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Outline

• Introduction to Data Separation 

• Data Separation Techniques for NAND flash

– 2-Queue Based Approach

– HASH Based Approach

– Program Context Approach
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Classification of Data

• Key factors in classifying data 

– Frequency

• More frequently accessed data are likely to be accessed 
again in near future

– Recency (i.e., closeness to the present)

• Many access patterns in workloads exhibit high 
temporal localities

• Recently accessed data are more likely to be accessed 
again in near future
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Data Separation in Computer

• Data Cache
– Caching hot data in the memory space in advance, we can 

significantly improve system performance

• Sensor Network using FlashDB
– In FlashDB, the B-tree node can be stored either in read-

optimized mode or in write-optimized mode, whose decision 
can be easily made on the basis of a hot data identification 
algorithm

• Hard Disk Drive
– Determine hot blocks and cluster them together so that they 

can be accessed more efficiently with less physical arm 
movement

• Hot data identification has a big potential to be exploited 
by many other applications

Data Separation Techniques (Jihong 
Kim/SNU)

4



Data Separation in NAND

• Garbage collection 

– Reduce garbage collection cost by collecting and 
storing hot data to the same block

• Wear leveling 

– Improve flash reliability by allocating hot data to 
the flash blocks with low erase count
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Hot Data Identifier in FTL
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Efficient Hot Data Identification

• Effective capture of recency information as 
well as frequency information

• Small Memory Consumption

– Need to store hotness information

– Limited SRAM size for FTL

• Low Computational Overhead

– It has to be triggered whenever every write 
request is issued
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2-Level LRU

• Maintains hot list and candidate list
– Operate under LRU
– Save memory space (i.e. sampling-based approach)

• Performance is sensitive to the sizes of both lists
• High computational overhead
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A Multi-Hash-Function Approach

• A Multi-Hash-Function Framework

– Identify each data request using hash value

• Identify hot data in a constant time

– Just access hash table without search

• Reduce the required memory space

– A lot of data requests share a hotness information 
entry of hash tables
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A Multi-Hash-Function Framework

• Component
– K independent hash functions

– M-entry hash table

– C-bit counters

• Operation
– Status Update

• Updating of the status of an LBA

• Storing frequency information

– Hotness Checkup
• The verification of whether an LBA is for hot 

data

– Decay
• Decaying of all counters

• Storing recency information
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Status Update (Counter Update)

• A write is issued to the FTL

• The corresponding LBA y is hashed simultaneously by K given hash 
functions.

• Each counter corresponding to the K hashed values (in the hash table) is 
incremented by one to reflect the fact that the LBA is written again
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Hotness Checkup

• An LBA is to be verified as a location for hot data.

• Check if the H most significant bits of every counter of the K hashed 
values contain a non-zero bit value.
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Decay

• For every given number of sectors have 
been written, called the “decay period” of 
the write numbers, the values of all 
counters are divided by 2 in terms of a right 
shifting of their bits.
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An Implementation Strategy

• In order to reduce the chance of false identification, only 
counters of the K hashed values that have the minimum value 
are increased

14
Data Separation Techniques (Jihong 

Kim/SNU)

z

f1(z)

f2(z)

f3(z)

f4(z)

5

3

7

8

Basic

+1

+1

+1

+1

6

4

8

9

Enhanced

minimum!



Performance Evaluation

• Metrics

– Impacts of Hash-Table Sizes

– Runtime Overheads

• Experiment Setup

– Number of hash functions: 2

– Counter size: 4 bits

– Flash memory size: 512 MB

– Hot-data threshold: 4
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Impacts of Hash-Table Sizes (1)

• The locality of data access (decay period: 5117 
writes)
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Impacts of Hash-Table Sizes (2)

• Ratio of false hot data identification for various hash table sizes
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Runtime Overheads

Unit: CPU cycles

Multi-Hash-Function
Framework (2KB)

Two-Level LRU List*
(512/1024)

Average 
Deviation 
Standard

Average 
Deviation 
Standard

Checkup 2431.358 97.98981 4126.353 2328.367

Status Update 1537.848 45.09809 12301.75 11453.72

Decay 3565 90.7671 N/A N/A
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Problem of Hash-Based Approach

• Accurately captures frequency information

– By maintaining counters

• Cannot appropriately capture recency
information due to its exponential batch decay 
process (i.e., to decreases all counter values 
by a half at a time)
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Multiple BF-based scheme

• Overview
– Multiple bloom filters 

• To capture finer‐grained recency

• To reduce memory space and overheads

– Multiple hash functions 
• To reduce false identification

• Frequency 
– Does not maintain access counters

• Recency
– Different recency coverage

20
Data Separation Techniques (Jihong 

Kim/SNU)



Bloom Filter            (from 

Wikipedia)

• A space-efficient probabilistic data structure 
proposed by Bloom in 1970

• Used to test if 𝛼 ∈ 𝑆

• Allows False Positives, but no False Negatives

– “possibly in 𝑆” or “definitely not in 𝑆”
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Basic Operations
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Capturing Frequency

• No access counters

– Needs a different mechanism

• For frequency capturing 

– Chooses one of BFs in a round-robin manner 

– If the chosen BF has already recorded the LBA

• Records to  another BF available. 

