Rock Mechanics & Experiment 암석역학 및 실험

Lecture 8. In situ Stress in rock Lecture 8. 암반의 초기응력 (현지응력)

Ki-Bok Min, PhD

Associate Professor Department of Energy Resources Engineering Seoul National University

SEOUL NATIONAL UNIVERSITY

In situ Stress in Rock Outline

- Introduction
- Method of stress determination
 - Direct method
 - ন্ধ Flatjack method
 - ন্ধ Hydraulic fracturing test
 - ন্ধ USBM overcoring method
 - ຊ CSIRO (type) overcoring method
 - Indicator method
 - ন্ধ Borehole breakout
 - ন্ধ Other methods
- Presentation of in situ stress
- Worldwide in situ stress data

Introduction Importance

- Boundary condition for a engineering problem
 - In situ stress orientation and magnitude is a critical factor for various rock mechanics applications
 - ন্ধ Tunnel/mine/opening design/stability
 - ন্ধ Hydraulic fracturing
 - ন্ধ Borehole stability
 - ন্ধ Earthquake anallysis

Introduction

전석원, 2008

Introduction Prediction of in situ stress

- Heim's rule
 - Assumption: no lateral deformation

Final In Situ stress at a given site Presentation of in situ stress

Principal stress is presented

Final In Situ stress at a given site Presentation of in situ stress

• Stress polygon

Final In Situ stress at a given site Statistical analysis of stress state data

Averaging must be done in the same reference axis

Correct method for averaging two stress tensors

Two principal stress tensors resulting from stress measurement programmes are shown below and identified by the superscripts *a* and *b*:

$\begin{bmatrix} \sigma_1^a & 0 \end{bmatrix}$	0	σ_1^b	0	0
σ_2^{a}	0		$\sigma^{\scriptscriptstyle b}_{\scriptscriptstyle 2}$	0 .
Symm.	σ_3^{a}	Symn	1.	σ_{3}^{b}

The principal stress components in these tensors will generally have different orientations. Before averaging can proceed, these must be transformed to a common set of reference axes, thus:

$\begin{bmatrix} \sigma_{xx}^{a} & \tau_{xy}^{a} \\ \sigma_{yy}^{a} \\ \text{Symm.} \end{bmatrix}$	τ^a_{xz} τ^a_{yz} σ^a_{zz}	σ ^b _{xx} Sym	τ^{b}_{xy} σ^{b}_{yy} m.	$\left[\begin{array}{c} \tau^{b}_{xz} \\ \tau^{b}_{yz} \\ \sigma^{b}_{zz} \end{array} ight]$
Loynin.	22	bym		22

When averaged, these tensors give a subsequent tensor,

$\left[(\sigma_{xx}^{a}+\sigma_{xx}^{b})/2\right]$	$(\tau^a_{xy} + \tau^b_{xy})/2$	$(\tau_{xz}^a + \tau_{xz}^b)/2$
	$(\sigma_{yy}^{a} + \sigma_{yy}^{b})/2$	$(\tau_{y_{2}}^{a} + \tau_{y_{2}}^{b})/2$
Symmetric		$(\sigma_{zz}^a + \sigma_{zz}^b)/2$

from which can be calculated the 'global' average principal stress tensor:

$$\begin{bmatrix} \boldsymbol{\sigma}_1 & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}_2 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma}_3 \end{bmatrix}$$

together with the directions of the principal stresses.

Final In Situ stress at a given site Integrated stress measurement

Multiple methods are often needed

In Situ Stress State of Stress

- Three types of stress regime
 - Normal fault stress regime
 - Strike-slip stress regime
 - Thrust fault stress regime

Itasca Consulting Group, 2011)

World wide in situ stress data Magnitude of Vertical stress

World wide in situ stress data Magnitude of Horizontal stress

- Horizontal components of insitu stress
- Average horizontal stress is usually 0.3 ~ 4.0 times of vertical stress
- High horizontal stress: tectonic stress, erosion, topography

In Situ Stress World stress map

Heidelberg Academy of Sciences and Humanities

Geophysical Institute, University of Karlsruhe

Müller, B., The World Stress Map database release 2008 doi:10.1594/GFZ.WSM.Rel2008, 2008.

Factors affecting in situ stress measurement

- Erosion
- Tectonic activity
- topography
- Rock anisotropy
- Discontinuity

Factors affecting in situ stress measurement Topography

Topography

Goodman, 1989, Introduction to Rock Mechanics, Wiley

Factors affecting in situ stress measurement Effect of discontinuities

Discontinuity

Borehole passes deformation zone EW007 at around 300 ~ 400 m depth Dramatic change of stress occur due to the deformation zone – smaller stress in the wedge formed by two deformation zones (EW002A and EW007A).

