
Hybrid Mapping-based
Flash Translation Layer

Jihong Kim

Dept. of CSE, SNU

Outline

• Problem of BAST

• Advanced Hybrid-mapping schemes

– FAST

– LAST

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

2

FAST

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

3

Problems of BAST

• Log-block thrashing

– Not enough to cover the write requests

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

4

LBA 0

LBA 1
LBA 2

LBA 3

LBA 4

LBA 5
LBA 6

LBA 7

LBA 8

LBA 9
LBA 10

LBA 11

LBA 12

LBA 13
LBA 14

LBA 15

Requests
[WRITE LBA 0]
[WRITE LBA 7]
[WRITE LBA 9]
[WRITE LBA 15]
[WRITE LBA 0]
[WRITE LBA 11]
…

Log Block

LBA 0 LBA 7

Garbage Collection is triggered!

Data Block

Challenges of BAST

• Frequent merge operation

– In random write patterns

– In complicated application

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

5

FAST: Fully Associative S. T.
• FAST : Fully Associative Sector Translation

• Key idea
– Fully associative mapping between data blocks and

log blocks

• Mapping within a log block is managed in page-level as in
log block scheme

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

6

LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5
LBA 6
LBA 7

Log Block
(dedicated)

LBA 0 LBA 7

Data Block
LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5
LBA 6
LBA 7

Log
Block
(full associative)

LBA 0
LBA 7

Data Block

FAST: Pros and Cons

• Pros

– Higher utilization of log blocks

– Delayed merge operation

• increases the probability of page invalidation

• Cons

– When GC, excessive overhead for a single log
block reclamation

• Severely skewed performance depending on the
number of data blocks involved in a log block

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

7

FAST: Sequential Log Block
• Increase the number of switch operations

– Which one is the better option?

• Insert a page in the sequential log block if the offset is
‘0’

• Merge sequential log block if there is no empty one or
the sequentiality is brokenHybrid Mapping-based Flash Translation

Layer (Jihong Kim/SNU)
8

Log Block

LBA 5

LBA 0

LBA 13
LBA 1

LBA 2

LBA 3

Log Block

LBA 5

LBA 13
LBA 2

LBA 3

LBA 0

LBA 1

Full merge with block 1

Full merge with block 0
Full merge with block 3

Only one switch merge with
block 0

FAST: Example

• Example scenario same as before

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

9

LBA 0

LBA 1
LBA 2

LBA 3

LBA 4

LBA 5
LBA 6

LBA 7

LBA 8

LBA 9
LBA 10

LBA 11

LBA 12

LBA 13
LBA 14

LBA 15

Requests
[WRITE LBA 0]
[WRITE LBA 7]
[WRITE LBA 9]
[WRITE LBA 15]
[WRITE LBA 0]
[WRITE LBA 11]
…

Log Block

LBA 0 LBA 7
LBA 9

LBA 15

Sequential Log
Block

Merge Operation in FAST
• In the garbage collection to get a free page

– When a log block is the victim block, the number of
merge operations is same as the number of associated
data blocks.

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

10

LBA 0

LBA 1
LBA 2

LBA 3

LBA 4

LBA 5

LBA 7

LBA 6

Log Block

LBA 0 LBA 7
LBA 4

LBA 15

Data Block

LBA 7

LBA 1

LBA 4 LBA 18

Victim Log Block

LBA 0

LBA 1

LBA 2

LBA 3LBA 7

LBA 4
LBA 5

LBA 6

Valid page

Invalid page

O-FAST(Optimized FAST)

• To delay / skip unnecessary merge operations

– If the data of pages in current victim log block is
invalid, skip the merge operations for the pages.

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

11

LBA 0

LBA 1
LBA 2

LBA 3

LBA 4

LBA 5

LBA 7

LBA 6

Log Block

LBA 0 LBA 7
LBA 4

LBA 15

Data Block

LBA 7

LBA 1

LBA 4 LBA 18

Victim Log Block

LBA 0

LBA 1

LBA 2

LBA 3

Valid page

Invalid page

Experimental Result

• Performance metrics
– Number of total erase count
– Total elapsed time

• Benchmark characteristic
– Patterns A and B (Digital Camera)

• Small random writes and large sequential writes

– Patterns C and D (Linux and Symbian)
• Many small random writes and small large sequential

write

– Pattern E (Random)
• Uniform random writes

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

12

Experimental Result

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

13

Experimental Result

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

14

Experimental Result

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

15

LAST

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

16

FTL in General-Purpose Computing
Systems

• Existing FTL schemes are ill-suited for general-purpose
computing systems

Garbage collection overhead is significantly increased !!!
Hybrid Mapping-based Flash Translation

Layer (Jihong Kim/SNU)
17

I/O Characteristics of Mobile
Embedded Applications

An MP3 player

– Most of write requests are sequential
– Many merge operations can be performed by cheap switch

merge
⇒ A little garbage collection overheadHybrid Mapping-based Flash Translation

Layer (Jihong Kim/SNU)
18

General-purpose applications

I/O Characteristics of General-purpose
Applications

– Many random writes with a high temporal locality
– Many sequential writes with a high sequential locality
– A mixture of random and sequential writes

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

19

The increased full and partial merge operations
• The ratio of expensive full and partial merges is

significantly increased !!!