– Shortcut decision

• If all BFs store the LBA information 

– Simply  define the data as hot 

➔ The Number of BFs can provide  frequency information
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Capturing Recency

• After a decay period (T) 
– Choose one of V-BFs in a round-robin manner

– Erase all information (i.e., reset all bits to 0)

➔ Each BF retains a different recency coverage.
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Recency Coverage

• For finer-grained recency

– Each BF covers a different recency coverage

• The reset BF (BFv): Shortest (latest) coverage 

• The next BF (BF1): Longest (oldest) coverage 

– Each BF has a different recency value

25
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Example: Hot/Cold Checkup Based on Recency Weight

• Assign a different recency weight to each BF

– Recency value is combined with frequency value for hot data 
decision.
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Performance Evaluation

• Evaluation setup 

– Four schemes 

• Multiple bloom filter scheme (refer to as MBF)

• Multiple hash function scheme (refer to as MHF) 

– Four realistic workloads 

• Financial1, MSR (prxy volume 0), Distilled, and Real SSD

27
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Performance Evaluation

• Performance metrics 
– False identification rate

• Try to compare each identification result of each 
scheme whenever a request is issued

–Memory consumption

–Runtime overhead 
• Measure CPU clock cycles per operation

28
Data Separation Techniques (Jihong 

Kim/SNU)



False Identification Rate
(MBF vs. MHF)
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Memory Impact and Computational 
Overheads
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Problems of Hot/cold Separator

– Problem 1: Wide variations on future update times

– Problem 2: If there is no clear temporal locality, hot/cold separator does not 
work

31
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ORA: Oracle Predictor on Future Update 
Time

• Perfect knowledge on future update times of 
data

• Can sort data based on the future update times 
of data 

• An FTL with ORA can gather data with similar 
update times into the same block 

• Can be used as lower bound of GC

32
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Motivation Example
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Hot/cold Separator vs. ORA

• ORA can reduce GC overhead significantly

34

78% 76%

Update time is a more important factor in data 
separation technique than frequency of updates
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Basic Idea

• Program Context-Aware Data Separation Technique

– Predicts update times of data based on program 
behavior

– A program behaves similarly when the same 
program context is executed

– Indentifies what program contexts repeatedly 
generate data with similar update times

35
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Overview of Program Context

• A  program context represents an execution path which generates write 
requests

• Identification
• Each program context is identified by summing program counter values of each 

execution path of function calls
Reference
Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, “Program Counter Based Pattern Classification in Buffer Caching ,”  OSDI, 

2004
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Program Context–Based Update Time Prediction

• Indirectly predict future update times of data by exploiting program 
contexts 
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Separating Data using Program 
Contexts
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Experimental Environments (1)

• Used a trace-driven NAND flash memory simulator
– Parameters

• Techniques for comparison
– HASH: Hash-based hot/cold separation technique 
– ORA: Oracle predictor on future update times of data
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Flash Translation Layer

Mapping Scheme Page-level mapping

GC Triggering 5%

Flash memory

Read  Time (1 page) 25usec

Write Time (1 page) 200usec

Erase Time (1 block) 1200usec
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Experimental Environments (2)

• Benchmarks characteristics

40

Benchmarks Scenario The number of writes (unit: page) The number of updates (unit: page)

cscope Linux source code examination 17575 15398

gcc Building Linux Kernel 10394 3840

viewperf Performance measurement 7003 119

tpc-h Accesses to database 23522 20910

tpc-r Accesses to database 21897 18803

multi1 cscope + gcc 28400 19428

multi2 cscope + gcc + viewperf 35719 20106
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Result: Total Execution Time of GC
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Total execution times for copies 
(READ+WRITE) are reduced

Random update (Low 
locality)

Reduces the total execution time of garbage collection on 
average 58% over HASH.Data Separation Techniques (Jihong 
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Reference

• J. Hsieh et al, "Efficient on-line identification of hot data for 
flash-memory management," SAC 2005.

