Advanced Water Quality

Class 23: Redox Chemistry I

Topics

- Definitions and Terminology
- Oxidation state
- Half reactions and balancing redox reactions
- Determining energetic favorability of redox reactions
- Influence of solution conditions and chemical speciation on redox energetics

Redox processes

- Short for oxidation reduction
- e- transfer between reactants

Disinfection

Biological WW treatment

Combustion & emissions

Air quality

Drinking water & sanitation in the developing world

Groundwater (bio)remediation

Bioenergy development

What does redox look like?

- Overall reaction consists to two coupled half reactions
 - One half reaction donates electrons (oxidation), the other accepts the electrons (reduction)

$$Y(0) \rightarrow e^{-} + Y(+I)$$

(Oxidation)

$$X(0) + e^{-} \rightarrow X(-1)$$

(Reduction)

Overall: $X(0) + Y(0) \rightarrow X(-1) + Y(+1)$

Oxidation states (not usually written explicitly)

Kinetic Limits on Redox Rxns

- Redox reactions often kinetically limited
- Non-equilibrium system (Q/K»1 or «1) often quite stable for long period of time
- Understanding redox equilibria still useful because it tells us the direction of spontaneous change
- Metabolic activities involve capturing the energy released in redox rxns
- •Organisms have developed special catalysts, called enzymes, that reduce the kinetic inhibitions on redox rxns.

Topics

- Definitions and Terminology
- Oxidation state
- Half reactions and balancing redox reactions
- Determining energetic favorability of redox reactions
- Influence of solution conditions and chemical speciation on redox energetics

Redox Chemistry: Oxidation State

• 2 or more atoms change oxidation state during a redox rxn

$$\begin{pmatrix}
\text{formal} \\
\text{oxidation} \\
\text{state}
\end{pmatrix} = \begin{pmatrix}
\text{# protons in} \\
\text{atom's nucleus}
\end{pmatrix} - \begin{pmatrix}
\text{# electrons} \\
\text{assigned to} \\
\text{the atom}
\end{pmatrix}$$

- **Reduction** = substance gains e⁻
- Oxidation = substance loses e⁻

abundance

- #e⁻ gained by reduced substance = #e⁻ lost by oxidized substances
- Many atoms of interest (C,N,O,S,Fe,Mn,Cl) exist in the environment in multiple stable oxidation states
- E.g., carbon in CO₂ has a higher oxidation state (+4) than in sugar (0).
 So sugar is oxidized to form CO₂

Element	Stable Oxidation States Under Environmental Conditions			
С	-4 to +4			
N	-3 to +5			
0	-2 to 0			
S	-2,-1,0,+4,+6			
CI	-1 ,0,+1,+3,+5,+7			
Fe	+2,+3, +4,+5,+6			
Mn	+2,+3,+4,+7			
Со	+2,+3			
Cr	+3,+6			
As	+3,+5			
Р	-3,+3, +5			
Hg	0,+1,+2			
Bold = naturally-occurring members in				

Changes in oxidation state can have major impact on elemental properties

E.g., Aqueous solubility of Fe(III) & Fe(II) differ by orders of magnitude under most pH conditions

- During Fe removal we convert the Fe(II) present in groundwater to Fe(III) which is much less soluble
 - E.g., 6 order of magnitude drop in dissolved Fe at pH 7
- Changes in oxidation state can have major impact on elemental properties
- e.g. Volatility & Toxicity of Sulfur Species

SIV: (sulfate, SO₄²⁻)

- highly water soluble
- non-volatile
- relatively non-toxic

S-II: (hydrogen sulfide, H₂S; mercaptans H₃C-SH)

- Forms insoluble metal precipitates
- Strong abiotic reductant in natural systems
- Volatile
- Toxic

