Rock Mechanics & Experiment 암석역학 및 실험

Lecture 9. Fluid Flow and Heat Transfer in rock Lecture 9. <mark>암반에서의 유체유동 및 열전달</mark>

Ki-Bok Min, PhD

Associate Professor Department of Energy Resources Engineering Seoul National University

SEOUL NATIONAL UNIVERSITY

Outline

- Introduction
- Fluid flow in rock
 - Introduction
 - Darcy's law
 - Permeability
 - Fluid flow in fractured rock
- Heat transfer in rock
 - Introduction
 - Fourier's Law
 - Thermal conductivity

Physical problem	Conservation Principle	State Variable	Flux σ	Material properties	Source	Constitutive equation
Elasticity	힘의 평형 (Equilibrium)	변위 (Displacement), u	응력 (Stress) σ	탄성계수 및 포아송비 (Young's modulus & Poisson's ratio)	체적력 (Body forces)	후크의 법칙 (Hooke's law)
Heat conduction	Conservation of energy	Temperature, T	Heat flux q	Thermal conductivity k	Heat sources	Fourier's law
Porous media flow	Conservation of mass	Hydraulic head, H	Fluid flux q	Permeability k	Fluid source	Darcy's law
Mass transport	Conservation of mass	Concentration, C	Diffusive flux q	Diffusion coefficient D	Chemica l source	Fick's law

탄성체역학, 열전도, 다공성매질의 유체유동, 용질이동 등의 상태변수와 flux 의 구조는 비슷함 - 편리한 진실 (*a convenient truth)!*

Introduction Constitutive Equation – T-H-M process

Heat conduction Fourier's Law Heat Flux Temperature gradient Thermal conductivity

Conservation of Energy

$$q = -\frac{k}{\mu} \frac{dP}{dl}$$
$$q = -K \frac{dH}{dl}$$

1-

Porous media fluid flow Darcy's Law Fluid Flux Head (or Pressure) gradient

Hydraulic Conductivity (or Permeability)

Conservation of mass

$$\sigma = \mathbf{E}\varepsilon = \mathbf{E}\frac{du}{dx}$$

Geomechanics Hooke's Law Stress (응력) ient strain (변형율) Elastic modulus & Poisson's ratio Equilibrium Equation

Fluid flow in rock Introduction

- Problem of great importance to geological/energy resources engineering;
 - Groundwater hydrology

ন্ধ groundwater migration, tunnel inflow, Contaminant transport,

- Oil/gas extraction

ন্ধ Reservoir engineering

Rock/soil mechanics

ন্ধ Stability (pore pressure) of underground structure ন্ধ Fault mechanics

– Geothermal Energy

ন্ধWater is a medium of heat transport

Fluid flow in rock Introduction

Fractured Rock (Forsmark, Sweden, 2003)

Fluid flow in rock Constitutive Relation - Darcy's law

Fig. 6.1. Darcy's experiment (Hubbert's version).

- Q: volumetric flow rate (m³/sec)
- q: volumetric flow rate per unit area (fluid flux or specific discharge) (m/sec)
- K: hydraulic conductivity (m/sec), the ease with which fluid can move through a porous rock
- h: hydraulic head (total head)

$$Q = -KA \frac{\delta h}{\delta l} = -KiA$$
 $q = -K \frac{\delta h}{\delta l} = -Ki$

$$q_x = -K_x \frac{\partial h}{\partial x}$$
 $q_y = -K_y \frac{\partial h}{\partial y}$ $q_z = -K_z \frac{\partial h}{\partial z}$ $\mathbf{q} = -K\nabla h$

Middleton and Wilcock, 1994

Fluid flow in rock Constitutive Relation - Darcy's law

· Expressed in terms of pressure and elevation head,

$$q = -K\nabla\left(z + \frac{P}{\rho_w g}\right)$$

· When all piezometers are bottomed at the same elevation

In 1D,
$$q = -\frac{k}{\mu} \nabla p \qquad \checkmark \qquad K = \frac{\rho g k}{\mu}$$
$$q = -\frac{k}{\mu} \frac{dP}{dl}$$

Fluid flow in rock Constitutive Relation - Hydraulic conductivity vs. Permeability