⇒ Need to take advantage of the I/O characteristics of general-purpose applications

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

20

Locality-Aware Sector Translation
(LAST)

• Design goals of the LAST scheme
– Replace expensive full merges by cheap switch merges

– Reduce the average cost of full merge

• Our solutions
– Extract a write request having a high sequential

locality from the mixed write patterns
• a locality detector

– Exploit a high temporal locality of a random write
• a hot/cold separation policy

• an intelligent victim selection policy

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

21

Random log buffer

Overall Architecture of the LAST Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

22

Locality Detector (1)
• How to detect the locality type of a write request

– The locality type is highly correlated to the size of write
request

Lo
ca

lit
y

High

Low

Request sizeSmall Large

Temporal Locality

Sequential locality

From the observation of realistic workloads
- small-sized writes have a high temporal locality
- large-sized writes have a high sequential locality

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

23

Locality detector

Locality Detector (2)

• A locality-detection policy based on the request
size

Write request

Random log buffer

If the size of the write ≤ a threshold value
⇒ write it into the random log buffer

Sequential log buffer

If the size of the write > a threshold value
⇒ write it into the sequential log buffer

Increase the possibility
of switch merge

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

24

Random log buffer

Overall Architecture of the LAST Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

25

Sequential Log Buffer

• Multiple sequential write streams are
simultaneously issued from the file system
– Accommodate multiple sequential write streams

• maintain several log blocks in the sequential log buffer

– Distribute each sequential write into different log block

• one log block can be associated with only one data block

Write stream 1 (page 0 and 1)

Sequential log block 0 Sequential log block 1

0 1

Write stream 2 (page 4 and 5)

4 5

Write stream 1 (page 2 and 3)

2 3

Data block 0

0 1 2 3

Data block 1

4 5 6 70 1 2 3 4 5Write stream 3 (page 8 and 9)

Switch merge
Hybrid Mapping-based Flash Translation

Layer (Jihong Kim/SNU)
26

Random log buffer

Overall Architecture of the LAST
Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

A hot/cold
separation policy

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

27

Log Buffer Partitioning Policy
• Log buffer partitioning policy

– Proposed to provide a hot and cold separation policy

– Separate hot pages from cold pages

– Invalid pages are likely to be clustered in the same log block
• All the pages in a log block can be invalidated ⇒ dead block

– Remove dead block with only one erase operation

4 3 21 7 8 5 9 6

Cold partition

1 2 1 2 1 2 9

Hot partition

Many dead blocks are generated

Cold pages Hot pages

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

28

Log Buffer Partitioning Policy

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

29

1 4 3 1 2 7 8 2 1 5 2 9 1 4 2 91 1 2 2 1 2 9

A single partition

Requested pages:

4

• A single partition
– All the requested pages are sequentially written to log

blocks

→ 41 → 3 → 1 → 2 → 7 → 8 → 2 → 1 → 5 → 2 → 9 → 1 → 4 → 2 → 9

Write

Log Buffer Partitioning Policy

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

30
Two partitions (k = 5)

1 4 31 12 7 8 22 115 2 29 114 2 2 99

Write Write

Cold partition Hot partition

4

Requested pages:

→ 41 → 3 → 1 → 2 → 7 → 8 → 2 → 1 → 5 → 2 → 9 → 1 → 4 → 2 → 9

• Two partitions
– The requested page is written to a different partition depending

on its locality
– If the requested page is one of k pages recently written, we

regard it as a hot page; otherwise, it is regarded as a cold page

Random log buffer

Overall Architecture of the LAST
Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

A victim selection
policy

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

31

Log Buffer Replacement Policy
• Log buffer replacement policy

– Proposed to provide a more intelligent victim selection
– Delay an eviction of hot pages as long as possible

4 3 21 7 8 5 9 6

Cold partition

1 2 1 2 1 2 9

Hot partition

(1) evict a dead block first from the hot partition

- requires only one erase operation

(2) evict a cold block from the cold partition
- select a block associated with a smallest number of data blocks

4 3 21 7 8 5 9 6

Cold partition

1 2 1 3 1 2 9

Hot partition

910 17 20

victim

victim
Hybrid Mapping-based Flash Translation

Layer (Jihong Kim/SNU)
32

Experimental Results
• Experimental environment

– Trace-driven FTL simulator
• Three existing FTL schemes: BAST, FAST, SUPERBLOCK
• The propose scheme: LAST

– Benchmarks
• Realistic PC workload sets, TPC-C benchmark

– Flash memory model

• Important parameters
– Total log buffer size: 512 MB
– Sequential log buffer size: 32 MB
– Threshold value: 4 KB (8 sectors)

Flash memory Organization

Block Size 128 KB

Page size 2 KB

Num. of pages per block 64

Access time

Read (1 page) 25 usec

Write (1 page) 200 usec

Erase (1 block) 2000 usec

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

33

Result 1: Garbage Collection Overhead

• LAST shows the best garbage collection efficiency
– Garbage collection overhead is reduced by 46~67% compared to the

SUPERBLOCK scheme
Hybrid Mapping-based Flash Translation

Layer (Jihong Kim/SNU)
34

Result 2: Ratio of Switch Merge

• The ratio of switch merges is significantly increased
– SUPERBLOCK also shows a high switch merge ratio

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

35

Result 3: Ratio of Dead Block

• Many dead blocks are generated from the random log
buffer

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

36

Reference

• J. Kim et al, “A space-efficient flash translation layer for compact
flash systems,” IEEE Transactions on Consumer Electronics, vol. 48,
no. 2, pp. 366-375, 2002.

