
Mobile Cloud and Edge
Systems

Overview

 Objective
 To understand the use of cloud systems for mobile

computing

 Content
 Introduction to cloud systems for mobile computing
 MAUI: Making Smartphones Last Longer

With Code Offload

 After this module, you should be able to
 Understand the importance of cloud systems to enable rich

applications with resource-constrained mobile devices

Today’s Computing Platforms

• numerous

• diverse

• distributed

• parallel

• cloud

• mobile

Trends: Traits:

Unprecedented software engineering challenges in

reliability, productivity, scalability, energy-efficiency

Why Cloud? (over local computation)

Why Cloud? (over its own server)

A Challenge in Mobile Computing

• Rich apps are hindered by
resource-constrained
mobile devices (battery,
CPU, memory, ...)

How can we seamlessly partition

mobile apps and offload compute-

intensive parts to the cloud?

A Challenge in Cloud Computing

How can we isolate the computational resource for
multiple applications, schedule them, and optimize them?

schedulingresource isolation

energy
efficiency

service level
agreements

Edge Computing and IoT

MAUI: Making Smartphones
Last Longer

With Code Offload

MobiSys 2010

Battery is a Scarce Resource

 CPU performance during same period: 246X
 A solution to the battery problem seems unlikely

Just 2X in 15 years

Mobile Apps Can’t Reach Their Full Potential

Augmented Reality

Speech Recognition and Synthesis Interactive Games

Slow, Limited
or Inaccurate

Too CPU
intensive Limited

Power Intensive

Not on par with
desktop counterparts

Approach: Remote Execution

• Remote execution can reduce energy consumption

• Challenges:
• What should be offloaded?

• Leave to programmers? Full VM-migration?

• How to dynamically decide when to offload?
• Network conditions / program execution could change

dynamically!

• How to minimize the required programmer effort?

Key Observations

• Offloading Code works better when RTT is small.

• Volume of offloaded code sub-linear overhead.

MAUI: Mobile Assistance Using
Infrastructure

• Combine extensive profiling with an ILP (Integer
Linear Programming) solver
• Makes dynamic offload decisions

• Optimize for energy reduction

• Profile: energy for local execution vs. state transfer

• Leverage modern language runtime (.NET CLR)
• Codes are portable between mobile and cloud

• To simplify program partitioning

Maui serverSmartphone

Application

Client Proxy

Profiler

Solver

Maui Runtime

Server Proxy

Profiler

Solver

Maui Runtime

MAUI Architecture

Application

RPC

RPC

Maui Controller

How Does a Programmer Use MAUI?

• Goal: make it dead-simple to MAUI-ify apps
• Build app as a standalone phone app

• Add .NET attributes to indicate “remoteable”
• UI and sensing can’t be remoteable.

• Follow a simple set of rules

Language Run-Time Support For
Partitioning

• Portability:
• Mobile (ARM) vs Server (x86)
• .NET Framework Common Intermediate Language

• Reflection:
• Identifies methods with [Remoteable] tag
• Automates generation of RPC stubs

• Type-Safety and Serialization:
• Automate state extraction

Maui serverSmartphone

Application

Client Proxy

Profiler

Solver

Maui Runtime

Server Proxy

Profiler

Solver

Maui Runtime

Application

RPC

RPC

Maui Controller

MAUI Proxy

Intercepts Application Calls
Synchronizes State

Chooses local or remote

Handles Errors

Provides runtime information

MAUI Proxy: Control and Data Transfer

MAUI supports fine-grained offload at the method-level

At compile time:

• Find [remoteable] methods

• Produce client- and server-side stubs for all remoteable methods

At run time:

• Decide whether to invoke local or remote method

• Perform state synchronization when control transfers (in either direction)
• Identify what program state to transfer
• Serialize (deep copy): method parameters, class member variables, public sta

tic members
• Use deltas to reduce the data transfer overhead

MAUI: Why Not Static Partitioning?