• K (hydraulic conductivity, 수리전도도) is related to medium & fluid, unit: m/sec

$$K = \frac{\rho g \kappa}{\mu}$$

- µ: viscosity (점성도) of fluid, unit: Pa·s, water: ~10⁻³ Pa·s = 1 cp
- ρ : density of fluid, unit: kg/m³, water: 10³ kg/m³
- g: acceleration due to gravity
- k (permeability, 투수율) is related to only medium, unit: m²
 - Perrmeability: the ease with which fluid can move through a porous rock

Rock Type	k (m²)	k (Darcy)	K (m/s)
Coarse gravels	10 ⁻⁹ -10 ⁻⁸	10 ³ -10 ⁴	10 ⁻² -10 ⁻¹
Sands, gravels	10 ⁻¹² -10 ⁻⁹	10 ⁰ -10 ³	10 ⁻⁵ -10 ⁻²
Fine sands, silts	10 ⁻¹⁶ -10 ⁻¹²	10 ⁻⁴ -10 ⁰	10 ⁻⁹ -10 ⁻⁵
Clays, shales	10 ⁻²³ -10 ⁻¹⁶	10-11-10-4	10 ⁻¹⁶ -10 ⁻⁹
Dolomites	10 ⁻¹² -10 ⁻¹⁰	10 ⁰ -10 ²	10 ⁻⁵ -10 ⁻³
Limestones	10 ⁻²² -10 ⁻¹²	10 ⁻¹⁰ -10 ⁰	10 ⁻¹⁵ -10 ⁻⁵
Sandstones	10 ⁻¹⁷ -10 ⁻¹¹	10 ⁻⁵ -10 ¹	10 ⁻¹⁰ -10 ⁻⁴
Granites, Gneiss	10 ⁻²⁰ -10 ⁻¹⁶	10-8-10-4	10 ⁻¹³ -10 ⁻⁹
Basalts	10 ⁻¹⁹ -10 ⁻¹³	10 ⁻⁷ -10 ⁻¹	10 ⁻¹² -10 ⁻⁶

- k (permeability, 투수율) is a measure of only 'medium'
- Also called, coefficient of permeability, intrinsic permeability
- 1 darcy = $0.987 \times 10^{-12} \text{ m}^2 \sim 10^{-12} \text{ m}^2 = 10^{-5} \text{ m/sec}$
- 1 m/sec = 10⁻⁷ m²

$$K = \frac{\rho g k}{\mu} = \frac{10^3 \times 10 \times k}{10^{-3}} = 10^7 \times k$$

 Permeability has very large variation → very important to characterize/determine its value Jaeger et al., 2007

Fluid flow in rock Fluid flow in fractured rock

- In many rock types (especially hard rocks), fractures are the main pathways of fluid flow – note that hard rocks are attractive for many applications.
- Understandings on fluid flow in fractures are essential for;
 - Underground structure (mines, tunnels and oil storages)
 - Geological repository of high level nuclear waste
 - Enhanced Geothermal System
 - Fractured Oil Reservoir

Fluid flow in rock Fluid flow in fractured rock

Aperture (e): size of opening measured normal to the fracture wall

Real rock fracture

- Hard to estimate Q due mainly to complex geometry

Idealized rock fracture

-Analytical solution exist to calculate Q and velocity profile

Fluid flow in rock Fluid flow in fractured rock - Cubic Law

Velocity (v) distribution between parallel plates

$$v = -\frac{1}{8\mu} \left(e^2 - 4y^2\right) \frac{d(\rho_w gh)}{dx}$$
$$= -\frac{1}{8\mu} \left(e^2 - 4y^2\right) \frac{dp}{dx}$$

- Navier-Stokes' equation for laminar flow.
- Most of geological application involves laminar flow (low Reynolds number, <2000, de Marsily, 1986)

$$\operatorname{Re} = \frac{\rho V d}{\mu}$$

p: density of fluid
V: mean velocity of fluid
D: diameter of the pipe
µ: viscosity

Fluid flow in rock Fluid flow in fractured rock - Cubic Law

 Cubic law: for a given gradient in head and unit width (w), flow rate through a fracture is proportional to the <u>cube</u> of the fracture aperture.

