
Mobile and Embedded 
Machine Learning

If you have the power to make someone happy, do it. 

The world needs more of that



Overview

 Objective
 To understand the opportunities to apply machine learning 

and deep learning techniques for mobile applications 

 Content
 Machine learning for mobile and IoT applications
 Intro to convolutional neural network
 DeepMon: Mobile gpu-based deep learning framework for 

continuous vision applications

 After this module, you should be able to 
 Understand the basics of machine learning and deep 

learning techniques for mobile and IoT applications
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Continuous sensing and analytics of user activities, location, emotions, 
and surroundings with mobile/IoT/wearable devices



Revisit Activity Recognition



Simple Heuristic

• If STDEV(y-axis samples) < CThreshold1

• If AVG(y-axis samples) > CThreshold2

• output standing

• Else 
• output sitting

• Else
• If FFT(y-axis samples) < CThreshold3

• output walking

• Else
• output jogging



Are We Good?

• How do we determine good features and good 
thresholds?

• How do we know STDEV is better than MAX?
• How do we know AVG is better than Median?
• How do we know the right values for Cthreshold ?

• What if a user puts her phone in her bag, not in her 
front pocket?

• The Y-axis of the phone is not anymore the major axis of 
movement.

• How do we solve these problems? A better heuristic?



Decision Tree

• A simple but effective ML classifier. 

• This tree can be built by the C4.5 algorithm.

• Given sufficient training data, the algorithm can 
automatically determine the important features 
and their thresholds.



Other ML Techniques

• Naïve Bayes classifier

• Decision tree

• Random forest

• Support vector machine

• kNN algorithm

• Linear regression

• …



ML Techniques Flow



ML Techniques: Limitations

• Linear regression?
• Why is it linear?

• Bayesian? 
• What is the prior?

• SVM?
• What are the features?

• Decision tree?
• What are the nodes/variables?

• KNN?
• Cluster on what features?

These methods do not suit

well with very complex models.



Deep Learning



Deep Learning for Activity Recognition

• Example of applying a convolutional neural network



Deep Learning Applications

Self-Driving Face Recognition

Play GoSpeech Recognition



Deep Learning for Speech Recognition
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• Deep learning: the more data, the higher accuracy

Machine Learning vs. Deep Learning



Introduction to 
Convolutional 

Neural Network (CNN)



Convolutional Neural Network

• CNN is a feed-forward network that can extract topological 
properties from an image.

• Like almost every other neural networks they are trained 
with a version of the back-propagation algorithm.

• Convolutional Neural Networks are designed to recognize 
visual patterns directly from pixel images with minimal 
preprocessing.

• They can recognize patterns with extreme variability (such 
as handwritten characters).



Feed-Forward Networks

Information flow is unidirectional

Data is presented to Input layer

Passed on to Hidden Layer

Passed on to Output layer

Information is distributed

Information processing is parallel

Internal representation 

(interpretation) of data



Identifying a Bird in an Image

• Let’s assume “beak” is unique to birds.

• “beak” exists in a small sub-region of an image.

“beak” detector



“Beak” in Different Parts of Images

“upper-left 

beak” detector

“middle beak”

detector



Convolutional Layer

A filter

A Convolutional Neural Network (CNN) is a neural network 

with “convolutional layers”, which has a number of filters that 

does convolutional operation. 

Beak detector



Convolution
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These are the network 
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Convolution
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Convolution
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Convolution
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Convolution
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Color Image: RGB 3 Channels
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The Whole CNN

Fully Connected 
Feedforward network

cat dog ……
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Max Pooling
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Can repeat 

many times



Max Pooling
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Why Pooling

• Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image



Max Pooling
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The Whole CNN
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The whole CNN

Fully Connected 
Layer

cat dog ……
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Fully Connected Layer
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Fully-connected 
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Conceptually, this can be understood as the voting process 

to see which input values contribute more to the output. 



Tools and APIs

• Tensorflow (https://www.tensorflow.org/)
• Tensorflow light for Mobile and IoT

• PyTorch (https://pytorch.org)

• Caffe2 (https://caffe2.ai)

• Keras (https://keras.io/)

https://www.tensorflow.org/
https://pytorch.org/
https://caffe2.ai/
https://keras.io/


Only modified the network structure and input for
mat (vector -> 3-D tensor)CNN in Keras
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…
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1: black/white, 3: RGB28 x 28 pixels
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Only modified the network structure and input for
mat (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

How many parameters for 

each filter?

How many parameters

for each filter?

9

225=
25x9



Only modified the network structure and input for
mat (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5
Flattened

1250

Fully connected feedforw
ard network

Output



AlphaGo

Neural
Network

(19 x 19 

positions)

Next move

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward network 
can be used

But CNN performs much better



AlphaGo’s policy network

Note: AlphaGo does not use Max Pooling.

The following is quotation from their Nature article:



CNN in speech recognition
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CNN in text classification

Source of image: http://citeseerx.ist.psu.ed

u/viewdoc/download?doi=10.1.1.703.6858

&rep=rep1&type=pdf

?



DeepMon: Mobile GPU-based 
Deep Learning Framework for 
Continuous Vision Applications

ACM MobiSys 2017



Continuous Vision Applications
47



Conventional Processing Flow

48

Jenny

Privacy & 

Network

Problems

Capture frames

Process frames

(with DNN models)

Capture frames 

& Process

(with DNN models 

such as YoLo)

Research Question: Can we support fully-disconnected 

DNN-based inference purely on the mobile device?