• S. W. Lee et al, “A log buffer based flash translation layer using fully
associative sector translation,” ACM Transactions on Embedded
Computing Systems, vol. 6, no. 3, 2007.

• S. Lee et al, “LAST: Locality-Aware Sector Translation for NAND Flash
Memory-Based Storage Systems, ”SPEED 2008.

• J. Kang et al., “A Superblock-based Flash Translation Layer for NAND
Flash Memory,” EMSOFT '06: Proceedings of the 6th ACM & IEEE
International conference on Embedded software, 2006

Hybrid Mapping-based Flash Translation
Layer (Jihong Kim/SNU)

37

Advanced Flash Translation Layer

Jihong Kim

Dept. of CSE, SNU

Outline

• Problems of Hybrid-Mapping-Based FTL

• FTLs for Memory-Constrained Storage Systems

– DFTL

2Advanced Flash Translation Layer (Jihong Kim/SNU)

Hybrid FTL Schemes

• The main difficulties the FTL faces in giving high
performance is the severely constrained size of
SRAM

– Coarse-grained mapping (block-level mapping)
• Small SRAM size / Poor garbage collection efficiency

– Fine-grained mapping (page-level mapping)
• Efficient garbage collection / Large SRAM size

Advanced Flash Translation Layer (Jihong Kim/SNU) 3

Problems of Hybrid FTL Schemes

• Fail to offer good performance for enterprise-
scale workloads

• Require workload-specific tunable parameters

• Not properly exploit the temporal locality in
accesses

Advanced Flash Translation Layer (Jihong Kim/SNU) 4

Basic Approaches to Memory-
Constrained Storage Systems

• Cached mapping information

• On-demand loading of mapping information

– DFTL

• Better data structures for mapping
information

– μ-FTL

Advanced Flash Translation Layer (Jihong Kim/SNU) 5

DFTL

• Hybrid FTLs suffer performance degradation due to full
merges
– Caused by the difference in mapping granularity of data

and log blocks
– A high performance FTL must be re-designed without log-

blocks

• DFTL is an enhanced form of the page-level FTL scheme
– Allow requests to be serviced from any physical page on

flash
– All blocks can be used for servicing update requests

• How to make the fine-grained mapping scheme
feasible with the constrained SRAM size
– Use an on-demand address translation mechanism

Advanced Flash Translation Layer (Jihong Kim/SNU) 6

Demand-based Selective Caching of
Page-level Address Mapping

• Propose a novel FTL scheme (DFTL) : Purely page-
mapped FTL

– Exploit temporal locality of accesses

– Uses the limited SRAM to store the most popular
mappings while the rest are maintained on flash

– Provide an easier-to-implement solution

– Devoid of tunable parameters

Advanced Flash Translation Layer (Jihong Kim/SNU) 7

DFTL Architecture

Advanced Flash Translation Layer (Jihong Kim/SNU) 8

Data Blocks and Translation Blocks

• DFTL partitions all blocks into two groups

– Data blocks: composed of data pages

• Each data page contains the real data

– Translation blocks: consists of translation pages

• Each translation page stores information about logical-
to-physical mappings

• Logically consecutive mappings information stored on a
single page

• 512 logically consecutive mappings in a single page
(page size: 2 KB, addr: 4 Byte)

Advanced Flash Translation Layer (Jihong Kim/SNU) 9

Example:
When a Request Incurs a CMT miss

MVPN = 2,
F→V

1024 570

DLPN = 1280
F→V

- -
1280 660

- -

0 21

1 17

2 15

3 22

Data

OOB
MVPN = 0,

F→V
MVPN = 0,

F→V

1535 420

0 110
1 130
2 440
- -

0 110
1 130
2 440
- -

511 560

3 150

10 170

11 360

1 260

… …

DLPN

DPPN =
660

MVPN MPPNDPPN

DPPN =
661

511 560

DLPN DPPN DLPN DPPN DLPN DPPN

MPPN =
15

MPPN =
21

MPPN =
23

DLPN = 1280 Global
Translation
Directory

Cached Mapping
Table

MISS

Victim entry

21

260

23

1280 660

Data
Page

Data Block Translation
Block

Advanced Flash Translation Layer (Jihong Kim/SNU) 10

Overhead in DFTL Address Translation

• The worst-case overhead in DFTL address translation
– Two translation page reads

• One for the victim by the replacement policy

• The other for the original requests

– One translation page write

• For the translation page write for the victim

• The address translation overhead can be mitigated
– The existence of temporal locality helps in reducing the # of evictions

– Batch updates for the pages co-located in the victim could also reduce the # of
evictions