Fluid flow in rock Fluid flow in fractured rock - Equivalent permeability

Fluid flow in rock Fluid flow in fractured rock - Equivalent permeability

$$K = \frac{\rho_w g e^3}{12 \mu b}$$

A sandstone with K of 10^{-5} cm/s (which is 10^{-7} m/s $\sim 10^{-14}$ m² $\sim 10^{-2}$ Darcy ~ 10 mD) correspond to aperture 50µm in 1 m interval.

Influence of fracture aperture e and spacing b on hydraulic conductivity K in the direction of a set of smooth parallel fractures in a rock mass (Hoek et al., 2004)

Fluid flow in rock Governing equations

– Diffusion equation for fluid flow in porous media

$$\frac{\partial}{\partial x} \left(K \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial h}{\partial z} \right) + \dot{q} = S_s \frac{\partial h}{\partial t}$$
$$\frac{k}{\mu} \left[\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \right] = S \frac{\partial p}{\partial t}$$

– Heat diffusion equation

$$\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

Fluid flow in rock Implication for mechanics

- Effective stress
- Subsidence (or heaving)
- Stress dependent permeability

 Mechanical behavior of saturated reservoir will be controlled by the effective stress (Terzaghi, 1923).

$$\sigma' = \sigma - p \qquad \qquad \sigma'_{x} = \sigma_{x} - p \qquad \qquad \sigma'_{y} = \sigma_{y} - p \qquad \qquad \sigma'_{z} = \sigma_{z} - p$$
$$\tau'_{xy} = \tau_{xy} \qquad \qquad \tau'_{yz} = \tau_{yz} \qquad \qquad \tau'_{zx} = \tau_{zx}$$

– Principal assumptions:

 $\boldsymbol{\aleph}$ Interconnected pore system uniformly saturated with fluid

 \mathfrak{A} Total volume of pore system is small compared to the volume of the rock as a whole \mathfrak{A} We consider;

- $\ensuremath{\ensuremath{\mathnormal{ Pressure}}}$ In the pores
- \blacksquare The total stress acting on the rock externally

☑ The stresses acting on individual grains (in terms of statistically averaged uniform values)

- A_T : diameter (area) of grain
- p_p: pore pressure

$$\sigma' = \sigma - p_p$$

– Effective stress

$$\sigma' = \sigma - p$$

- Exact effective stress law (more general)

$$\sigma' = \sigma - \alpha p$$
$$\alpha = 1 - \frac{K}{K_s}$$

- α : Biot coefficient (0< α <1)
- K: bulk modulus of rock
- Ks: bulk modulus of individual grain
- For nearly solid rock with no interconnected pores (such as quartzite): $\alpha = 0$
- For highly porous rock (such as uncemented sands): α = 1

- Physically, this means that the solid framework carries the part σ of the total external stress σ while the remaining part α p is carried by the fluid.
- Two important mechanism explained by the concept of effective stress
 - Deformation due to the change of pore pressure subsidence and heaving of rock
 - Rock or fracture failure due to the increased pore pressure

• Increase of pore pressure induce failure of intact rock

Fluid flow in rock Implication for mechanics – stress dependent permeability

Permeability with stress (depth)

Rutqvist, J., O. Stephansson. The Role of Hydromechanical Coupling in Fractured Rock Engineering. Hydrogeology Journal 11(1) 2003: 7-40.

Fluid flow in rock Implication for mechanics – subsidence(or heaving)

 Reservoir compaction and associated surface subsidence – best-known example of geomechanical effect in reservoir scale

Fig. 12.1. Compaction and subsidence.

Fluid flow in rock Implication for mechanics – subsidence(or heaving)

- Most reservoir will experience some degree of subsidence.
- For a considerable degree of subsidence;
 - Reservoir pressure drop must be significant (pressure maintenance such as injection may counteract compaction)
 - The reservoir must be highly compressible → More important in soft rock.
 - The reservoir must have a considerable thickness
 - No shielding by the overburden rock

Fluid flow in rock Implication for mechanics – subsidence(or heaving)

- Uniaxial compaction model
- Compaction coefficient or uniaxial compressibility, Cm;

$$\frac{\Delta h}{h} = -C_m \alpha \Delta p = -\frac{1}{E} \frac{(1+\nu)(1-2\nu)}{1-\nu} \alpha \Delta p$$

