Chemostat with Recycle

Chemostat with Recycle

- Higher cell concentration
- Longer residence time
 - high specific productivity
- Higher stability
 - Ex: waste-water treatment
 - Minimizing the effects of process perturbation

Chemostat with Recycle

F (L/h) : Flow Rate X (g/L) : Cell Concentration S (g/L) : Substrate Concentration

- V (L) : Working Volume
- α : Recycle Ratio
- **C**: Concentration Factor

Mass Balance

Acc = In - Out + Gen - Con

Accumulation rate = Input rate – Output rate + Generation rate – Consumption rate

d () d t =

Mass Balances

- cell

$$\frac{d(X_1V)}{dt} = \alpha FCX_1 - (1+\alpha)FX_1 + \mu X_1V...(1)$$

At steady state

$$\{\alpha FC - (1 + \alpha)F + \mu V\}X_1 = 0....(2)$$

Mass Balances

At steady state

$$\{\alpha FC - (1 + \alpha)F + \mu V\}X_1 = 0....(2)$$

/ V

$$\{(\alpha C - 1 - \alpha)D + \mu\}X_1 = 0$$

$$\mu = (1 + \alpha - \alpha C)D....(3)$$

At steady-state

$$\mu = (1 + \alpha - \alpha C)D....(3)$$

 $C > 1 \rightarrow \alpha(1-C) < 0 \rightarrow 1+\alpha(1-C) < 1$ $\mu < D.....(4)$

A chemostat can be operated at dilution rates higher than the (maximum) specific growth rate when cell cycle is used.

Mass Balances

- substrate

$$\frac{d(SV)}{dt} = S_0F + S\alpha F - S(1+\alpha)F - \frac{\mu X_1 V}{Y} \dots (5)$$

At steady state

(6)

$$S_0 D + S\alpha D - S(1 + \alpha)D = \frac{\mu X_1}{Y}$$

 $(S_0 - S)D = \frac{\mu X_1}{Y}$(6)
 $X_1 = \frac{Y(S_0 - S)}{1 + \alpha - \alpha C}$(7)

At steady-state

Compare with the X in chemostat without cell recycle

 $\mathbf{X} = \mathbf{Y} \left(\mathbf{S}_0 - \mathbf{S} \right)$

k

The steady-state cell concentration in a chemostat is increased by a factor of $(1+\alpha-\alpha C)$ by cell recycle. (Not exactly!)

Concentrations at Steady State

$$(1 + \alpha - \alpha C)D = \mu$$

(By Monod equation)

$$=\frac{\mu_m S}{K_S + S}$$

$$S = \frac{kDK_S}{\mu_m - kD}.....(8)$$

where $k = (1 + \alpha - \alpha C)$

Concentrations at Steady State

(7)
(8)

$$X_{1} = \frac{Y(S_{0} - S)}{k}$$

$$= \frac{Y}{k}(S_{0} - \frac{kDK_{S}}{\mu_{m} - kD}).....(9)$$

where $k = (1 + \alpha - \alpha C)$

Mass Balances

- Cell mass balance around the cell separator

$$(1+\alpha)FX_1 = FX_2 + \alpha FCX_1$$

Productivity

$$Productivity = \frac{X_2(g/L) \times F(L/hr)}{V(L)} = DX_2$$

$$DX_{2} = kDX_{1}$$

$$(10) = Y\left(S_{0}D - \frac{kD^{2}K_{S}}{\mu_{m} - kD}\right)$$

$$(9) = Y\left(S_{0}D - \frac{D^{2}K_{S}}{\frac{1}{k}\mu_{m} - D}\right).....(11)$$

Productivity

where $k = 1 + \alpha(1 - C) < 1 \leftarrow C > 1$

Compare Eq.(11) with the productivity without cell recycle.

$$DX = Y(S_0 D - \frac{D^2 K_s}{\mu_m - D})$$

Chemostat with Cell Recycle

Cell Recycle System

Cell concentrations and productivities are higher with cell recycle, resulting in higher rates of substrate consumption.

Recycle system --- used extensively in waste treatment --- increasing use in ethanol production

Multistage Chemostat Systems

The growth and product formation steps need to be separated if optimal conditions for each step are different.