Clarifications

- Roman numerals represent the oxidation state of an element,
 - e.g., Fe(II) or Fe^{II}; Cd(II), Fe(III), S(-II)
 - Fe(II) ≠ Fe²⁺
- There may be several species for a given oxidation state
 - E.g., Fe(II) includes Fe²⁺, FeOH⁺, Fe(OH)₃⁻, Fe(EDTA)²⁻, FeH(EDTA)⁻,
- The statement, "there is 0.5 mM Fe(II) present" means $C_{T,Fe(II)} = 0.5$ mM = $[Fe^{2+}]+[FeOH^+]+[Fe(OH)_2^0]+...$
- The statement, "there is 0.5 mM total iron present" means $C_{T,Fe} = 0.5 \text{ mM} = C_{T,Fe(III)} + C_{T,Fe(III)} = [Fe^{2+}] + [FeOH^+] + ...$

$$[Fe(OH)_2^0]+[Fe^{3+}]+[FeOH^{2+}]+[Fe(OH)_2^+]+...$$

Calculating Formal Oxidation States

$$\begin{pmatrix}
formal \\
oxidation \\
state
\end{pmatrix} = \begin{pmatrix}
protons in \\
atom's nucleus
\end{pmatrix} - \begin{pmatrix}
electrons \\
assigned to \\
the atom
\end{pmatrix}$$

- Electronegativity approach
 - More electronegative elements will pull electron density of a bond towards themselves
 - For each bond formed with a less electronegative element, the atom will gain -1
 - Fore each bond formed with a more electronegative element, the atom will gain +1

Electronegativity

(Wikipedia) measure of the ability of an atom or molecule to attract electrons in the context of a chemical bond

- Add to formal charge -1 for each bond to less electronegative element, and +1 for each bond to more electronegative element
- Also add any charge on that group; Oxidation state = sum up the charges

Electronegativity increases

- -From left to right due to increasing proton (nuclear) and electron (valence shell) charge
- -From bottom to top due to proximity of valence e⁻ to protons in nucleus and less shielding from filled orbitals in between valence e⁻ and nucleus

Algorithm for Avg Oxidation States

Rule: Charge must be conserved

Conventions

- 1. Atoms in a pure element or mC such as H₂ have oxidation state of 0.
- 2. Oxidation state of monoatomic ions = ion charge.
- 3. H has an oxidation state of +1
- 4. O has an oxidation state of -2
- 5. N has an oxidation state of -3 when bonded to H or C
- 6. S has an oxidation state of -2 when bonded to H or C
- 7. F has an oxidation state of -1
- 8. **CI, Br, I** have oxidation states of -1 except in compounds containing F or O (both of which possess higher electronegativities)

Application: Conventions are applied in order shown, but can be ignored if necessary to avoid violating the Charge conservation rule

Topics

- Definitions and Terminology
- Oxidation state
- Half reactions and balancing redox reactions
- Determining energetic favorability of redox reactions
- Influence of solution conditions and chemical speciation on redox energetics

Half Reactions

- Overall reaction consists to two coupled half reactions
 - One half reaction donates electrons (oxidation), the other accepts the electrons (reduction)

• E.g., oxidation of Fe²⁺ by O₂:

OHR:
$$(Fe^{2+} = Fe^{3+} + 1e^{-}) \times 4$$

RHR: $O_2 + 4H^+ + 4e^{-} = 2H_2O$

Overall:
$$4Fe^{2+} + O_2 + 4H^+ = 4Fe^{3+} + 2H_2O$$

Fe (O.S.
$$\uparrow$$
 +2 \rightarrow +3)
O (O.S. \downarrow 0 \leftarrow -2)

- Balance overall rxn has no e- on either side
- Tables of common half rxns available with thermodynamic parameters (redox potential)
- Can combine half reactions and evaluate whether overall rxn is energetically favorable ($\Delta E_{rxn} > 0$)

Anatomy of the half reaction

$$X_{ox} + ne^{-} = X_{red}$$

Anatomy of the half reaction

Substance gets reduced
Oxidant
Oxidizing agent
Electron acceptor
Higher oxidation state

Anatomy of the half reaction

$$X_{ox} + ne^{-} = X_{red}$$

Substance gets oxidized
Reductant
Reducing agent
Electron donor
Lower oxidation state

Balancing Redox Reactions

Consider oxidation of H₂S by HOCl

1. Identify what is oxidized and what is reduced:

H₂S oxidized & HOCl reduced

2. Write unbalanced form of half rxns

$$H_2S = SO_4^{2-}$$
 (O.S. -2 to +6)
HOCl = Cl⁻ (O.S. +1 to -1)

