1 \text{ if } t \text{ occurs in } d \text{ and } 0 \text{ otherwise};$$

Logarithmically scaled frequency

$$: TF(t,d) = \log(1 + f(t,d))$$

Augmented frequency, to prevent a bias towards longer documents

$$: TF(t,d) = 0.5 + \frac{0.5 \times f(t,d)}{\max\{f(w,d), w \in d\}}$$

Keyword Weighting: Term Frequency – Inverse Document Frequency (TF-IDF)

■ To normalize the TF considering the number of documents where a word appears

■
$$TFIDF(t,d,D) = TF(t,d) \times IDF(t,D) = TF(t,d) \times \log\left(\frac{|D|}{|\{d \in D: t \in d\}| + \alpha}\right)$$

|D|: total number of documents,

 $|\{d \in D: t \in d\}|$: number of documents where the tappears (Document Frequency, DF)

#1. 발판 탈락으로 추락사고 발생 #2. 추락사고로 골절사고 발생 #3. 가시설 탈락으로 손목골절 발생 #4. 가시설 이동 중 낙상 사고 발생

> **Text Data** (4 documents and 13 words)

M
\mathbf{M}

TF Rank

Word 사고

발생

탁락

가시설

Rank

1

1

TF

4

4

2

Rank	Word	TF-IDF	TF	DF	IDF
1	탈락	0.60	2	2	0.30
1	가시설	0.60	2	2	0.30
11	사고	0.50	4	3	0.12
12	으로	0.37	3	3	0.12
13	발생	0.00	4	4	0.00

TF-IDF Rank

- Visualization: Word Cloud (Tag Cloud)
 - The simplest and most common tool for text visualization
 - To depict words arranged in space varied in size, color, and position based on word frequency, categorization, or significance

Word Cloud from the READMEs of the Top 2,000 GitHub Repositories

Definition

- Automatic exploration and visualization of semantic networks based on unstructured data
 - Semantic network: A knowledge base that represents semantic relations between concepts in network
 - Components: node (word, person, concept, or event), link or line (semantic relationships between nodes)

Example of a Semantic Network Graph

Basic Concepts

- 1) Degree: the number of connections that a node has
 - *In-degree*; is the measure of popularity / *Out-degree*; is the measure of influence
 - Undirected Network / Directed Network / Bi-directed Network
- 2) Density: the number of connections a node has, divided by the total possible connections a node could have

Example 1. Directed Network

Source	Target	Weight
Α	В	1
С	В	3
Α	С	1
В	D	2
D	Е	1

	Α	В	C	D	Е
Α	-	1	1	0	0
В	0	_	0	2	0
С	0	3	-	0	0
D	0	0	0	ı	1
E	0	0	0	0	-
Matrix					

Matrix

Network Graph

Semantic Network Analysis

Basic Concepts

- 3) Centrality: an indicator that represents the extent to which an node interacts with other nodes in the network
 - To identify most critical nodes in the network (e.g., critical keywords, influential person)

Туре	Definition	The Examples of Application	
Degree Centrality	The counts of how many connections a node has	Popularity or influence of a node (e.g., word, person) in the network	
Betweenness Centrality	The extent to which a node lies on the shortest paths between other nodes Central city or infrasti		
Closeness Centrality	The average length of the shortest path from a node to other nodes	urban network	
Eigenvector Centrality		Analysis of Influencer in social	
Katz Centrality	The relative scores based on the <u>centrality of other</u> <u>nodes</u> to which a node has connections	network or influential Web Pages	
PageRank	13 13 13 11 11 11 11 11 11 11 11 11 11 1	(e.g., Google's Page Rank)	

Basic Concepts

- 3) Centrality: an indicator that represents the extent to which an node interacts with other nodes in the network
 - To identify most critical nodes in the network (e.g., critical keywords, influential person)

Application in Text Data: Word Network Analysis

- Basic Approach: *Co-occurrence Analysis*
 - To identify relationships between keywords based on the co-occurrence of two words in the same document
 - Undirected Network

Example 3. Word Network based on Co-occurrence Analysis

#11. 유성 온천교교량 신축이음이 파손되고 있음 #12. 구서역 인근 금정교 쪽에 안전 난간이 파손되어 있음 #13. ... 보행자보호용 안전 난간이 부분 파손되어 보행자에게 위험... #14. 반포대교 남단에 시선유도봉이 일부 파손되어 있습니다

Preprocessed Data (4 documents and 5 words)

Word	Word	Co-occurrence
신축이음	파손	1
난간	파손	2
난간	보행자	1
시선유도봉	파손	1
신축이음	난간	0
보행자	신축이음	0
신축이음	시선유도봉	0
파손	보행자	1
난간	시선유도봉	0
보행자	시선유도봉	0

Co-occurrence Network (List)

■ Latent Dirichlet Allocation – Example

Topic-document Probability

	Topic #1	Topic #2	Total
Doc #1	0.80	0.20	1.00
Doc #2	0.75 E	(a 10.25 le	1.00
Doc #3	0.13	0.87	1.00

Word-topic Probability

	-	-	
	Topic #1	Topic #2	
the	0.05	0.04	
dog	0.30	0.02	
cat	0.25	0.01	
sat	0.02	0.01	
on	0.24	0.01	
table	0.11	0.80	
is	0.01	0.06	
black	0.02	0.05	
total	1.00	1.00	

New Doc The black cat sat on the table

The = $0.8 \times 0.05 \text{ vs } 0.2 \times 0.04$

