Mobile and Embedded
Machine Learning

If you have the power to make someone happy, do it.
The world needs more of that.

Overview

= (Objective

= To understand the opportunities to apply machine learnin
and deep learning techniques for mobile applicatio

= Content
= Machine learning for mobile and loT applications
= |ntro to convolutional neural network
= DeepMon: Mobile gpu-based deep learning framework for

continuous vision applications

= After this module, you should be able to

= Understand the basics of machine learning and deep
learning techniques for mobile and loT applications

Mobile and loT Sensing

Sensing Sensing Feature extraction/ Classification/ Sensing
Devices Preprocessing Inference Applications

Raw sensor : Summarized . Inferred
data readings features Contexts

Continuous Pipelined Execution

Revisit Activity Recognition

-10 v
0 05 1 15 2
Time (s)
Waking
10 4

Time (s)

Sitting

2'5
Time (s)
Jogging
IOJ/\ i
YAn/
$ 41
3 Z Axi
| I
0 -
e
-50 . ; ‘75 2 i

Tme (s)

Standing

Simple Heuristic

* If STDEV(y-axis samples) < Cqy echoldn
* If AVG(y-axis samples) > Cyy ochold2
* output standing

* Else
* output sitting

e Else

* If FFT(y-axis samples) < Ci achold3
* output walking

* Else
* outputjogging

Are We Good?

* How do we determine good features and good
thresholds?

e How do we know STDEV is better than MAX?
e How do we know AVG is better than Median?
* How do we know the right values for Cy;, echoiq ?

 What if a user puts her phone in her bag, not in her
front pocket?

* The Y-axis of the phone is not anymore the major axis of
movement.

* How do we solve these problems? A better heuristic?

Decision Tree

* A simple but effective ML classifier.
* This tree can be built by the C4.5 algorithm.

* Given sufficient training data, the algorithm can
automatically determine the important features
and their thresholds.

/\meanH < 8.48
/XstdV <0.95 JustdV < 11.36

/XmeanV <5454 AustdV < 22395

Dri’mg Bicﬁl'ng
Slang SimeanV < 58 465

Wating Run.n‘ng

safdng Sing

Other ML Techniques

* Naive Bayes classifier

* Decision tree

* Random forest

e Support vector machine
* KNN algorithm

* Linear regression

Training set

ML Techniques Flow

Unsupervised Feature extraction Machine learning Grouping of objects
amvpares algorithm

Supervised

e iy

Annotated data

ML Techniques

Linear regression?
* Why isit linear?
Bayesian?
 What s the prior?
SVM?

e What are the features?

Decision tree?

: Limitations

These methods do not suit
well with very complex models.

* What are the nodes/variables?

KNN?

e Cluster on what features?

Deep Learning

Machine Learning

&b~ I

Input Feature extraction Classification Output

Deep Learning

& — iz — [

Input Feature extraction + Classification Output

Deep Learning for Activity Recognition

* Example of applying a convolutional neural network

i 1 al nb al n’
ST *K3 —
_—>
s *K4
v aTn"

D
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8
Input layer Convolutional Convolutional Convolutional Convolutional Dense Dense Softmax

layer layer layer layer layer layer layer

Deep Learning Applications

Self-Driving Face Recognition

= |
_.I I

D

@

. ‘ Lo ?-—\
“ e e
i

Speech Recognition Play Go

Deep Learning for Speech Recognition

The filters move In the
CNN frequency direction.

Frequency

image Time
Spectrogram

Machine Learning vs. Deep Learning

* Deep learning: the more data, the higher accuracy

Performance

Deep Learning algorithms

Many previous methods

il

Data & Model Size

Introduction to

Convolutional
Neural Network (CNN)

Convolutional Neural Network

* CNN is a feed-forward network that can extract topological
properties from an image.

* Like almost every other neural networks they are trained
with a version of the back-propagation algorithm.

* Convolutional Neural Networks are designed to recognize
visual patterns directly from pixel images with minimal
preprocessing.

* They can recognize patterns with extreme variability (such
as handwritten characters).

Feed-Forward Networks

Input Hidden Output

weights

Information flow is unidirectional
Data is presented to Input layer
Passed on to Hidden Layer

Passed on to Output layer
Information is distributed

Information processing is parallel

/

Internal representation Information

(interpretation) of data ﬁ

ldentifying a Bird in an Image

* Let’s assume “beak” is unique to birds.
* “beak” exists in a small sub-region of an image.