DeepMon: Mobile Deep Learning System

• Supports low-latency execution of CNNs on commodity
mobile devices using mobile GPUs

• OpenCL/Vulkan enabled devices

• Supports multiple GPU architectures & mobile OSs
• Mali, Adreno, PowerVR (to be supported)

• Supports existing trained models
• Multiple frameworks (Caffe, Matconvnet, Yolo, Darknet)

• Available today- https://github.com/JC1DA/deepmon

49

https://github.com/JC1DA/deepmon


Challenge 1: Mobile GPU is Weak!

50

Nvidia GTX 9
80

Adreno 330
(Samsung Note

4)

Ratio (Nvidia / 
Adreno)

Number of ALUs (CUDA 
cores)

2048 128 16x

Memory Bandwidth
(GB/s)

224
12.8

(Shared)
17.5x

Peak Performance (Gflo
ps)

4600 166.5 27.6x

CNN Execution Time VG
G-16 (ms)

238.59 (Caffe
)

6315 ~26.5x

DNNs can well run on desktop GPUs, but…

Too high latency to 

support continues vision.



Desktop GPU Mobile GPU

Challenge 2: Architecture is Different!

• Existing GPU-based optimizations won’t simply work!

51

CPU CPUGPU GPU

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Maxwell-Unified-Virtual-Memory.jpg



Identifying Latency Bottleneck

• Convolutional Neural Network

• Device: Samsung Galaxy Note 4

• Implementation: naïve CPU

52

Model Conv. (ms) FC. (ms) Pooling (ms) Total (ms)

VGG-F 8072 1079 26 9177

VGG-M 19521 2122 156 21800

VGG-16 213371 2408 882 21662

~90% time consumed by Convolutional Layers



Problem 1: High Memory Use

• Fast convolution operations on desktop GPU
• Use optimized general matrix multiplication (GEMM)

• Build up a new matrix by unfolding input matrix

53

https://i.stack.imgur.com/GvsBA.jpg
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No good GEMM on 

mobile GPUs

Increased memory use

(one value in input matrix 

is copied 9 times (3x3))

Matrix building overhead

(~150ms per layer with 

Caffe on Samsung S7)



Solution 1: mGPU-Aware Optimizations

• Do convolution operations directly on input
• No matrix building overhead

• Less memory consumption

• Do mGPU-aware Optimizations
• Leverage local memory (high performance cache inside GPU) to 

reduce memory reading
• Store reusable convolutional kernels inside the local memory

• It will be shared across multiple threads

• Layout the input data to enable fast vector addition/ multiplication 
on mGPUs

• The data in vectors need to be consecutively stored in the memory.

• Use half floating point (32 bits  16 bits)

54



Impact of Memory Optimization
measured on Samsung s7 (Mali T770)
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Problem 2: Redundant Computation
56

- Background in continuous video frames tends to be static.

- Independent processing of each frame is redundant.

Similar regions

a

Key idea: Can we reuse the intermediate results of previous 

convolutional layer computation for similar regions?



Solution 2: Convolutional Caching
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Histogram-

Based
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Conv. Op. 

results
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Perform

Conv. Op.
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Cache 

Manager

- 16 bins color histogram

- Chi square distance

- If distance < 0.005, block 

is reusable

- Light-weight & accurate 

comparisons required! 

- SIFT-based approach did 

not work.



Solution 3: Decomposition

• To decompose large convolutional layer into a 
sequence of several smaller ones so computation cost 
can be reduced

• Tucker-2 decomposition
• Decompose a convolutional layer into 3 parts

• 2 with filter size of (1x1)
• 1st layer acts as dimension reduction -> reduce computational cost
• 2nd layer acts as dimension restoration -> guarantee output size equal 

to output size of original convolutation layer

• 1 with original filter size 
• have lower number of input/output channels -> reduce 

computational cost



Tucker-2 Decomposition

• N: number of filters

• C: number of input channels

• D: filter size (D ≥ 3)

• Input: (HxWxC)

Conv-k
𝑁𝑥𝐶𝑥𝐷𝑥𝐷

Conv-k-1
𝑁1𝑥𝐶𝑥1𝑥1

Conv-k-2
𝑁2𝑥𝑁1𝑥𝐷𝑥𝐷

Conv-k-3
𝑁𝑥𝑁2𝑥1𝑥1

Total computation:
𝐻𝑥𝑊𝑥𝑁𝑥𝐶𝑥𝐷𝑥𝐷

𝐻𝑥𝑊𝑥𝑁1𝑥𝐶 𝐻𝑥𝑊𝑥𝑁2𝑥𝑁1𝑥𝐷𝑥𝐷 𝐻𝑥𝑊𝑥𝑁𝑥𝑁2

Speedup: 
𝑁𝐶𝐷2

𝑁1𝐶+𝑁1𝑁2𝐷2+𝑁𝑁2



DeepMon Performance: Latency
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DeepMon Performance: Accuracy
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All Optimization techniques are applied for DeepMon.

Dataset: (1) ILSVRC2012 for VGG-VeryDeep-16, 

(2) the Pascal VOC 2007 for YOLO



Conclusion

• DeepMon is an easy to use framework
• Supports existing deep learning models

• Supports commodity mobile devices & OS’s

• Supports various optimizations to reduce latency
• Memory loading optimizations

• Convolutional caching

• Decomposition

• Achieve speedup of 14x over Caffe with minimal accuracy 
loss (<6%)

• DeepMon implementation in OpenCL/Vulkan
https://github.com/JC1DA/deepmon
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https://github.com/JC1DA/deepmon