• D. Park et al., “Hot Data Identification for Flash-based Storage 
Systems Using Multiple Bloom Filters”, MSST 2011

• K. Ha et al., “A Program Context-Aware Data Separation 
Technique for Reducing Garbage Collection Overhead in 
NAND Flash Memory,” SNAPI 2011

Data Separation Techniques (Jihong 
Kim/SNU)

42



Lifetime Issues & Techniques

Jihong Kim

Dept. of CSE, SNU



Outline

• Introduction to lifetime problem in SSDs

• SSD Lifetime Extension Techniques

– Compression Technique

– Deduplication Technique: CAFTL

– Dynamic Throttling: READY
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Trend of NAND Device Technologies

3

SLC

(2000~2012 : ISSCC & VLSI)
+100% 

/ 2 years

C
a
p
a
ci

ty

2002 2004 2006 2008 2010 2012 20142000
Year

MLC

TLC

NAND capacity is continuously increased, 

and NAND flash-based storages are widely adopted.



Trend of NAND Device Technologies
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Lifetime Problem of NAND-based Storages
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Workload-Reduction Methods 
for Extending SSD Lifetime

• Reduce amount of written data

– Compression technique

• Compressed data are stored

– Deduplication technique

• Prevent redundant data from being stored in SSDs

• Throttling SSD Performance

– Dynamic Throttling

• Guarantee the lifetime of SSD by throttling write traffic

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Compression Technique in SSD

• Reduces the amount of data written
• Improve effectively both the write speed and the reliability of a SSD
• Case Study: BlueZip
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Design of BlueZIP

• BlueZIP

– Based on the LZRW3 algorithm for compression/decompression

– Has a local memory which is used as a hash table for compression

– Compresses data and writes the compressed data into the BRAM buffer

– The flash controller reads the compressed data from the BRAM buffer
and writes them into the flash board

• FTL

– Gives BlueZIP multiple pages to compress and write them 

– Accepts return value from BlueZip, which is the size of the compressed data

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Primary Performance Evaluation

• Reduce the write times by 15% on average
• Reduce the amount of written data by 26% on average

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Deduplication Technique
- CAFTL



Data Redundancy in Storage

• Duplicate data rate – up to 85.9% over 15 disks in 
CSE/OSU

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Content-Aware Flash Translation Layer 
(CAFTL)

• Key Idea

– Eliminating duplicate writes

– Coalescing redundant data

• Potential benefits

– Removing duplicate writes into flash memory -> 
reducing “write/day”

– Extending available flash memory space -> 
increasing available “flash space”

Lifetime     = 
Endurance  x  Capacity 

Write/day x  Efficiency of FTL

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Overview of CAFTL

• In-line deduplication

– Proactively examines incoming data

– Cancels duplicate writes before committing a 
request

– Best-effort solution

• Out-of-line deduplication

– Periodically scans flash memory 

– Coalesces redundant data out of line

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Architecture of CAFTL

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Fingerprint Store Challenges

• Fingerprint store
– Maintains fingerprints in memory

• Challenges
– Memory overhead (25 bytes each)

– Fingerprint store lookup overhead

• Observations and indications
– Skewed duplication fingerprint distribution – only 10~20%

• Most fingerprints are not duplicate -> waste of memory space

• Most lookups cannot find a match -> waste of lookup latencies
Store only the most likely-to-be-duplicate fingerprints in memory

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Challenges of Existing Mapping Table

• When a physical page is relocated 
to another place, all the logical 
pages mapped to this page

should be updated quickly

• For update request, the physical 
page cannot be invalidated if the 
page is shared

– Must track the number of referencing 
logical pages

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Two-Level Indirect Mapping

• Virtual Block Address (VBA) is 
introduced
– Additional indirect mapping level
– Represents a set of LBAs mapped to 

same PBA
– Each entry consists of 

{PBA, reference}

• Significantly simplifies reverse 
updates

• Secondary mapping table can be 
small
– Since most logical pages are unique

• Incurs minimal additional lookup 
overheadLifetime Issues & Techniques (Jihong 

Kim/SNU)
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Sampling for Hashing

• Most writes are unique -> most hashing 
operations turn out useless eventually

• Intuition
– If a page in a write is a duplicate page, the other pages 

are likely to be duplicate too

• Sampling
– Select one page in a write request as a sample
– If the sample page is duplicate, hash and examine the 

other pages
– Otherwise, stop fingerprinting the whole request at 

earliest time

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Selecting Sample Pages

• Content-based sampling
– Selecting/comparing the first four bytes (i.e. sample bytes) in each 

page
• Concatenating the four bytes into a 32-bit numeric value

– The page with the largest value is the sample page

Lifetime Issues & Techniques (Jihong 
Kim/SNU)

20



Out-of-line Deduplication

• Periodically launched during device idle time 

• Uses external merge sort to identify duplicate 
fingerprint

– Part of the meta data page array is loaded into 
memory and sorted and temporarily stored in 
flash

• CAFTL reserves dedicated number of flash 
pages to store metadata (e.g. LBA and 
fingerprint)