» P
< R
.-"'.;

{Tbg;’ detector }

“Beak” in Different Parts of Images

Convolutional Layer

A Convolutional Neural Network (CNN) is a neural network
with “convolutional layers”, which has a number of filters that
does convolutional operation.

Beak detector

&
s

A filter

LA R N R A

PR i .--"".--"'.--"T..-"’I..--i.IIIIIIr
f———t ==

AR .

Inputs Outputs

Convolution

These are the network
parameters to be learned.

1[-1]-1
1/0/0|0]0]1 1|1 | -1 | Filter 1
oj1|l0]|0|1]0 11111
ojlo|l1]1|0]0

1/0[{0|0]1]|0 11171
ol1lolol1lo 1|1 | -1 | Filter2
o|lo|l1]0|1]0 11171

6 X 6 Image

Each filter detects
a small pattern (3 x 3).

. 1|-1]-1
Convolution 20114 Filter 1
-1(-111
stride=1
11001010]| 1 |Dot
product
0O11|0J0J1|0|—— 13 -1
Ojo0o(1111010
1/]0/]0]0]|1]0
O(1(0(0110
O(0(1(10110

6 X 6 Image

Filter 1

-1
-1

-1
1

-1

Convolution

=2

If stride

6 X 6 Image

110/0(011/0

01,0010

0010|1210

Convolution

stride=1

6 X 6 Image

Filter 1

1011
Convolution 1|1 |-1]| Filter2
101 -1
stride=1

6 X 6 Image

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

-1 |Filter 2

—|o|lo|lolo|o
1 — v
_ ' T H o |ldH| Ol | — |
[| | @
D HIT T 7| [Hol|lo|w|o|o]|o
el q
— H|IT|7 7| | Holo|~|o|o|«
C
I
C T 7 Holalolo|«|o
© o H
e = InI100100
O = I S e S e
o7
GI|1__1_1__
a'e
e HlE| T
Q I
o70 I
(O
-)
- o))
O (qv]
— E
@) “
@) 2
o)
@)

How to Form a Feed Forward Network

convolution

1({010|10]|0]1
01110101110
FU”y- olo|1|l1]0]0
connected B>+ >1 2 1°
01110101110
0|l10j1101110

Filter 1

X 6 Image

fewer parameters! 15 B Only connect to

16 9 inputs, not
fully connected

13:
14

15:
16: Shared weights

The Whole CNN

Can repeat
many times

’

catdog

*l

Max Pooling

1-1|-1 -1 -1
-1(1|-1]| Filter1 -1 -1 | Filter 2
1111 -1 -1

3 -1} -3 -1 1 1|l 2

-3 1 0 -3 1 =dl; _2 1

3 3| 0 1 1 -1l 2 1

3 -2 -2 -1 1 o0 ||l-4 3

Why Pooling

* Subsampling pixels will not change the object

bird
bird

We can subsample the pixels to make image smaller

‘ fewer parameters to characterize the image

Max Pooling

New image
1(0(0]|0]|0]1 but smaller
o(1/0|0]|1]|0)
o(o0|1|1]|0]|0 1 1
1/0(0|0|1]|0
o(1/0|0]|1]0 3 .
olo|1]|0|1]0

2 X 2 Image

6 X 6 Image .

Each filter

IS a channel

Can repeat

e———— .
’ many times

Smaller than the original
Image

The number of channels Is
the number of filters

The whole CNN

catdog

Fully Connected Layer

Conceptually, this can be understood as the voting process
to see which input values contribute more to the output.

catdog

Tools and APIs

* Tensorflow (https://www.tensorflow.org/)
e Tensorflow light for Mobile and loT

e PyTorch (https://pytorch.org)
e Caffe2 (https://caffe2.ai)
* Keras (https://keras.io/)

https://www.tensorflow.org/
https://pytorch.org/
https://caffe2.ai/
https://keras.io/

CNN In Keras

model2.add(ConvolutionZD(__,_,_,
donput _shape=(__ ")))
B |14 |1 1
1] 1 There are 25
g T 3x3 filters.
101 l-1] ...
Input_shape = (28, 28, 1)