3. Balance atoms in the individual half rxns other than H and O:

$$H_2S = SO_4^{2-}$$

 $HOCl = Cl^{-}$

4. Balance oxygens using H_2O :

$$H_2S + 4H_2O = SO_4^{2-}$$

 $HOCI = CI^- + H_2O$

5. Balance hydrogens using H+:

$$H_2S + 4H_2O = 10H^+ + SO_4^{2-}$$

 $HOCl + H^+ = Cl^- + H_2O$

Balancing Redox Reactions

6 (method 1). Balance charge using e-:

$$H_2S + 4H_2O = 10H^+ + SO_4^{2-} + 8e^-$$

HOCl + H⁺ + **2e**⁻ = Cl⁻ + H₂O

6 (method 2). #e⁻ could have been determined earlier from changes in formal oxidation state of each half reaction:

$$H_2S = SO_4^{2-}$$
 (O.S. -2 to +6) H_2S gives up 8e-
HOCl = Cl- (O.S. +1 to -1) HOCl gains 2e-

7. Multiply each half reaction by an appropriate integer so that each contains equivalent e-:

1 x (H₂S + 4H₂O =
$$10H^+ + SO_4^{2-} + 8e^-$$
)
4 x (HOCl + $H^+ + 2e^- = Cl^- + H_2O$)

8. Add the balanced half reactions:

$$H_2S + 4HOCI + 4H^+ + 4H_2O = 4CI^- + SO_4^{2-} + 10H^+ + 4H_2O$$

$$H_2S + 4HOCI = 4CI^- + SO_4^{2-} + 6H^+$$

 Exercise: Write balanced reactions for the following processes: Oxidation arsenite (H₃AsO₃) to arsenate (HAsO₄²⁻) coupled to the reduction of the green oxidant ferrate (FeO₄²⁻) to Fe(OH)₃(s).
2. Anaerobic bioremediation of petroleum hydrocarbons: oxidative mineralization of benzene (C_6H_6) coupled with nitrate (NO_3^-) reduction to ammonium (NH_4^+).
3. Denitrification in WWT: reduction of nitrate (NO_3^-) to nitrogen gas (N_2) , coupled with mineralization of an electron donor, typically methanol (H_3COH) .

4. Abiotic groundwater remediation: reduction of trichloroethene

 (C_2HCl_3) to acetylene (C_2H_2) coupled with the corrosion of zero-valent iron filings (ZVI; Fe⁰) to Fe(OH)₃(s).

Topics

- Definitions and Terminology
- Oxidation state
- Half reactions and balancing redox reactions
- Determining energetic favorability of redox reactions
- Influence of solution conditions and chemical speciation on redox energetics

Evaluating Favorability of Redox Rxn

1st Approach: Same as Earlier

- 1. Obtain balanced overall redox rxn
- 2. Calculate ΔG^0_{rxn} using G_f^0 values

$$\Delta G^{0}_{\text{rxn}} = (\Sigma v_{i} G_{fi}^{0})_{\text{products}} - (\Sigma v_{i} G_{fi}^{0})_{\text{reactants}}$$
$$\Delta G^{0}_{\text{rxn}} = -\text{RTIn} K_{\text{eq}}$$

3. Calculate ${\bf Q}$ for current conditions in solution and use this to calculate ΔG

$$\Delta G = \Delta G^{0}_{\text{rxn}} + \text{RTInQ} = \text{RTIn}(Q/K_{\text{eq}})$$

ΔG:	< 0	0	> 0
Spontaneous Direction	\rightarrow	@Equilibrium	←

- •We can determine ΔG^0 values for half rxns because G_f^0 for $e^- = 0$ by convention
- •If we know the value of ΔG^0 for two half rxns can quickly determine ΔG^0 for overall rxn
- •Consider Fe²⁺ oxidation by MnO₂(s):

OHR:
$$Fe^{2+} + 3H_2O = Fe(OH)_3(s) + 3H^+ + e^-$$

 $\Delta G^0_{OHR} = -699 \text{ kJ/mol} + 3(0) + (0) - (-78.87) - 3(-237.18)$
 $Fe(OH)_3(s) + e^- Fe^{2+} 3H_2O$
 $= +91.41 \text{ kJ/mol}$
RHR: $MnO_2(s) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$
 $\Delta G^0_{RHR} = -228.0 + 2(-237.18) - (-465.1) - 4(0) - 2(0)$
 $Mn^{2+} H_2O MnO_2(s) + H^+ e^-$
 $= -237.26 \text{ kJ/mol}$