Advanced Flash Translation Layer (Jihong Kim/SNU) 11

Read/Write Operation

• For a read operation
– Directly serviced through flash page read operation once the address

translation is completed

• For a write operation
– Maintain two types of blocks for data block and translation blocks

• Current data block and current translation block

– Sequentially writes the given data into these blocks

Advanced Flash Translation Layer (Jihong Kim/SNU) 12

Garbage Collection

• Different steps are followed depending on the
type of a victim block

– Translation block:

• Copy the valid pages to the current translation block

• Update the corresponding GTD

– Data block:

• Copy the valid pages to the current data block

• Update all translation pages and CMT entries
associated with these pages

Advanced Flash Translation Layer (Jihong Kim/SNU) 13

Example: Translation Block

• Translation block as victim for garbage collection

Advanced Flash Translation Layer (Jihong Kim/SNU) 14

Example: Data Block

• Data block as victim for garbage collection

Advanced Flash Translation Layer (Jihong
Kim/SNU)

15

Evaluation Setup

⚫ Parameters

− Flash memory size: 32 GB / SRAM size: 2 MB

− Log buffer size: 512 MB (about 3% of the total flash capacity)

− Evaluated schemes: FAST, baseline, DFTL

⚫ Workloads

⚫ Performance metrics

− Garbage collection’s efficacy

− Response time (device service time + queuing delay)

16Advanced Flash Translation Layer (Jihong Kim/SNU)

The Number of Block Merges

⚫ Baseline and DFTL show a higher number of switch merges

⚫ FAST incurs lots of full merges

− 20% and 60% of full merges involve more than 20 data blocks in Financial and TPC-H
benchmarks, respectively

17Advanced Flash Translation Layer (Jihong Kim/SNU)

Address Translation Overhead

• DFTL incurs extra overheads due to its translation mechanism
– The address translation accounts for 90% of the extra overhead

• DFTL yields a 3-fold reduction in extra ops. over FAST
– 63% hits for address translations in SRAM

Advanced Flash Translation Layer (Jihong Kim/SNU) 18

Block Erases Extra Read/Write Ops.

Impact of SRAM size

⚫ With the SRAM size approaching the working set size

− DFTL’s performance becomes comparable to Baseline (=page level FTL)

19Advanced Flash Translation Layer (Jihong Kim/SNU)

Reference

• Aayush Gupta et al., “DFTL: A flash translation layer employing
demand-based selective caching of page-level address
mappings”, ASPLOS, 2009

• Yong-Goo Lee et al., “μ-FTL: A Memory-Efficient Flash
Translation Layer Supporting Multiple Mapping Granularities,”
EMSOFT, 2008

• Dongwon Kang et al, “μ-Tree : An Ordered Index Structure for
NAND Flash Memory,” EMSOFT, 2007

20Advanced Flash Translation Layer (Jihong Kim/SNU)

Garbage Collection Technique

Jihong Kim

Dept. of CSE, SNU

Outline

• Overview of Garbage Collection

• Technical Issues in Garbage Collection

– Which block to choose

– How to organize valid data

– When to begin

• Conclusion

GC (Jihong Kim/SNU) 2

Out-Place Update

• NAND flash memory does not support an overwrite
operation

• FTL uses an out-place update policy, which generates
invalid pages

GC (Jihong Kim/SNU) 3

Mapping table
NAND flash

memory

LBA address space

old data

new data

write

(As seen by the host)

Invalid page

Garbage Collection

• The free space is completely exhausted with invalid
pages

• Need to reclaim the space wasted by invalid data
1. Select the victim block
2. Copy all valid pages to the free block
3. Erase the victim block

GC (Jihong Kim/SNU) 4

Garbage collection overhead = valid page copy + block erase

Invalid page

Valid page

Free page

Garbage Collection Overhead

• Garbage collection incurs many valid page copies and
block erasures
– Increase the overall response time of user I/O requests
– Increase the number of P/E cycles

• Our goal is to reduce the extra operations caused by
garbage collection

5GC (Jihong Kim/SNU)

Technical Issues in Garbage Collection

• How to organize valid data
– Where the user data is written → Hot and cold separation

policy

• Which block to reclaim
– Which block is preferred for garbage collection → Victim block

selection policy

• When to begin
– When there are no free blocks → On-demand garbage

collection
– When there are sufficient idle times → Background garbage

collection

GC (Jihong Kim/SNU) 6

Hot and Cold Separation Policy

• Basic Idea: Age-based Separation

– Consider the locality of reference

• Blocks containing ‘hot’ data tend to be invalidated more
rapidly

Hot region Cold region

Blocks are classified by its age during garbage collection

Blocks with ‘hot’ data Blocks with ‘cold’ data

7GC (Jihong Kim/SNU)

Hot and Cold Separation Policy

• Dynamic dAta Clustering (DAC)
– Separating Hot/cold data during garbage collection

and update

M.-L. Chiang, et al., "Using data clustering to improve cleaning performance for plash memory," Softw. Pract. Exper, 1999.