— 7

28 x 28 pixels 1: black/white, 3: RGB

model?2.add (MaxPooling2D((~,7)))

3 -1 3

)

1x28 x28

model?.add(Convolution2D (
input shape= (-7, ,
How many parameters for
each filter? 25 X 26 x 26

model?2 .add (MaxPooling2D((~, "))

25 x 13 x 13

)

model?2.add (Convolution?2D (;o 2))

How many parameters _
for each filter? ﬁ S0x11x11

model?2.add (MaxPooling2D((~,~)))

50 x5x5

CNN In Keras

Input

1x28x28

25 X 26 x 26

W i - 25 x 13 x 13
.add (Dense (output dim=100))
.add (Activation ())
.add (Dense (output dim=10))

.add (Activation()) 50x 11 x 11

3

50x5x5

model?2 .add (Flatten())

Next move

(19 x 19
positions)

19 x 19 matrix

Black: 1

white: -1

none: 0 But CNN performs much better

AlphaGo’s policy network

The following is quotation from their Nature article:

Neural network architecture. The input to the policy network isa 19 x 19 x 48
image stack consisting of 48 feature planes. The first hidden layer zero pads the
inputintoa 23 x 23 image, then convolves k filters of kernel size 5 < 5 with stride

1 with the input image and applies a rectifier nonlinearity. Each of the subsequent

hidden lavers 2 to 12 zero pads the respective previous hidden laver into a 21 x 21
image, then convolves k filters of Kernel size 3 x 3 with stride 1, again followed

by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1 x 1
with stride 1, with a different bias for each position, and applies a softmax func-
tion. The match version of AlphaGo used k=192 filters; Fig. 2b and Extended
Data Table 3 additionally show the results of training with k=128, 256 and
384 filters.

CNN in speech recognition

The filters move In the
CNN frequency direction.

Frequency

Image Time
Spectrogram

embedding dimension

CNN in text classification

sentence

matrix

= Rdx|s|

F & Rf

{11

convolutional pooled
feature map representation

CERHX|3|—m+1 Cpool c Rlxm

softmax

Source of image: http://citeseerx.ist.psu.ed
u/viewdoc/download?doi=10.1.1.703.6858
&rep=repl&type=pdf

DeepMon: Mobile GPU-based
Deep Learning Framework for
Continuous Vision Applications

ACM MobiSys 2017

Continuous Vision Applications

Conventional Processing Flow

Capture frames
& Process
(with DNN models
such as YolLo)

Process frames

antlA MANINL maAAALR)

Research Question: Can we support fully-disconnected
DNN-based inference purely on the mobile device?

DeepMon: Mobile Deep Learning System

e Supports low-latency execution of CNNs on commodity
mobile devices using mobile GPUs

* OpenCL/Vulkan enabled devices

e Supports multiple GPU architectures & mobile OSs
* Mali, Adreno, PowerVR (to be supported)

* Supports existing trained models
* Multiple frameworks (Caffe, Matconvnet, Yolo, Darknet)

* Available today- https://github.com/JC1DA/deepmon

https://github.com/JC1DA/deepmon

Challenge 1: Mobile GPU is Weak!

DNNs can well run on desktop GPUs, but...

Nvidia GTX 9 | Adreno330 o o (Nvidia /

(Samsung Note

80 a)

Adreno)

Number of ALUs (CUDA

2048 128 16x
cores)

Memory Bantim

Too high latency to

Pea support continues vision.

ps) |

CNN Execution Time VG 238.59 (Caffe
G-16 (ms))

Challenge 2: Architecture is Different!

* Existing GPU-based optimizations won’t simply work!

E [

GPU Memory Unified Memory

Desktop GPU Mobile GPU

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Maxwell-Unified-Virtual-Memory.jpg

l[dentifying Latency Bottleneck

* Convolutional Neural Network
* Device: Samsung Galaxy Note 4
* Implementation: naive CPU

mm

VGG-F 38072 1079 9177
VGG-M 19521 2122 156 21800
VGG-16 213371 2408 382 21662

~90% time consumed by Convolutional Layers

Problem 1: High Memory Use

 Fast convolution operations on desktop GPU
* Use optimized general matrix multiplication (GEMM)
* Build up a new matrix by unfolding input matrix
W
Matrix building overhead