 ΔG^0

OHR: $Fe^{2+} + 3H_2O = Fe(OH)_3(s) + 3H^+ + e^- +91.41 \text{ kJ/mol}$ **RHR:** $MnO_2(s) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O -237.26 \text{ kJ/mol}$ To balance, multiply OHR x 2

$$\Delta G^0$$

$$2(Fe^{2+} + 3H_2O = Fe(OH)_3(s) + 3H^+ + e^-)$$
 $2(+91.41)$ kcal/mol $(MnO_2(s) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O)$ -237.26 kcal/mol

$$2Fe^{2+} + MnO_2(s) + 4H_2O = 2Fe(OH)_3(s) + 2H^+ + Mn^{2+}$$
 -54.44 kJ/mol

Solution at pH 6.5 containing 10⁻⁴ M Fe²⁺ and Mn²⁺ and both Fe(OH)₃(s) and MnO₂(s) present. How will it Proceed?

$$Q = \frac{\{Mn^{2+}\}\{H^{+}\}^{2}\{Fe(OH)_{3}(s)\}}{\{Fe^{2+}\}^{2}\{MnO_{2}(s)\}\{H_{2}O\}^{4}} = \frac{\{Mn^{2+}\}\{H^{+}\}^{2}}{\{Fe^{2+}\}^{2}}$$
$$= \frac{(10^{-4})(10^{-6.5})^{2}}{(10^{-4})^{2}} = 10^{-9}$$

$$\Delta G = \Delta G^{0}_{rxn} + RTInQ = -54.44 \text{ kJ/mol} + 2.47In(10^{-9})$$

= -105.6 kJ/mol < 0 rxn proceed left to right

2nd Approach: Use Redox Potentials

 E_{cell} = electrochemical version of ΔG for overall redox rxn

$$\Delta G = -nFE_{cell}$$

$$\uparrow \qquad \uparrow \qquad Potential (volts)$$
Faraday's Constant (96.485 kJ/V eq)
$$\# \text{ of electrons transferred}$$

$$\Delta G^0 = -nFE_{cell}^0$$

Direction	∆G	E _{cell}
Rxn Proceed →	< 0	> 0
Equilibrium	0	0
Rxn Proceed ←	> 0	< 0

Power of approach is that E⁰ tables available for ½ rxns

Conceptual & Practical Basis for Eocell

- •In well mixed solution, oxidant & reductant are in close contact
 - Direct e- transfer occurs
 - $2S_2O_3^{2-} + I_2 = S_4O_6^{2-} + 2I^{-}$
- •Consider each ½ rxn in isolation
- Electrochemical Cell
 - Separate S₂O₃²⁻ and I₂ into separate containers
 - Connect wire between cells (and include salt bridge) and current flows between cells
 - S₂O₃²⁻ oxidized in left cell
 - I₂ reduced in right cell
 - $-E_{cell}^{0} = E_{(RHR)}^{0} E_{(OHR)}^{0} (S.T.P.)^{2S_{2}O_{3}^{2-} \rightarrow S_{4}O_{6}^{2-} + 2e^{-}}$

Fig. 7-1. Iodine-thiosulfate cell.

Conceptual & Practical Basis for E⁰_{cell}

- •E⁰ values for half cells can't be determined absolutely
- •E⁰ values measured relative to reference cell assigned E⁰ = 0 Volts at 1 atm and 298K (so measure E^0_{cell} where E^0_{OHR} = 0)
- Standard (or normal) hydrogen electrode:

$$H^+ + e^- = \frac{1}{2}H_2(g)$$
 $E^0 = 0$ Volts ΔG^0 also = 0

- •E⁰ = ½ cell reduction potentials measured relative to NHE (V vs. NHE) (*NHE serves as OHR*)
- "+" value indicates stronger oxidant than H⁺
 & weaker reductant than H₂

Std Reduction Potential (E⁰)

- Convention: Tables show potential for ½ rxns in direction of reduction
- E⁰(oxidation direction) =-E⁰(reduction direction)
- •E⁰ ♠: red direction more energetically favorable & oxidation direction less favorable
 - Stronger oxidants have large E⁰
 - Stronger reductants have lower E⁰