Min KB, Effect of Deformation Zones on the State of *In Situ* Stress at a Candidate Site of Geological Repository of Nuclear Waste in Sweden, *Tunnel & Underground Space: Journal of Korean Society for Rock Mechanics*, 2008;18(2):134-148

Methods of stress determination

1. Flatjack

2. Hydraulic fracturing

 σ_1 0 0 σ_2 0 Symm. σ_3 Principal stresses assumed parallel to axes i.e. plane of the fracture, two determined, say σ_1 and σ_3 , one estimated, say σ_2 .

3. USBM overcoring torpedo

Figure 4.3 The four ISRM suggested methods for rock stress determination and their ability to determine the components of the stress tensor *with one application of the particular method*.

Methods of stress determination Flatjack method

• Directly measure the tangential stress

Brady & Brown, 2004, Rock Mechanics for underground mining, Kluwer Academic Publishers

Methods of stress determination Flatjack method

Methods of stress determination USBM overcoring method

Typical overcoring procedure

Amadei, B. and O. Stephansson (1997). Rock Stress and its measurement. London, Chapman & Hall

Methods of stress determination USBM overcoring method

USBM deformation gauge – at least three measurements are needed.

Figure 4.7 The USBM borehole deformation gauge.

Methods of stress determination USBM overcoring method

• Typical response curve

Figure 4.8 Data obtained during a USBM overcoring test. Hudson & Harrison, 1997, Engineering Rock Mechanics, Elsevier

Complete stress tensor can be determined from minimum of six strain gauges.

Amadei, B. and O. Stephansson (1997). Rock Stress and its measurement. London, Chapman & Hall

Amadei, B. and O. Stephansson (1997). Rock Stress and its measurement. London, Chapman & Hall

Reproduction in the laboratory

Min KB, Lee CI, Choi HM, An experimental and numerical study of the in-situ stress measurement on transversely isotropic rock by overcoring method, In:Sugawara K et al (eds), 3rd International Symposium on Rock Stress - RS Kumamoto '03, Kumamoto, 2003, pp.189-195.

Amadei, B. and O. Stephansson (1997). Rock Stress and its measurement. London, Chapman & Hall

Methods of stress determination Hydraulic Fracturing for stress determination

- Principle of stress measurement by hydraulic fracturing (magnitude & orientation)
 - Vertical stress is assumed

Pressure -

Flow

3 Idealized

Knowledge of elastic constants is not needed

In open hole!

Figure 4.5 (a) The hydraulic fracturing system and (b) associated calculations (from Suggested Methods for Rock Stress Determination, Kim and Franklin, 1987). Hudson & Harrison, 1997, Engineering Rock Mechanics, Elsevier

Vertical fracture vs. horizontal fracture (in vertical hole)

- 'Hydraulic fracturing' is used slightly differently in the industry
 - Hydraulic fracturing for stress measurement: axial fractures <1 m, vertical hole
 - Hydraulic fracturing for shale gas or other petroleum/geothermal engineereing: perforation used, transverse fractures > 100 m, usually horizontal hole (petroleum), ? (geothermal)

Hydraulic fracturing for shale gas production

- 초기응력의 상태가 수압파쇄 균열의 방향을 "결정"

- 최소수평주응력 방향으로 수평정 시추 필요.

(MA Dusseault, 2011)

(Haimson & Cornet, 2003)

- Borehole breakout
- Anelastic Strain Recovery (ASR)
- Kaiser effect:
- Core disking
- Focal mechanism

- Borehole breakout
 - Enlargements of the borehole wall caused by stress-induced failure of wells occurring 180° apart.
 - In vertical wells, the diametrically faced zones of broken material occur at direction of minimum horizontal stress.

- Anelastic Strain Recovery (ASR)
 - Core-based method to estimate in-situ stress magnitudes and orientations from instrumenting a freshly recovered drill core obtained from deep wells.
 - The direction of maximum strain recovery is parallel to the maximum horizontal stress in the borehole.

- Kaiser effect
 - phenomenon that a material under stress emits acoustic emissions only after the previous maximum stress is reached.
 - Joseph Kaiser (1950)

- Core disking
 - Assemblage of cored disks in highly stressed rock
 - Often shaped like a horse saddle (axis ~ maximum horizontal stress)
 - The thinner thickness, the greater the horizontal stress

Lim, S. S., et al. Core Disking Observations and In-Situ Stress Magnitudes, 47 US Rock Mech Symp, Paper No.:13-152

Kim H (2016) presentation material.