
Mobile and Embedded
Machine Learning

If you have the power to make someone happy, do it.

The world needs more of that

Overview

 Objective
 To understand the opportunities to apply machine learning

and deep learning techniques for mobile applications

 Content
 Machine learning for mobile and IoT applications
 Intro to convolutional neural network
 DeepMon: Mobile gpu-based deep learning framework for

continuous vision applications

 After this module, you should be able to
 Understand the basics of machine learning and deep

learning techniques for mobile and IoT applications

Mobile and IoT Sensing

Continuous Pipelined Execution

Raw sensor

data readings

Summarized

features

Inferred

Contexts

Sensing
Devices

…

Feature extraction/
Preprocessing

Classification/
Inference

GMM

CNN/RNN

HMM

Sensing
Applications

Activity

Location

Group

Stress

Sensing

kNN

… …

MFCC/SIFT

FFT

Norm

Sound/Video

Heart rate

Accel/Gyro

WiFi Signal

……

Continuous sensing and analytics of user activities, location, emotions,
and surroundings with mobile/IoT/wearable devices

Revisit Activity Recognition

Simple Heuristic

• If STDEV(y-axis samples) < CThreshold1

• If AVG(y-axis samples) > CThreshold2

• output standing

• Else
• output sitting

• Else
• If FFT(y-axis samples) < CThreshold3

• output walking

• Else
• output jogging

Are We Good?

• How do we determine good features and good
thresholds?

• How do we know STDEV is better than MAX?
• How do we know AVG is better than Median?
• How do we know the right values for Cthreshold ?

• What if a user puts her phone in her bag, not in her
front pocket?

• The Y-axis of the phone is not anymore the major axis of
movement.

• How do we solve these problems? A better heuristic?

Decision Tree

• A simple but effective ML classifier.

• This tree can be built by the C4.5 algorithm.

• Given sufficient training data, the algorithm can
automatically determine the important features
and their thresholds.

Other ML Techniques

• Naïve Bayes classifier

• Decision tree

• Random forest

• Support vector machine

• kNN algorithm

• Linear regression

• …

ML Techniques Flow

ML Techniques: Limitations

• Linear regression?
• Why is it linear?

• Bayesian?
• What is the prior?

• SVM?
• What are the features?

• Decision tree?
• What are the nodes/variables?

• KNN?
• Cluster on what features?

These methods do not suit

well with very complex models.

Deep Learning

Deep Learning for Activity Recognition

• Example of applying a convolutional neural network

Deep Learning Applications

Self-Driving Face Recognition

Play GoSpeech Recognition

Deep Learning for Speech Recognition

Time

F
re

q
u
e
n
c
y

Spectrogram

CNN

Image

The filters move in the

frequency direction.

• Deep learning: the more data, the higher accuracy

Machine Learning vs. Deep Learning

Introduction to
Convolutional

Neural Network (CNN)

Convolutional Neural Network

• CNN is a feed-forward network that can extract topological
properties from an image.

• Like almost every other neural networks they are trained
with a version of the back-propagation algorithm.

• Convolutional Neural Networks are designed to recognize
visual patterns directly from pixel images with minimal
preprocessing.

• They can recognize patterns with extreme variability (such
as handwritten characters).

Feed-Forward Networks

Information flow is unidirectional

Data is presented to Input layer

Passed on to Hidden Layer

Passed on to Output layer

Information is distributed

Information processing is parallel

Internal representation

(interpretation) of data

Identifying a Bird in an Image

• Let’s assume “beak” is unique to birds.

• “beak” exists in a small sub-region of an image.

“beak” detector

“Beak” in Different Parts of Images

“upper-left

beak” detector

“middle beak”

detector

Convolutional Layer

A filter

A Convolutional Neural Network (CNN) is a neural network

with “convolutional layers”, which has a number of filters that

does convolutional operation.

Beak detector

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network

parameters to be learned.

Each filter detects

a small pattern (3 x 3).

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot

product

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature
Map

Color Image: RGB 3 Channels

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

image
convolution

-1 1 -1

-1 1 -1

-1 1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1x

2x

……

36x

…

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

How to Form a Feed Forward Network

Fully-

connected

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
1

2

3

…

8

9
…

13

14

15

…

Only connect to

9 inputs, not

fully connected

4

10

16

1

0

0

0

0

1

0

0

0

0

1

1

3

fewer parameters!