8GC (Jihong Kim/SNU)

DAC - Example

Top Region

Bottom Region

Update Garbage collection victim

Hot

Cold

9GC (Jihong Kim/SNU)

Victim Selection Policy

• Greedy Policy

– Principle: choose the least utilized block to clean

– Pros: work well under workloads with uniform
access pattern

– Cons: do not perform well when there’s high
locality of writes

10GC (Jihong Kim/SNU)

Greedy Policy - Example

GC (Jihong Kim/SNU) 11

Free BlockUsed Block 3Used Block 2Used Block 1

Invalid page

Valid page

Free page

Choose the block with
the smallest number of valid pages

Reclaim 2 free pages

Used Block 1Used Block 3Free BlockUsed Block 1

Victim Selection Policy

• Cost-Benefit Policy
– Principle: chooses a block that minimizes the

equation below

– Pros: perform well with update locality

– Cons: computation/data overhead

GC (Jihong Kim/SNU) 12

* u : utilization of the block (# of valid pages)

* Age : the most recent modified time of any page in the blockBenefit

Cost

(1-u) * Age

u

Age Transformation Function

GC (Jihong Kim/SNU) 13

Cost-Benefit - Example

GC (Jihong Kim/SNU) 14

Free BlockUsed Block 3Used Block 2Used Block 1

Invalid page

Valid page (Hot)

Free page

Valid page (Cold)Recently modified block

• Used Blocks 2 and 3 have the least block utilization
• Chooses ‘Used Block 3’ as a victim block because it holds

many cold pages

Cost-Benefit - Example

GC (Jihong Kim/SNU) 15

Used Block 2

Used Block 3

Time

Least Utilized Blocks
(Victim Candidates)

The ‘Used Block 2’ has no valid pages

Update! Update!

Experimental Results

• Average throughput

GC (Jihong Kim/SNU) 16

Greedy

Cost-Benefit

Cost-Benefit with Age-Sort

Experimental Results

• Degree of uneven wearing

GC (Jihong Kim/SNU) 17

Greedy

Cost-Benefit

Cost-Benefit with Age-Sort

On-Demand Garbage Collection

• Perform garbage collection when there are no free
blocks in flash memory

GC (Jihong Kim/SNU) 18

Time

1 3 9 2 48…

NAND Flash Memory

1
0

donewrite ‘10’

Garbage Collection

5

Write ‘10’ Write ‘5’

The time taken to write the page ‘5’ is delayed due to GC

write ‘5’GC done

Background Garbage Collection (B-GC)

• Perform garbage collection when there are available
idle times

GC (Jihong Kim/SNU) 19

Time

1 3 9 2 48…

NAND Flash Memory

1
0

donewrite ‘10’

Garbage Collection

5

B-GC

Write ‘10’ Write ‘5’Idle Time

write ‘5’ done

There is no performance delay due to GC

Challenges in B-GC

• When a background garbage collector starts and stops
→ Garbage collection scheduling

• How many over-provisioned pages are maintained
→ Capacity over-provisioning

• …

GC (Jihong Kim/SNU) 20

Garbage Collection Scheduling

donewrite ‘10’

Write

doneB-GC

Write

B-GC

Write

Delay Delay

donewrite ‘10’

Write

done

Write

B-GC

Write

No performance delay

• Garbage collection must be carefully started and
stopped

21GC (Jihong Kim/SNU)

Preemptible Programs and Erases

• Read performance fluctuations
– Read latency can be increased by one or two orders of magnitudes for

waiting the completion of on-going programs and erases.

• Program and erase suspension technique (Wu et al. @ FAST’12)
– Prevents read requests from being blocked by program/erase operations
– Makes the read latency more deterministic

NAND

Read req. Read req.

Response (40 us) Response (> 2 ms)
Block erasure

Read request

Read response time

Erase R

<w/o suspension>

Read request

Read response time

Erase R Erase (Rest step)

<w/ suspension>

Capacity Over-Provisioning

• A background garbage collector maintains free pages,
called over-provisioned capacity
– To avoid the performance delay caused by on-demand

garbage collection

• The over-provisioned capacity must be carefully
determined
– Otherwise, it lowers garbage collection efficiency, reducing

the endurance of a flash device

23GC (Jihong Kim/SNU)

Capacity Over-Provisioning

GC (Jihong Kim/SNU) 24

Time

2 31

NAND Flash Memory

0

There are write requests for 8 pages :
0, 1, 2, 3, 4, 5, 6, 7

09876

GC1 2 3 4 5 6 7

0 1 2 332

• Garbage collection occurs when writing incoming
pages if the over-provisioned capacity is too small

Over-provisioned capacity = 4 pages

107654
1
1

1
0

54 4 5 6 754 6 7…

B-GC

Erase blockErase block

There were a delay caused by GC
and two block erasures

To maintain the over-provisioned capacity
It is necessary to do GC in background

Capacity Over-Provisioning

GC (Jihong Kim/SNU) 25

Time

NAND Flash Memory

0

There are write requests for 8 pages :
0, 1, 2, 3, 4, 5, 6, 7

1 2 3 4 5 6 7

• No performance degradation if there are
sufficient over-provisioned pages in flash memory

Over-provisioned capacity = 8 pages

98767654
1
1

1
0

54 4 5 6 754 6 7… 0 1 2 398
1
1

1
0

B-GC

There was no delay caused by GC,
but the cost of B-GC was more expensive

To maintain the over-provisioned capacity
It is necessary to do GC in background

Conclusion

◼ Reducing the number of copying operations is key
to improve garbage collection efficiency

◼ Combination of hot/cold separation method and
victim block selection policy can improve the
efficiency of garbage collection

◼ Background garbage collection can reduce the
performance degradation, but the provisioned
capacity must be carefully decided

GC (Jihong Kim/SNU) 26

Reference

• Rosenblum, M. and Ousterhout, J. “The design and implementation of a log-structured file system,”
ACM Transactions on Computer Systems, vol. 10, pp. 26-52, 1992.