	ΔG° ,	F 0
Half-reaction	kcal/mole	E° , volts
$\frac{1}{2}Br_2(aq) + e^- = Br^-$	-25.2	1.09
$\frac{1}{2}$ BrCl + e ⁻ = $\frac{1}{2}$ Br ⁻ + $\frac{1}{2}$ Cl ⁻	-31.1	1.35
$Ce^{4+} + e^{-} = Ce^{3+}$	-33.2	1.44
${}_{4}^{1}CO_{3}^{2^{-}} + {}_{8}^{7}H^{+} + e^{-} = {}_{8}^{1}CH_{3}COO^{-} + {}_{4}^{1}H_{2}O$	-1.73	0.075
${}^{1}_{4}CO_{3}^{2-} + H^{+} + e^{-} = {}^{1}_{24}C_{6}H_{12}O_{6} + {}^{1}_{4}H_{2}O$	0.35	-0.0015
$\frac{1}{2}\text{Cl}_2(\text{aq}) + e^- = \text{Cl}^-$	-32.1	1.391
$ClO_2 + e^- = ClO_2^-$	-26.6	1.15
$ClO_3^- + 2H^+ + e^- = ClO_2 + H_2O$	-26.6	1.15
$\frac{1}{2}$ OCl ⁻ + H ⁺ + e ⁻ = $\frac{1}{2}$ Cl ⁻ + $\frac{1}{2}$ H ₂ O	-39.9	1.728
$\frac{1}{8}ClO_4^- + H^+ + e^- = \frac{1}{8}Cl^- + \frac{1}{2}H_2O$	-31.6	1.37
$\frac{1}{6}Cr_2O_7^{2-} + \frac{7}{3}H^+ + e^- = \frac{1}{3}Cr^{3+} + \frac{7}{6}H_2O$	-30.7	1.33
$\frac{1}{2}Cu^{2+} + e^{-} = \frac{1}{2}Cu$	-7.78	0.337
$\frac{1}{2}Fe^{2+} + e^{-} = \frac{1}{2}Fe$	9.45	-0.409
$Fe^{3+} + e^{-} = Fe^{2+}$	-17.78	0.770
$\frac{1}{3}Fe^{3+} + e^{-} = \frac{1}{3}Fe$	0.84	-0.0036
$H^+ + e^- = \frac{1}{2}H_2(g)$	0.00	0.00
$\frac{1}{2}H_2O_2 + H^+ + e^- = H_2O$	-40.8	1.77
$\frac{1}{2}Hg^{2+} + e^{-} = \frac{1}{2}Hg$	-19.7	0.851
$\frac{1}{2}I_2(aq) + e^- = I^-$	-14.3	0.62
$\frac{1}{5}IO_4^- + \frac{6}{5}H^+ + e^- = \frac{1}{10}I_2(g) + \frac{3}{5}H_2O$	-27.6	1.197
$\frac{1}{2}$ MnO ₂ + 2H ⁺ + e ⁻ = $\frac{1}{2}$ Mn ²⁺ + H ₂ O	-27.9	1.208
$\frac{1}{5}$ MnO ₄ ⁻ + $\frac{8}{5}$ H ⁺ + e ⁻ = $\frac{1}{5}$ Mn ²⁺ + $\frac{4}{5}$ H ₂ O	-34.4	1.491
$\frac{1}{3}$ MnO ₄ + $\frac{4}{3}$ H ⁺ + e ⁻ = $\frac{1}{3}$ MnO ₂ + $\frac{2}{3}$ H ₂ O	-39.2	1.695
$\frac{1}{6}NO_2^- + \frac{4}{3}H^+ + e^- = \frac{1}{6}NH_4^+ + \frac{1}{3}H_2O$	-20.75	0.898
${}_{8}^{1}NO_{3}^{-} + {}_{4}^{5}H^{+} + e^{-} = {}_{8}^{1}NH_{4}^{+} + {}_{8}^{3}H_{2}O$	-20.33	0.880
$\frac{1}{3}NO_2^- + \frac{4}{3}H^+ + e^- = \frac{1}{6}N_2(g) + \frac{2}{3}H_2O$	-35.16	1.519
$\frac{1}{5}NO_3^- + \frac{6}{5}H^+ + e^- = \frac{1}{10}N_2(g) + \frac{3}{5}H_2O$	-28.73	1.244
$\frac{1}{4}O_2(aq) + H^+ + e^- = \frac{1}{2}H_2O$	-29.32	1.23
$\frac{1}{2}O_3(g) + H^+ + e^- = \frac{1}{2}O_2(g) + \frac{1}{2}H_2O$	-47.8	2.07
$\frac{1}{6}SO_4^{2-} + \frac{1}{3}H^+ + e^- = \frac{1}{6}S + \frac{2}{3}H_2O$	-8.24	0.357
$\frac{1}{8}SO_4^{2-} + \frac{5}{4}H^+ + e^- = \frac{1}{8}H_2S(aq) + \frac{1}{2}H_2O$	-7.00	0.303
$\frac{1}{4}SO_4^{2-} + \frac{5}{4}H^+ + e^- = \frac{1}{8}S_2O_3^{2-} + \frac{5}{8}H_2O$	-7.00	0.303
$\frac{1}{2}SO_4^{2-} + H^+ + e^- = \frac{1}{2}SO_3^{2-} + \frac{1}{2}H_2O$	0.93	-0.039