Heat transfer in rock Introduction

- Heat transfer is thermal energy in transit due to a temperature difference 열전달은 열에너지가 온도차에 의해 이동하는 현상
- Relevance to Energy Resources and Geoenvironmental Engineering
 - Geothermal Energy (100 ~ >300°C)
 - Deep Drilling (25 °C /km)
 - Geological disposal of nuclear waste (up to 100°C)
 - LNG underground storage cavern (< -162°C)

Heat transfer in rock Introduction

SEOUL NATIONAL UNIVERSITY

Min & Stephansson, 2009

Incropera, 2007

Heat Introd	transfer in rock duction
Water Peopl Let the heat tran	 Heat Heat Transfer Medium Water be analogous to heat, and let the people be analogous to the sfer medium. Then:
Case 1	The hose directs water from (W) to (B) independently of the med- ium. This is analogous to thermal radiation in a vacuum or in most gases.
Case 2	In the bucket brigade, water goes from (W) to (B) through the medium. This is analogous to conduction.
Case 3	A single runner, representing the medium, carries water from (W) to (B) . This is analogous to <i>convection</i> .

Lienhard JH, 2008, A Heat Transfer Textbook

- Geothermal Gradient: the rate at which earth increases with depth, typically: 25 °C/km
- Two mechanism:
 - The interior is hot (the center is ~6000°C);
 - Decay of long-lived radioactive isotopes: জ্বTh (Thorium 232), U (Uranium 238), K (potassium 40).

a Concentrated in upper crystal rock.

Account for about 80% of the surface heat flow

- Surface heat flow
 - Global means: 87 mW/m² (Pollack et al., 1993), In boundaries between plates: 300 mW/m²


```
http://geothermal.marin.org
```


Heat transfer in rock Constitutive Equation - Heat conduction

- Fourier's Law
 - The heat flux, q'' (W/m²) resulting from thermal conduction is proportional to the magnitude of the temperature gradient and opposite to it in sign.
 - $q_x'' = -k\frac{dT}{dx} \qquad \qquad \frac{dT}{dx} = \frac{T_2 T_1}{L}$
 - q": heat flux (W/m²), rate of heat transfer per unit area (in the x direction, perpendicular to the direction of transfer)
 - k: thermal conductivity (W/m·K)
 - q: heat rate (W): $q = q'' \cdot A$

Heat transfer in rock Thermal Properties - Thermal conductivity

Typical values

FIGURE 2.4 Range of thermal conductivity for various states of matter at normal temperatures and pressure.

 Specific heat (capacity): the measure of the heat energy required to increase the temperature of a unit mass of a substance by a 1°C – ability to store thermal energy.

$$Q = mc_p \Delta T$$

- Q: heat (J)
- m: mass (kg)
- c_p : specific heat capacity (J/kg·K)
- ΔT : temperature difference
- Volumetric heat capacity =
 - Defined on a volume ρc_p unit: $(J / m^3 \cdot K)$

• Thermal diffusivity: the ratio of thermal conductivity to the volumetric heat capacity

$$\alpha = \frac{k}{\rho c_p}$$

- Materials of large α will respond quickly to changes in their thermal environment, while materials of small α will respond more sluggishly, taking longer to reach equilibrium.
- e.g., granite from Forsmark, Sweden,

𝔅k = 3.58 W/mK, ρ: 2600 kg/m³, cp: 796 (J/kg·K) → α = 1.7 x 10⁻⁶ m²/sec

Heat transfer in rock Thermal conductivity measurement

- Two groups of methods (Beardsmore & Cull, 2001)
 - Steady-state method
 - ন্ধ Divided-bar apparatus
 - Transient method
 - ন্ধNeedle probe

Heat transfer in rock Thermal conductivity measurement - Steady State Method

- Use a 'divided-bar apparatus'
- ^{gh k} Measure the 'k' directly
 - There are two types of samples: two standard conductivity samples and a sample with unknown k.
 - Heat rate is measured from the temperature measurement of known samples.
 - Takes long time to achieve thermal equilibrium
 - More accurate than 'transient method'
 - Rock sample in discs or cylindrical shape with 2-4 cm in diameter
 - Top and bottom sections of the bar maintained at constant but different temperatures (warm end at the top! Why?).