• Chiang, M., Lee, P., and Chang, R. “Using data clustering to improve cleaning performance for flash
memory,” Softw. Pract. Exper., vol. 29, pp. 267-290, 1999.

• Kim, H., and Lee, S. “A New Flash Memory Management for Flash Storage System,” 23rd
International Computer Software and Applications Conference, 1999.

• Gal, E., and Toledo, S. “Algorithms and data structures for flash memories,” ACM Comput. Surv., vol.
37, pp. 138-163, 2005.

• Chiang, M., Lee, P. and Chang, R. “Cleaning policies in mobile computers using flash memory,”
Journal of
Systems and Software, vol. 48, no. 3, pp. 213-231, 1999.

GC (Jihong Kim/SNU) 27

Wear-Leveling Techniques

Jihong Kim

Dept. of CSE, SNU

Outline

• Overview of Wear-Leveling Technique

• Dynamic Wear-Leveling Technique

– Cost-Age-Time Policy

• Static Wear-Leveling Technique

– Hot-Cold Swapping

– Dual-Pool Algorithm

Wear Leveling Techniques (Jihong Kim/SNU) 2

Wear-Leveling Problem

• Flash memory blocks have a limitation on the
number of erase operations (i.e., erasure cycle)

– e.g., MLC: 3~5K, SLC: 100K

• If the same blocks are repeatedly overwritten,
there could be the lifetime problem

– e.g., flash-unaware conventional file
systems where the same areas are repeatedly
updated.

Wear Leveling Techniques (Jihong Kim/SNU) 3

Example: Needs for Wear Leveling

• Write requests toward a small collection of disk sectors
• Nearly 40% of all physical blocks have zero erase

counts

Wear Leveling Techniques (Jihong Kim/SNU) 4

Evenly distributing erase operations can double the flash lifespan compared to
that without wear leveling

Goal of Wear Leveling

• Wear leveling attempts to work around these
limitations by arranging data so that erasures and
re-writes are distributed evenly across the
medium
– In this way, no single erase block prematurely fails due

to a high concentration of write cycles

Wear Leveling Techniques (Jihong Kim/SNU) 5

Dynamic Wear-Leveling Techniques

• Wear leveling techniques are applied only
when data blocks are written or erased

• E.g., a selection of a new free data block based on the
number of program/erase cycles OR a victim block
selection based on the PE cycles

– If a data block is not actively written, no wear-
leveling is applied to the block under the dynamic
approach.

– That is, these techniques are applied to
dynamically changing data blocks only

Wear Leveling Techniques (Jihong Kim/SNU) 6

Static Wear-Leveling Techniques

• Wear leveling techniques are applied both
static and dynamic data.

– Cold vs. hot data

• These techniques are applied to data blocks,
independently from write/erase operations.

Wear Leveling Techniques (Jihong Kim/SNU) 7

Dynamic vs. Static

ITEM Static Dynamic

Typical Use SSDs USB Flash Drives

Performance Slower Faster

Endurance
Longer life
expectancy

Longer life
expectancy

Design Complexity More complex Less complex

Wear Leveling Techniques (Jihong Kim/SNU) 8

Wear Leveler in Flash Memory S/W

Wear Leveling Techniques (Jihong Kim/SNU) 9

Ideal Wear Leveler

Wear Leveling Techniques (Jihong Kim/SNU) 10

Example of a Dynamic Wear-Leveling Technique

• Wear-level Aware GC

– When a garbage collection is triggered

• Choose a victim block
– Having a small number of erasure counts

=> Victim Selection Policy is important

• A Representative Victim Selection Policy

– Cost-Age-Time (CAT)

Wear Leveling Techniques (Jihong Kim/SNU) 11

Cost-Age-Time (CAT) Policy

• Principle
– Chooses a block which minimizes the equation below

• Pros
– Performs well with locality

• Cons
– Computation/data overhead

Wear Leveling Techniques (Jihong Kim/SNU) 12

* u : utilization of the block

* Age : the most recent modified time of any page in the block

* Time (EC) : total erase count of the block

u

1-u
Cost

Benefit
* Time *Age

EC
*

Examples of Static Wear-Leveling
Techniques

• Operates in a hidden fashion.