Is a redox reaction favorable?

- $E_{cell}^0 = E_{RHR}^0 E_{OHR}^0$
- Subtract the E⁰ value of the ½ reaction that will be going in the opposite (oxidation) direction from the E⁰ value of the ½ reaction that will be undergoing reduction
 - Note: Only works when adding 2 half reactions where 1 donates e⁻ and other accepts same number of e⁻
- If E⁰_{cell} > 0: favorable; < 0 unfavorable
 - Consider oxidation of Mn²⁺ by permanganate (MnO₄-):

 $E^{0} \qquad \Delta G^{0}$ (V vs. NHE) kJ mol⁻¹ $6 \times (H_{2}O + \frac{1}{2} Mn^{2+} = \frac{1}{2} MnO_{2}(s) + 2H^{+} + e^{-}) \qquad 1.21 \qquad 6\{-(-116.7)\} = +700.4$ $6 \times (e^{-} + \frac{4}{3} H^{+} + \frac{1}{3} MnO_{4}^{-} = \frac{1}{3} MnO_{2}(s) + \frac{2}{3}H_{2}O) \qquad 1.70 \qquad 6(-164) = -984.0$ $3Mn^{2+} + 2MnO_{4}^{-} + 2H_{2}O = 5MnO_{2}(s) + 4H^{+} \qquad +0.49 \text{ V} \qquad -283.7 \text{ kJ mol}^{-1}$

✓ Reaction Favorable

Caveat: only true for std state conditions (pH 0, 1 M conc., 25 $^{\circ}$ C, 1 atm)

•Sometimes use tables of E_7^0 values (corrected to **pH 7**, 1 M conc., 25 $^\circ$ C, 1 atm)

Nernst Equation: Potentials at non-standard conditions

Recall:
$$\Delta G = \Delta G^0_{\text{rxn}} + \text{RT InQ}$$
 & $E = \frac{\Delta G}{-nF}$

It Follows:
$$\frac{\Delta G}{-nF} = \frac{\Delta G^0}{-nF} + \frac{RT}{-nF} \ln Q$$

Or
$$E = E^0 - \frac{RT}{nF} \ln Q$$

Also
$$E^0 = \frac{RT}{nF} \ln K_{eq}$$

Consider oxidation of Fe²⁺ by MnO_{2(s)} again:

$$2 F e^{2+} + MnO_2(s) + 4 H_2O = 2 F e(OH)_3(s) + 2 H^+ + Mn^{2+} \qquad \textbf{E^0}_{cell} = \textbf{0.146 V}$$

$$E_{cell} = E^0_{cell} - \frac{RT}{nF} \ln Q$$

Solution at pH 6.5 containing 10^{-4} M Fe²⁺ and Mn²⁺ and both Fe(OH)₃(s) and MnO₂(s) present. **How will rxn Proceed?**

$$Q = \frac{\{Mn^{2+}\}\{H^{+}\}^{2}\{Fe(OH)_{3}(s)\}}{\{Fe^{2+}\}^{2}\{MnO_{2}(s)\}\{H_{2}O\}^{4}} = \frac{\{Mn^{2+}\}\{H^{+}\}^{2}}{\{Fe^{2+}\}^{2}}$$
$$= \frac{(10^{-4})(10^{-6.5})^{2}}{(10^{-4})^{2}} = 10^{-9}$$