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:
…

13:

14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Fewer parameters

Even fewer parameters

The Whole CNN

Fully Connected
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can repeat

many times

Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Why Pooling

• Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

Max Pooling

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter

is a channel

New image

but smaller

Conv

Max
Pooling

The Whole CNN

Convolution

Max Pooling

Convolution

Max Pooling

Can repeat

many times
A new image

The number of channels is

the number of filters

Smaller than the original

image

3 0

13

-1 1

30

The whole CNN

Fully Connected
Layer

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image

Fully Connected Layer

3 0

13

-1 1

30 Flattened

3

0

1

3

-1

1

0

3

Fully-connected
Feedforward network

cat dog ……

Conceptually, this can be understood as the voting process

to see which input values contribute more to the output.

Tools and APIs

• Tensorflow (https://www.tensorflow.org/)
• Tensorflow light for Mobile and IoT

• PyTorch (https://pytorch.org)

• Caffe2 (https://caffe2.ai)

• Keras (https://keras.io/)

https://www.tensorflow.org/
https://pytorch.org/
https://caffe2.ai/
https://keras.io/

Only modified the network structure and input for
mat (vector -> 3-D tensor)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

input

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

There are 25

3x3 filters.
…

…

Input_shape = (28 , 28 , 1)

1: black/white, 3: RGB28 x 28 pixels

3 -1

-3 1

3

Only modified the network structure and input for
mat (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

How many parameters for

each filter?

How many parameters

for each filter?

9

225=
25x9

Only modified the network structure and input for
mat (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5
Flattened

1250

Fully connected feedforw
ard network

Output

AlphaGo

Neural
Network

(19 x 19

positions)

Next move

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward network
can be used

But CNN performs much better

AlphaGo’s policy network

Note: AlphaGo does not use Max Pooling.

The following is quotation from their Nature article:

CNN in speech recognition

Time

F
re

q
u
e
n
c
y

Spectrogram

CNN

Image

The filters move in the

frequency direction.

CNN in text classification

Source of image: http://citeseerx.ist.psu.ed

u/viewdoc/download?doi=10.1.1.703.6858

&rep=rep1&type=pdf

?

DeepMon: Mobile GPU-based
Deep Learning Framework for
Continuous Vision Applications

ACM MobiSys 2017

Continuous Vision Applications
47

Conventional Processing Flow

48

Jenny

Privacy &

Network

Problems

Capture frames

Process frames

(with DNN models)

Capture frames

& Process

(with DNN models

such as YoLo)

Research Question: Can we support fully-disconnected

DNN-based inference purely on the mobile device?

DeepMon: Mobile Deep Learning System

• Supports low-latency execution of CNNs on commodity
mobile devices using mobile GPUs

• OpenCL/Vulkan enabled devices

• Supports multiple GPU architectures & mobile OSs
• Mali, Adreno, PowerVR (to be supported)

• Supports existing trained models
• Multiple frameworks (Caffe, Matconvnet, Yolo, Darknet)

• Available today- https://github.com/JC1DA/deepmon

49

https://github.com/JC1DA/deepmon

Challenge 1: Mobile GPU is Weak!

50

Nvidia GTX 9
80

Adreno 330
(Samsung Note

4)

Ratio (Nvidia /
Adreno)

Number of ALUs (CUDA
cores)

2048 128 16x

Memory Bandwidth
(GB/s)

224
12.8

(Shared)
17.5x

Peak Performance (Gflo
ps)

4600 166.5 27.6x

CNN Execution Time VG
G-16 (ms)

238.59 (Caffe
)

6315 ~26.5x

DNNs can well run on desktop GPUs, but…

Too high latency to

support continues vision.

Desktop GPU Mobile GPU

Challenge 2: Architecture is Different!

• Existing GPU-based optimizations won’t simply work!

51

CPU CPUGPU GPU

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Maxwell-Unified-Virtual-Memory.jpg

Identifying Latency Bottleneck

• Convolutional Neural Network

• Device: Samsung Galaxy Note 4

• Implementation: naïve CPU

52

Model Conv. (ms) FC. (ms) Pooling (ms) Total (ms)

VGG-F 8072 1079 26 9177

VGG-M 19521 2122 156 21800

VGG-16 213371 2408 882 21662

~90% time consumed by Convolutional Layers

Problem 1: High Memory Use

• Fast convolution operations on desktop GPU
• Use optimized general matrix multiplication (GEMM)

• Build up a new matrix by unfolding input matrix

53

https://i.stack.imgur.com/GvsBA.jpg

0

0

0

0

1

1

0

1

2

…

…

…

…

…

…

…

…

…

No good GEMM on

mobile GPUs

Increased memory use

(one value in input matrix

is copied 9 times (3x3))

Matrix building overhead

(~150ms per layer with

Caffe on Samsung S7)

Solution 1: mGPU-Aware Optimizations

• Do convolution operations directly on input
• No matrix building overhead

• Less memory consumption

• Do mGPU-aware Optimizations
• Leverage local memory (high performance cache inside GPU) to

reduce memory reading
• Store reusable convolutional kernels inside the local memory

• It will be shared across multiple threads

• Layout the input data to enable fast vector addition/ multiplication
on mGPUs

• The data in vectors need to be consecutively stored in the memory.