• Triggered when a gap between old and young blocks
gets big

• Representative Techniques

• Hot/Cold Swapping

• Dual Pool Algorithm

Wear Leveling Techniques (Jihong Kim/SNU) 13

E
ra

se
C

o
u

n
t

Block address

Hot-Cold Swapping (1)

Blocks are sorted
by erase count
(descending order)

Old block : Erase count ↑
Young block : Erase count ↓
EC = Erase Count

Hot data : frequently accessed data
Cold data : hardly accessed data

≥TH

Hot data

Cold data

Oldest block
(ex. EC = 320)

Youngest block
(ex. EC = 160)

= Block

Triggered when △EC exceeds
certain threshold

Assume that difference is made by
‘temperature‘ of data

Wear Leveling Techniques (Jihong Kim/SNU) 14

E
ra

se
C

o
u

n
t

Block address

Hot-Cold Swapping (2)

Blocks are sorted
by erase count
(descending order)

Oldest block
(ex. EC = 320)

Youngest block
(ex. EC = 160)

Cold data

Hot data

Swapping ‘Hot’ and ‘Cold’ data
will modify the erasure pattern

Old block : Erase count ↑
Young block : Erase count ↓
EC = Erase Count

Hot data : frequently accessed data
Cold data : hardly accessed data

= Block

Wear Leveling Techniques (Jihong Kim/SNU) 15

Problem of Hot-Cold Swapping

• The oldest data may be involved repeatedly in the hot-cold swapping
– e.g. If the hotness of the swapped data are changed

Wear Leveling Techniques (Jihong Kim/SNU) 16

Oldest block

Youngest block

Cold data

Hot data

Oldest block

Youngest block
Cold data

Hot data

Swap Again!

Dual-Pool Algorithm

• Considers the different aspects of wear
leveling together

– Effectiveness (to evenly erase blocks)

• Cold-data migration

– Efficiency (to reduce traffic introduced by wear
leveling)

• Dual-pool organization

– Scalability (to have low resource requirements)

• Low overhead implementation

Wear Leveling Techniques (Jihong Kim/SNU) 17

Basic Idea: Cold-Data Migration

Wear Leveling Techniques (Jihong Kim/SNU) 18

• Migrating data from young blocks to old blocks

• To defrost young blocks by moving cold data away

• To cool down old blocks by moving cold data in

Dual-Pool Organization

• Maintain two pools, Hot Pool and Cold Pool.
– Hot Pool (sorted by the increasing age)

– Cold Pool (sorted by the decreasing age)

Wear Leveling Techniques (Jihong Kim/SNU) 19

Hot Pool (getting older)

Cold Pool (getting younger)

Cold-Data Migration (1)

• Trigger condition
– On the completion of an erasure request

– If the difference of erasure cycles (EC) between the
oldest block in Hot Pool and the youngest block in
Cold Pool is greater than a preset threshold

MAX_EC_HOT_POOL – MIN_EC_COLD_POOL > TH

• Cold data migration
– Move valid pages in the oldest block to a block

– Move valid pages in the youngest block to the oldest
block

– Erase the youngest block

Wear Leveling Techniques (Jihong Kim/SNU) 20

Cold-Data Migration (2)

oldest

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

21Wear Leveling Techniques (Jihong Kim/SNU)

• Check the erasure cycles of the oldest block
and the youngest block

Cold-Data Migration (3)

oldest

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

Copy

22Wear Leveling Techniques (Jihong Kim/SNU)

• Copy valid data in the oldest block in Hot Pool
to a different block

Cold-Data Migration (4)

oldest

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

23Wear Leveling Techniques (Jihong Kim/SNU)

• Erase the oldest block

Cold-Data Migration (5)

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

24Wear Leveling Techniques (Jihong Kim/SNU)

• Copy valid data in the youngest block in Cold
Pool to the oldest block in Hot Pool

oldest

Copy

Cold-Data Migration (6)

• Erase the youngest block in Cold Pool

Wear Leveling Techniques (Jihong Kim/SNU) 25

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

oldest

Basic Idea: Hot-Cold Regulation

• Once an old block receives a cold data from a young block, the old
block MUST move to Cold Pool.
– Within Cold Pool, this block becomes the Oldest.
– Therefore, this block cannot be involved in cold data migrations for a

while.
– In turn, this gives the old block the time to be cooled down.

Wear Leveling Techniques (Jihong Kim/SNU) 26

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

oldest youngest

oldest

Adaptive Pool Resizing (1)

• How to deal with dynamic changes in data hotness?
Become a
cold data

“Sinks” in Hot Pool!

27Wear Leveling Techniques (Jihong Kim/SNU)

Adaptive Pool Resizing (2)

• For dynamic changes in data hotness, the blocks
with opposite type of data to opposite pools.

• Case 1: when cold data in Cold Pool become hot
– Cold Pool Adjustment

• Move the block to Hot Pool

• Case 2: when hot data in Hot Pool become cold
– Hot Pool Adjustment

• Move the block to Cold Pool

Q: How to Choose a Block to Move?

Wear Leveling Techniques (Jihong Kim/SNU) 28

Q: When hot data in Hot Pool become
cold ?

• Stuck in Hot Pool

• Should be moved back to Cold Pool for wear
leveling

Wear Leveling Techniques (Jihong Kim/SNU) 29

Q: When cold data in Cold Pool become
hot ?