– For 32GB SSD with 4KB pages, it needs only 0.6% 
of flash space

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Example of Out-of-line 
Deduplication

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Performance Evaluation

• SSD simulator

– Microsoft Research SSD extension for Disksim
simulator

– Simulator augmented with CAFTL design and on-
device buffer

• SSD configurations

– Default configuration numbers

– Estimated latencies of hashing code on ARM simulator

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Workloads and Trace Collection

• Desktop (d1, d2)
– Typical office workloads
– Irregular idle intervals and small reads/writes

• Hadoop (h1-h7)
– TPC-H data warehouse queries were executed on a 

Hadoop distributed system platform
– Intensive large write of temp data

• Transaction (t1, t2)
– TPC-C workloads were executed for transaction 

processing
– Intensive write operations

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Effectiveness of Deduplication

• Removing duplicate writes

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Effectiveness of Deduplication

• Extending flash space
– Space saving rate : (n-m) / n

• n–total # of occupied blocks of flash memory w/o CAFTL
• m–total # of occupied blocks of flash memory w/ CAFTL

Smaller workloads

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Dynamic Throttling- READY



Unpredictable Lifetime

• The lifetime of SSDs strongly fluctuates 
depending on the write intensiveness of a given 
workload

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Lifetime Guarantee Using Static Throttling

• To guarantee the SSD lifetime, some SSD vendors 
start to adopt a static throttling technique

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Underutilize the Endurance of SSDs

• Self Recovery Effect of Memory Cell
– Repetitive P/E cycles cause damage to memory cells
– The damage of cells can be partially recovered during the idle time between 

two consecutive P/E cycles

Lifetime Issues & Techniques (Jihong 
Kim/SNU)
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Effective P/E Cycles

• The effective number of P/E cycles is much higher than 
P/E cycles denoted by datasheets

• Example: 20nm 2-bit MLC flash memory with 3K P/E 
cycles
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• The endurance can be improved if the self-recovery is exploited in throttling 
write traffic…



REcovery-Aware DYnamic throttling (READY)

• Guarantee lifetime of SSDs by

– Throttling SSD performance depending on the 
write demands of a workload 

– Exploiting the self-recovery effect of memory cells, 
which improves the effective P/E cycles
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Benefit of READY
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Design Goals of READY

• Design goal 1: minimize average response times
– Determine a throttling delay as low as possible so that the 

SSD is completely worn out at the required lifetime

• Design goal 2: minimize response time variations
– Distribute a throttling delay as evenly as possible over 

every write request
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Overall Architecture of READY
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Write Demand Predictor

• Write demand predictor exploits cyclical behaviors of
enterprise workloads to predict future write demands
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Throttling Delay Estimator

• Decide a throttling delay so that the data written 
during the next epoch is properly throttled

• Calculate a throttling delay by using the predicted 
write demand and the remaining lifetime

Lifetime Issues & Techniques (Jihong 
Kim/SNU)

37

… …

present

(i-1)th epoch
Time

W
ri

te
 d

em
an

d

i-th epoch (i+1)th epoch

Past Future

Future write demand

i-th epoch capacity =
Remaining SSD lifetime

# of remaining epochs



Change Throttling Delay

• Case 1: predicted write demand = epoch capacity
– Don’t change a throttling delay

• Case 2: predicted write demand > epoch capacity
– Increase a throttling delay to reduce the number of data 

written

• Case 3: predicted write demand < epoch capacity
– Decrease a throttling delay to increase the number of data 

written

Lifetime Issues & Techniques (Jihong 
Kim/SNU)

38



Epoch-Capacity Regulator

• Distribute a throttling delay to every page write evenly
– This is beneficial in minimizing response time variations
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Experimental Setting

• Use the DiskSim-based SSD simulator for evaluations
– 20 nm 2-bit MLC NAND flash memory with 3K P/E cycles
– The target SSD lifetime is set to 5 years

• Evaluated SSD configurations

• Benchmarks
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NT No Throttling

ST Static Throttling

DT Dynamic Throttling

READY Recovery-Aware Dynamic Throttling

Trace Duration
Data written 

per hour (GB)
WAF

SSD capacity 
(GB)

Proxy 1 week 4.94 1.62 32

Exchange 1 day 20.61 2.24 128

map 1 day 23.82 1.68 128



Lifetime Analysis

• NT cannot guarantee the required SSD lifetime
• READY achieves the lifetime close to 5 years
• ST and DT exhibit the lifetime much longer than 5 years
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Data Written to SSD during 5 years

• ST and DT uselessly throttles write performance even 
through they can write more data to the SSD

• READY exhibits 10% higher endurance than NT 
because of the increased recovery time
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Performance Analysis

• NT exhibits the best performance among all the configurations
• READY performs better than ST and DT while guaranteeing the 

required lifetime
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