• Use half floating point (32 bits 16 bits)

54

Impact of Memory Optimization
measured on Samsung s7 (Mali T770)

55

9120

2976

1344

0

2000

4000

6000

8000

10000

Caffe DeepMon (LM+LR) DeepMon
(LM+LR+HF)

La
te

n
cy

 (
m

s)

VGG-16

3.06x

2.21x

6.78x

2.6%

accuracy loss

0%

accuracy loss

LM: Local Memory – LR: Layout Redesign – HF: Half Floating point

Problem 2: Redundant Computation
56

- Background in continuous video frames tends to be static.

- Independent processing of each frame is redundant.

Similar regions

a

Key idea: Can we reuse the intermediate results of previous

convolutional layer computation for similar regions?

Solution 2: Convolutional Caching

57

Histogram-

Based

Sub-Image

Comparison

Reusable?

Reuse

cached

Conv. Op.

results
yes

Perform

Conv. Op.

no

Cache

Manager

- 16 bins color histogram

- Chi square distance

- If distance < 0.005, block

is reusable

- Light-weight & accurate

comparisons required!

- SIFT-based approach did

not work.

Solution 3: Decomposition

• To decompose large convolutional layer into a
sequence of several smaller ones so computation cost
can be reduced

• Tucker-2 decomposition
• Decompose a convolutional layer into 3 parts

• 2 with filter size of (1x1)
• 1st layer acts as dimension reduction -> reduce computational cost
• 2nd layer acts as dimension restoration -> guarantee output size equal

to output size of original convolutation layer

• 1 with original filter size
• have lower number of input/output channels -> reduce

computational cost

Tucker-2 Decomposition

• N: number of filters

• C: number of input channels

• D: filter size (D ≥ 3)

• Input: (HxWxC)

Conv-k
𝑁𝑥𝐶𝑥𝐷𝑥𝐷

Conv-k-1
𝑁1𝑥𝐶𝑥1𝑥1

Conv-k-2
𝑁2𝑥𝑁1𝑥𝐷𝑥𝐷

Conv-k-3
𝑁𝑥𝑁2𝑥1𝑥1

Total computation:
𝐻𝑥𝑊𝑥𝑁𝑥𝐶𝑥𝐷𝑥𝐷

𝐻𝑥𝑊𝑥𝑁1𝑥𝐶 𝐻𝑥𝑊𝑥𝑁2𝑥𝑁1𝑥𝐷𝑥𝐷 𝐻𝑥𝑊𝑥𝑁𝑥𝑁2

Speedup:
𝑁𝐶𝐷2

𝑁1𝐶+𝑁1𝑁2𝐷2+𝑁𝑁2

DeepMon Performance: Latency
60

9120

2976

1344
912 644

0

3934

2098
1773

1006

0

2000

4000

6000

8000

10000

Caffe DeepMon (MO) DeepMon
(MO+HF)

DeepMon
(MO+HF+CC)

DeepMon (All)

La
te

n
cy

 (
m

s)

VGG-16 Yolo

X

6.78X

10X
14.16X

MO: Memory Opt. HF: Half Floating point CC: Convolutional Caching

Dataset: UCF-101 (13K+ short video clips)

DeepMon Performance: Accuracy
61

89.9

63.4

83.94

58.14

0

20

40

60

80

100

0

20

40

60

80

100

VGG-16 YOLO

m
ea

n
 A

ve
ra

ge
 P

re
ci

si
o

n

(%
)

To
p

-5
 R

ec
o

gn
it

io
n

A

cc
u

ra
cy

 (
%

)

Caffe DeepMon

<6% loss

All Optimization techniques are applied for DeepMon.

Dataset: (1) ILSVRC2012 for VGG-VeryDeep-16,

(2) the Pascal VOC 2007 for YOLO

Conclusion

• DeepMon is an easy to use framework
• Supports existing deep learning models

• Supports commodity mobile devices & OS’s

• Supports various optimizations to reduce latency
• Memory loading optimizations

• Convolutional caching

• Decomposition

• Achieve speedup of 14x over Caffe with minimal accuracy
loss (<6%)

• DeepMon implementation in OpenCL/Vulkan
https://github.com/JC1DA/deepmon

62

https://github.com/JC1DA/deepmon