$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} \ln Q = 0.146 - 0.0128 \ln Q$$

$$= +0.411 \text{ Volts}$$

$$> 0 \text{ rxn proceed left to right}$$

 Can make Nernst Eqn valid for ½ rxns by coupling with NHE

$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} \ln Q = 0.16 - \frac{RT}{nF} \ln \frac{\{Cu^{+}\}\{H^{+}\}}{\{Cu^{2+}\}P_{H_{2}}^{0.5}}$$

• In NHE side: $E^0 = 0$, $\{H^+\} = 1$ and $P_{H2} = 1$ atm, so all terms drop out of Nernst expression. Therefore

$$E = E^{0} - \frac{RT}{nF} \ln \frac{\{Cu^{+}\}}{\{Cu^{2+}\}}$$

Clarify

- E for ½ rxns tells us potential relative to H₂(g)/H⁺ redox couple
- **E**_{cell} for overall reaction indicates whether rxn is at equilibrium or not (<0, 0, or >0)

Nernst Eqn

- Effect of reactant and product concentration
 - Evaluate equilibrium position
 - When $E_{cell} = 0$ or when $E_{(RHR)} = E_{(OHR)}$
- Assess how system conditions like pH affect half reaction potentials
 - Does Fe²⁺ become stronger reductant as we increase system pH?

Predominance Area Diagrams (E-pH)

- Areas represent pH-E conditions where a particular Fe(II) or Fe(III) species "predominates" over all other Fe(II) & Fe(III) species
- Lines represent boundaries where 2 "predominant" species are equal

How are predominance diagrams useful?

- If you are given the pH and E values (e.g., measured by pH and redox probes) of a given environment, you can estimate which species predominates
 - i.e., [i] $\approx C_T$ (or is present if the predominant species is a solid)
 - Simplifies calculating remainder of reactant/product species
 - 1) use Ka, β , etc... to calculate concentration of other species from the same oxidation state as the predominant species.
 - 2) use Nernst equation to then calculate the concentration of one species of the other oxidation state at the E-pH condition
 - 3) use Ka, β , etc... to calculate concentration of other species from the 2nd oxidation state.

E-pH Diagram for 10⁻⁷ M Iron

(1)
$$pH = 5$$
, $E = +0.1 V$

(2)
$$pH = 8.5$$
, $E = +0.3 V$

$$(3) pH = 8.5, E = -0.3 V$$

What about the $H_2O/O_{2(g)}$ and $H_2O/H_{2(g)}$ lines?

Figure 23.12 pe-pH diagram for aqueous sulfur when $S_T=10^{-3}~M$ and $25^{\circ} \text{C}/1$ atm. Activity corrections are neglected. $S_{(s)}$ is only possible at relatively low pH. As the pe is lowered at any given pH value, the diagram indicates that S(-II) (either as H_2S or as HS^-) can become the dominant form of sulfur before the in-situ p_{H_2} can reach 1 atm.

What about the $H_2O/O_{2(g)}$ and $H_2O/H_{2(g)}$ lines?

- Represent the thermodynamic stability limits of H₂O
- If system E > $E_{\rm H2O/O2}$ line, water should get oxidized to $O_{\rm 2(g)}$

$$2H_2O = 4H^+ + 4e^- + O_{2(g)} \quad E^0 = 1.226 \text{ V}$$

$$E = 1.226 - \left(\frac{0.0256}{4}\right) \ln \left(\frac{\{H_2O\}^2}{\{O_{2(g)}\}\{H^+\}^4}\right)$$

• If system E < $E_{\rm H2O/H2}$ line, water should get reduced to $H_{\rm 2(g)}$

$$2H^{+} + 2e^{-} = H_{2(g)}$$
 $E^{0} = 0.0 \text{ V}$
$$E = 0 - \left(\frac{0.0256}{2}\right) \ln \left(\frac{\{H_{2(g)}\}}{\{H^{+}\}^{2}}\right)$$

E-pH Diagram for 10⁻⁷ M Iron

$$(1) pH = 5, E = +0.1 V$$

(4) Now, imagine that this groundwater is pumped from the ground and equilibrated with the atmosphere where E is buffered by the H₂O/O₂ redox couple.

Recalculate iron speciation