• Failure model: when phone is disconnected, or even
intermittently connected, applications don’t work

• Device Scaling: Developers need to revisit application
structure as device characteristics change

• Dynamic Context: The portion of an app that makes
sense to download changes based on the latency to the
MAUI server

MAUI Profiler

Profiler
Callgraph

Execution Time

State size

Network Latency

Network Bandwidth

Device Profile
CPU Cycles

Network Power Cost
Network Delay
Computational Delay

Computational Power Cost
Computational Delay

A
n

n
o

tated
 C

allgrap
h

MAUI Solver

B
900 mJ
15ms

C
5000 mJ
3000 ms

1000mJ

D
15000 mJ
12000 ms

A

Computation energy and delay for execution

Energy and delay for state transfer

A sample callgraph

Is Global Program Analysis Needed?

FindMatch
900 mJ

InitializeFace
Recognizer

5000 mJ

1000mJ

DetectAndExtract
Faces

15000 mJ

User
Interface

Yes! –This simple example from Face Recognition
app shows why local analysis fails.

Cheaper to do local

Is Global Program Analysis Needed?

FindMatch
900 mJ

InitializeFace
Recognizer

5000 mJ

1000mJ

DetectAndExtract
Faces

15000 mJ

User
Interface

Yes! –This simple example from Face Recognition
app shows why local analysis fails.

Cheaper to do local

Cheaper to do local

Is Global Program Analysis Needed?

FindMatch

InitializeFace
Recognizer

1000mJ

DetectAndExtract
Faces

User
Interface 25900mJ

Cheaper to offload

The Actual Optimization Problem

• An ILP Formulation
• Solved on the cloud for efficiency reasons

Iv: Indicator=1 if remote execution

Time to execute method in a location
Different than its upstream neighbor

Only remoteable methods can
be executed remotely

MAUI Implementation

 Platform
 Windows Mobile 6.5
 .NET Framework 3.5
 HTC Fuze Smartphone
 Monsoon power monitor

 Applications
 Chess
 Face Recognition
 Arcade Game
 Voice-based translator

Questions

• How much can MAUI reduce energy consumption?

• How much can MAUI improve performance?

• Can MAUI Run Resource-Intensive Applications?

0

5

10

15

20

25

30

35

E
n

e
rg

y
 (

Jo
u

le
s)

Smartphone only
MAUI (Wi-Fi, 10ms RTT)
MAUI (Wi-Fi, 25ms RTT)
MAUI (Wi-Fi, 50ms RTT)
MAUI (Wi-Fi, 100ms RTT)
MAUI* (3G, 220ms RTT)

How Much can MAUI Reduce Energy Consumption?

Big savings even on 3GAn order of magnitude
improvement on Wi-Fi

Face Recognizer

How Much can MAUI Improve Performance?

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

E
x

e
cu

ti
o

n
 D

u
ra

ti
o

n
 (

m
s)

Smartphone only
MAUI (Wi-Fi, 10ms RTT)
MAUI (Wi-Fi, 25ms RTT)
MAUI (Wi-Fi, 50ms RTT)
MAUI (Wi-Fi, 100ms RTT)
MAUI* (3G, 220ms RTT)

Improvement of around an
order of magnitude

Face Recognizer

Latency to Server Impacts the Opportunities
for Fine-Grained Offload

0

20

40

60

E
n

e
rg

y
 (

Jo
u

le
s)

Smartphone only

MAUI (Wi-Fi, 10ms RTT)

MAUI (Wi-Fi, 25ms RTT)

MAUI (Wi-Fi, 50ms RTT)

MAUI (WiFi, 100ms RTT)

MAUI* (3G, 220ms RTT)

Up to 40% energy savings
on Wi-Fi

Solver would decide not
to offloadArcade Game

Can MAUI Run Resource-Intensive Applications?

0

10

20

30

40

50

60

70

80

90

100

00:00 00:43 01:26 02:10 02:53

C
P

U
 C

o
n

su
m

p
ti

o
n

 (
%

)

Time

CPU1

CPU2

CPU Intensive even on a Core 2 Duo PC

Can be run on the phone with MAUI

Translator

Conclusions

• MAUI enables developers to:
• Bypass the resource limitations of handheld devices
• Low barrier entry: simple program annotations

• For a resource-intensive application
• MAUI reduced energy consumed by an order of magnitude
• MAUI improved application performance similarly

• MAUI adapts to:
• Changing network conditions
• Changing applications CPU demands