• No chance for wear leveling

• Should be moved back to Hot Pool for wear
leveling

Wear Leveling Techniques (Jihong Kim/SNU) 30

Cold Pool Adjustment

• Idea
– Move a block with hot data to Hot Pool

• Term
– Effective Erasure Cycle (EEC): How many times a block is erased

since the last time the block is involved in Cold-data migration

• Trigger condition
– On the completion of an erasure request
– If the difference of the EECs between the block with the

maximal EEC in Cold Pool and the block with the minimal EEC in
Hot Pool is greater than a preset threshold

MAX_EEC_COLD_POOL – MIN_EEC_HOT_POOL > TH

• Block Migration
– Select the block with maximal effective erasure
– Migrate the block to Hot Pool

Wear Leveling Techniques (Jihong Kim/SNU) 31

Effective Erasure Cycle (EEC)

• EEC of a block is reset with 0 when the block is moved to Cold
Pool during Cold-Data Migration.

• EEC of a block is increased whenever the block is erased.
• Use ∆EEC to estimate the hotness of a block

Wear Leveling Techniques (Jihong Kim/SNU) 32

youngest

Hot Pool (getting older)

Cold Pool (getting younger)

oldest youngest

oldest

EEC=0

Example of Cold Pool Adjustment
(1)

33Wear Leveling Techniques (Jihong Kim/SNU)

EEC: 3 EEC: 2EEC: 8EEC: 5EEC: 3EEC: 2

EEC: 30EEC: 20EEC: 3 EEC: 50

Hot Pool (getting older)

EEC: 1

Cold Pool (getting younger)

• Threshold: 4

• EEC: Effective Erasure Cycle

Example of Cold Pool Adjustment
(2)

34Wear Leveling Techniques (Jihong Kim/SNU)

EEC: 3 EEC: 2EEC: 8EEC: 5EEC: 3EEC: 2

EEC: 30EEC: 20EEC: 3 EEC: 50

Hot Pool (getting older)

EEC: 1

Cold Pool (getting younger)

• Move the block with the largest EEC to Hot
Pool

move

EEC: 8

Hot Pool Adjustment

• Idea
– Move a block with cold data to Cold Pool

• Trigger condition
– On the completion of an erasure request
– If the difference of erasure cycles between the oldest and

the youngest blocks in Hot Pool is over twice than a preset
threshold

MAX_EC_HOT_POOL – MIN_EC_HOT_POOL > (2 x TH)

• Block Migration
– Select the youngest block
– Migrate the block to Cold Pool

Wear Leveling Techniques (Jihong Kim/SNU) 35

Example of Hot Pool Adjustment (1)

36Wear Leveling Techniques (Jihong Kim/SNU)

EC: 11 EC: 16EC: 15EC:1 4EC: 13EC: 12

EC: 27EC: 26EC: 25 EC: 30

Hot Pool (getting older)

EC: 20

Cold Pool (getting younger)

• Example:
– Threshold: 4
– 4 X 2 = 8
– EC: Erasure Cycle

Example of Hot Pool Adjustment (2)

37Wear Leveling Techniques (Jihong Kim/SNU)

EC: 11 EC: 16EC: 15EC:1 4EC: 13EC: 12

EC: 23EC: 22EC: 21 EC: 30

Hot Pool (getting older)

EC: 20

Cold Pool (getting younger)

• Migrate the youngest block in Hot Pool to Cold
Pool

move

EC: 20

Experimental Setup

• Performance comparison against the previous approaches

• NAND flash characteristics

– K9NBG08U5M 4GB NAND flash memory, Samsung

• Trace-driven simulation

– The traces were collected from a real mobile PC for 1 month

– The traces were replayed 100 times to emulated the use of a
couple of years

• Garbage collection algorithm: the greedy policy

38Wear Leveling Techniques (Jihong Kim/SNU)

Experimental Results (1)

• Hot-Cold Swapping Algorithm
– Swap data in the oldest block and the youngest block
– M-System TrueFFS (based on Hot/cold Swapping Technique)

39Wear Leveling Techniques (Jihong Kim/SNU)

Experimental Results (2)

• Dual Pool Algorithm

40Wear Leveling Techniques (Jihong Kim/SNU)

References

• http://en.wikipedia.org/wiki/Wear_leveling

• Li-Pin Chang, “On Efficient Wear Leveling for Large-Scale Flash
Memory Storage Systems, ” SAC, 2007

• Prof. Sang-Lyul Min, “Advanced Computer Architecture.”,
Lecture Notes in Seoul National University

• Chiang, M., Lee, P., and Chang, R. “Using data clustering to
improve cleaning performance for flash memory,” Softw. Pract.
Exper., vol. 29, pp. 267-290, 1999

• Cactus Technologies, Application Note. 19 Sep. 2008

• STMicroelectronics, Application Note. 11 May. 2004

Wear Leveling Techniques (Jihong Kim/SNU) 41

References

• 백승훈, “MLC 스토리지의신뢰성/수명이슈,” NVRAMOS,
2010

• Li‐Pin Chang et. al. “A Low‐Cost Wear‐Leveling Algorithm
for Block‐Mapping Solid‐State Disks,” LCTES, 2011

Wear Leveling Techniques (Jihong Kim/SNU) 42