(~150ms per layer with
Caffe on Samsung S7) A\

Source pixel

-y 5 0 \
No good GEMM on 'I » 0
mobile GPUs .) 1
= |
L / 7 Increased memory use + —
ey yane) / (one value in input matrix —
New pixel value (destination pixel) — .--IS COpIed 9 tlmes (3X3))

https://i.stack.imgur.com/GvsBA.jpg

Solution 1: mGPU-Aware Optimizations

* Do convolution operations directly on input
* No matrix building overhead
* Less memory consumption

* Do mGPU-aware Optimizations

e Leverage local memory (high performance cache inside GPU) to
reduce memory reading
» Store reusable convolutional kernels inside the local memory
* It will be shared across multiple threads

 Layout the input data to enable fast vector addition/ multiplication
on mMGPUs

* The data in vectors need to be consecutively stored in the memory.

 Use half floating point (32 bits = 16 bits)

Impact of Memory Optimization

measured on Samsung s7 (Mali T770)

10000

3000

6000

Latency (ms)

4000

2000

0

9120

Caffe

3.06X

VGG-16

2.6%
accuracy loss

0%

accuracy Ios.s2

6.78Xx

6

2.21X

4

I

DeepMon (LM+LR)

DeepMon
(LM+LR+HF)

LM: Local Memory — LR: Layout Redesign — HF: Half Floating point

Problem 2: Redundant Computation

- -
¢
3
~ Y &%
LR
. »
L] N

S L —— ' » Similar regions

- Background in continuous video frames tends to be static.
- Independent processing of each frame is redundant.

Key idea: Can we reuse the intermediate results of previous
convolutional layer computation for similar regions?

Solution 2: Convolutional Caching

- Light-weight & accurate
comparisons required!

- SIFT-based approach did
not work. Reuse
cached
Conv. Op.
v Jes results
Histogram-
Su?flsﬁe]:ge » Reusable? CaChe
Comparison Manager
7y no
| Perform
. : Conv. Op.
- 16 bins color histogram P
- Chi square distance

- If distance < 0.005, block
IS reusable

57

Solution 3: Decomposition

* To decompose large convolutional layer into a
sequence of several smaller ones so computation cost
can be reduced

* Tucker-2 decomposition

 Decompose a convolutional layer into 3 parts
» 2 with filter size of (1x1)
* 1stlayer acts as dimension reduction -> reduce computational cost

« 2"]ayer acts as dimension restoration -> guarantee output size equal
to output size of original convolutation layer

e 1 with original filter size

* have lower number of input/output channels -> reduce
computational cost

Tucker-2 Decomposition

* N: number of filters

* C: number of input channels
* D: filter size (D = 3)

* Input: (HxWxC)

B

Total computation:

HxWxNxN
HxWxNxCxDxD HxWxN{xC HxWxN,xN;xDxD xWxNxN,

NCD?
N,{C+N{N,D2+NN,

Speedup:

DeepMon Performance: Latency

10000 9120
r VGG-16 ®m Yolo
8000
,g 6.7/8X
< 6000 10X
> 14.16X |-
c 3934
9 4000
LU 2976
2098
2000 1344 1773
912 410\06
X
0
Caffe DeepMon (MO) DeepMon DeepMon DeepMon (All)

(MO+HF) (MO+HF+CC)

MO: Memory Opt. HF: Half Floating point CC: Convolutional Caching
Dataset: UCF-101 (13K+ short video clips)

DeepMon Performance: Accuracy

100 — 100
' m Caffe m DeepMon S
g 80 80 5
— Q
= X 63.4 a
—)
ogo > 60 60 %
o O <
Q
o 340 0 2
o < <6% lo c
o O
= 20 20 GEJ

0 0

VGG-16 YOLO

All Optimization techniques are applied for DeepMon.
Dataset: (1) ILSVRC2012 for VGG-VeryDeep-16,
(2) the Pascal VOC 2007 for YOLO

(%)

Conclusion

 DeepMon is an easy to use framework
* Supports existing deep learning models
e Supports commodity mobile devices & OS’s

e Supports various optimizations to reduce latency
* Memory loading optimizations
e Convolutional caching
* Decomposition

* Achieve speedup of 14x over Caffe with minimal accuracy
loss (<6%)

* DeepMon implementation in OpenCL/Vulkan
https://github.com/JC1DA/deepmon

https://github.com/JC1DA/deepmon