- particularly for secondary metabolite production
- the culture of genetically engineered cells

PFR

Multistage CSTR

Multistage Chemostat Systems

Mass Balance

Acc = In - Out + Gen - Con

Accumulation rate = Input rate – Output rate + Generation rate – Consumption rate

d () d t =

Mass Balances for the First Stage

- cell

$$\frac{d(X_1V_1)}{dt} = 0 - X_1F + \mu_1X_1V_1 - 0....(1)$$

- substrate

$$\frac{d(S_1V_1)}{dt} = S_0F - S_1F + 0 - \frac{1}{Y}\mu_1X_1V_1....(2)$$

Concentrations at Steady State

At steady state

$$S_1 = \frac{D_1 K_S}{\mu_m - D_1} - --(3)$$

$$X_1 = Y(S_0 - \frac{D_1 K_S}{\mu_m - D_1}) - - -(4)$$

where $D_1 = F / V_1$

Mass Balances for the Second Stage

- cell

$$\frac{d(X_2V_2)}{dt} = X_1F - X_2F + \mu X_2V_2 - 0....(5)$$

/**V**
$$\frac{dX_2}{dt} = (X_1 - X_2)D_2 + \mu_2 X_2$$

where $X_1/X_2 < 1$ $\mu_2 < D_2$

Mass Balances for the Second Stage

- substrate

$$\frac{d(S_2V_2)}{dt} = S_1F - S_2F + 0 - \frac{1}{Y}\mu_2X_2V_2....(7)$$

2

$$\frac{dS_2}{dt} = (S_1 - S_2)D_2 - \frac{1}{Y}\mu_2 X$$

At st. st.

/ V

$$S_2 = S_1 - \frac{\mu_2 X_2}{D_2 Y} \dots \dots (8)$$

Mass Balances for the Second Stage

(6) & Monod Eq.
$$\longrightarrow \frac{\mu_m S_2}{K_s + S_2} = D_2 \left(1 - \frac{X_1}{X_2} \right)$$

(8) & Monod Eq.
$$\longrightarrow S_2 = S_1 - \frac{X_2}{D_2 Y} \frac{\mu_m S_2}{K_s + S_2}$$

 X_1 and S_1 are known. (Eq. (3) & (4))

Above equations can be solved simultaneously for X_2 and S_2 .

$$C_f = C_0 U(t)....(9)$$

Unit-step function

 $\begin{array}{ll} U(t) = 0 & \text{when } t < 0 \\ U(t) = 1 & \text{when } t \geq 0 \end{array}$

Response to unit-step input

$\mathcal{E}(t)$: residence time distribution function

 $\mathcal{E}(t)dt$: fraction of fluid in exit function which has the residence time between t and t + dt

The fraction of the exit stream which has resided in the vessel for times smaller than *t* is

$$\int_{0}^{\infty} \mathcal{E}(t)dt = 1....(12)$$

Residence Time Distribution

At time t, every red particle has the residence time less than t, and every blue particle has the residence time greater than t.

Concentration of red particle

$$C_{e}(t) = C_{0} \int_{0}^{t} \mathcal{E}(x) dx + 0 \int_{t}^{\infty} \mathcal{E}(x) dx \dots (13)$$

(10)
$$\mathcal{F}(t) = \int_{0}^{t} \mathcal{E}(t) dt....(14)$$

(13)
$$\therefore \mathcal{E}(t) = \frac{d\mathcal{F}(t)}{dt}....(15)$$

The residence time distribution function, $\mathcal{I}(t)$, can be obtained by differentiating an experimentally determined \mathcal{F} curve.

Mass Balance on Non-reactive Tracer

 $\frac{d(CV)}{dt} = F(C_0 - C)....(16)$

I.C. C(0) = 0

Mass Balance on Non-reactive Tracer

$$\int_{0}^{C} \frac{1}{C_{0} - C} dC = \int_{0}^{t} \frac{F}{V} dt$$

$$-\left[\ln(C_0 - C)\right]_0^C = \frac{F}{V}(t - 0)$$

Mass Balance on Non-reactive Tracer

(10)
$$\longrightarrow \mathcal{F}(t) = \frac{C(t)}{C_0} = 1 - e^{-\frac{F}{V}t}$$
.....(18)
(15) $\longrightarrow \mathcal{F}(t) = \frac{d\mathcal{F}(t)}{dt} = \frac{F}{V}e^{-\frac{F}{V}t}$(19)
 $\mathcal{F}(t)$
 F/V

Mean Residence Time (τ_{M})