Figure 4.6. A typical divided-bar apparatus.

- Three assumptions;
 - Heat conduction along the bar is assumed to be 100% efficient

 no loss of heat through the side
 - Temperature drop across the brass section is negligible compared with the temperature drop in sample.

ন্ধ Thermal resistance/Area of brass: $10^{-4} \text{ m}^2\text{K/W}$, sample $10^{-2} \text{ m}^2\text{K/W}$

 Two standard conductivity discs must be identical in thickness and thermal conductivity $\Delta x_s, k_s = \text{thickness}(\mathbf{m}), \text{ thermal conductivity of sample}$ $\Delta x_p, k_p = \text{thickness}(\mathbf{m}), \text{ thermal conductivity of polycarbonate}$ q'' = heat flux along barHot (~40°c) water low conductivity polycarbonate, λ_p

$$q'' = q''_{\text{top polycarbonate}} = q''_{\text{sample}} = q''_{\text{bottom polycarbonate}}$$
$$q'' = k_p \frac{\Delta T_1}{\Delta x_p} = k_s \frac{\Delta T_s}{\Delta x_s} = k_p \frac{\Delta T_2}{\Delta x_p}$$

To help compensate for side loss of heat, heat flux across the top and bottom polycarbonate discs is averaged.

 $\Delta T_1 = T_A - T_B$ = temperature drop across the top polycarbonate

 $\Delta T_2 = T_C - T_D$ = temperature drop across the bottom polycarbonate

$$0.5 \times k_p \frac{\Delta T_1 + \Delta T_2}{\Delta x_p} = k_s \frac{\Delta T_s}{\Delta x_s}$$

Finally, thermal conductivity can be calculated.

 $k_s = \frac{\Delta T_1 + \Delta T_2}{\Delta T_s} \Delta x_s \frac{k_p}{2\Delta x_p}$

 $\Delta T_s = T_B - T_C$ = temperature drop across the sample

smperature measurement po

We assume thermal resistance at the contacts between the bar and the sample is negligible. Usually, experiment with known sample is involved but it is omitted in this equation for simplicity

pressure

Heat transfer in rock Thermal conductivity measurement - Steady State Method

Single needle probe (line source) Beardsmore and Cull, 2001

Dual-needle probe

in situ measurement
 "Needle probe method" is the best known method.

- Less accurate than 'steady state' method
- Devices can vary in shape and position of heat source in relation to the temperature measurement point

 k can be deducted from the rate at which its T changed in response to an applied heat source.

Suitable for poorly consolidated sediment or

6

Heat transfer in rock Thermal conductivity measurement - Transient Method

- 5.5 5 4.5 In (t) 4 3.5 3 2.5 2 L 21 21.5 22 22.5 23 Temperature (°C)
- With a line source of heat and a temperature sensor packed closely,

 $k = (Q_l / 4\pi) (\partial \ln(t) / \partial T)$

Find a linearity and obtain k

 $P = V \times I = 5 \times 0.25 = 1.25W$ Q=P/0.1(cm)=12.5W/m Gradient between 60 & 200 sec is ~3.449 $K = 12.5/4\pi \times 3.449 = 3.43 W/mK$

Heat Transfer in rock Governing equations

– Diffusion equation for fluid flow in porous media

$$\frac{\partial}{\partial x} \left(K \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial h}{\partial z} \right) + \dot{q} = S_s \frac{\partial h}{\partial t}$$
$$\frac{k}{\mu} \left[\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \right] = S \frac{\partial p}{\partial t}$$

– Heat diffusion equation

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

Heat transfer in rock Implication to mechanical behavior

• Linear thermal expansion coefficient (unit: /K)

$$\frac{\Delta l}{l} = \alpha \left(T - T_0 \right)$$

- Thermal stress ← thermal expansion + mechanical restraint
 - Thermal stress in 1D

$$\sigma_{T} = \alpha E \left(T - T_{0} \right)$$

Thermal stress when a rock is completely (in all directions) restrained

$$\sigma_T = 3\alpha K (T - T_0) = \frac{E}{1 - 2\nu} \alpha (T - T_0)$$