
Data Separation Techniques

Jihong Kim

Dept. of CSE, SNU

Outline

• Introduction to Data Separation

• Data Separation Techniques for NAND flash

– 2-Queue Based Approach

– HASH Based Approach

– Program Context Approach

Data Separation Techniques (Jihong
Kim/SNU)

2

Classification of Data

• Key factors in classifying data

– Frequency

• More frequently accessed data are likely to be accessed
again in near future

– Recency (i.e., closeness to the present)

• Many access patterns in workloads exhibit high
temporal localities

• Recently accessed data are more likely to be accessed
again in near future

Data Separation Techniques (Jihong
Kim/SNU)

3

Data Separation in Computer

• Data Cache
– Caching hot data in the memory space in advance, we can

significantly improve system performance

• Sensor Network using FlashDB
– In FlashDB, the B-tree node can be stored either in read-

optimized mode or in write-optimized mode, whose decision
can be easily made on the basis of a hot data identification
algorithm

• Hard Disk Drive
– Determine hot blocks and cluster them together so that they

can be accessed more efficiently with less physical arm
movement

• Hot data identification has a big potential to be exploited
by many other applications

Data Separation Techniques (Jihong
Kim/SNU)

4

Data Separation in NAND

• Garbage collection

– Reduce garbage collection cost by collecting and
storing hot data to the same block

• Wear leveling

– Improve flash reliability by allocating hot data to
the flash blocks with low erase count

Data Separation Techniques (Jihong
Kim/SNU)

5

Hot Data Identifier in FTL

Data Separation Techniques (Jihong
Kim/SNU)

6

Efficient Hot Data Identification

• Effective capture of recency information as
well as frequency information

• Small Memory Consumption

– Need to store hotness information

– Limited SRAM size for FTL

• Low Computational Overhead

– It has to be triggered whenever every write
request is issued

Data Separation Techniques (Jihong
Kim/SNU)

7

2-Level LRU

• Maintains hot list and candidate list
– Operate under LRU
– Save memory space (i.e. sampling-based approach)

• Performance is sensitive to the sizes of both lists
• High computational overhead

Data Separation Techniques (Jihong
Kim/SNU)

8

A Multi-Hash-Function Approach

• A Multi-Hash-Function Framework

– Identify each data request using hash value

• Identify hot data in a constant time

– Just access hash table without search

• Reduce the required memory space

– A lot of data requests share a hotness information
entry of hash tables

Data Separation Techniques (Jihong
Kim/SNU)

9

A Multi-Hash-Function Framework

• Component
– K independent hash functions

– M-entry hash table

– C-bit counters

• Operation
– Status Update

• Updating of the status of an LBA

• Storing frequency information

– Hotness Checkup
• The verification of whether an LBA is for hot

data

– Decay
• Decaying of all counters

• Storing recency information

10
Data Separation Techniques (Jihong

Kim/SNU)

Status Update (Counter Update)

• A write is issued to the FTL

• The corresponding LBA y is hashed simultaneously by K given hash
functions.

• Each counter corresponding to the K hashed values (in the hash table) is
incremented by one to reflect the fact that the LBA is written again

11
Data Separation Techniques (Jihong

Kim/SNU)

1 0 1 0

0 0 1 0

1 0 0 1

1 1 0 0

z

f1(z)

f2(z)

f3(z)

f4(z)

Logical Block
Addr.

1

1

1 0

1

+1

+1

+1

+1

Hash
Function

Increase
Counter

(K=4, H = 2)

Hotness Checkup

• An LBA is to be verified as a location for hot data.

• Check if the H most significant bits of every counter of the K hashed
values contain a non-zero bit value.

12
Data Separation Techniques (Jihong

Kim/SNU)

1 0 1 1

0 1 1 1

0 0 1 1

1 0 0 0

1 0 1 0

1 1 1 1

1 1 0 1

y

z

f1(z)

f2(z)

f3(z)

f4(z)

Logical
Block Addr.

H most significant Bits

1 0

0 1

0 0

1 0

1 0

1 1

1 0

Contain 1

Contain only 0

Contain 1

Contain 1

COLD

HOT

Contain 1

Contain 1

Contain 1

Contain 1

(K=4, H = 2)

Decay

• For every given number of sectors have
been written, called the “decay period” of
the write numbers, the values of all
counters are divided by 2 in terms of a right
shifting of their bits.

13
Data Separation Techniques (Jihong

Kim/SNU)

1 0 1 1

0 0 1 1

1 0 1 0

1 1 0 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 0 1

0 0 1

1 0 1

1 1 0

(K=4, H = 2)

An Implementation Strategy

• In order to reduce the chance of false identification, only
counters of the K hashed values that have the minimum value
are increased

14
Data Separation Techniques (Jihong

Kim/SNU)

z

f1(z)

f2(z)

f3(z)

f4(z)

5

3

7

8

Basic

+1

+1

+1

+1

6

4

8

9

Enhanced

minimum!

Performance Evaluation

• Metrics

– Impacts of Hash-Table Sizes

– Runtime Overheads

• Experiment Setup

– Number of hash functions: 2

– Counter size: 4 bits

– Flash memory size: 512 MB

– Hot-data threshold: 4

15
Data Separation Techniques (Jihong

Kim/SNU)

Impacts of Hash-Table Sizes (1)

• The locality of data access (decay period: 5117
writes)

16
Data Separation Techniques (Jihong

Kim/SNU)

Impacts of Hash-Table Sizes (2)

• Ratio of false hot data identification for various hash table sizes

17
Data Separation Techniques (Jihong

Kim/SNU)

Runtime Overheads

Unit: CPU cycles

Multi-Hash-Function
Framework (2KB)

Two-Level LRU List*
(512/1024)

Average
Deviation
Standard

Average
Deviation
Standard

Checkup 2431.358 97.98981 4126.353 2328.367

Status Update 1537.848 45.09809 12301.75 11453.72

Decay 3565 90.7671 N/A N/A

18
Data Separation Techniques (Jihong

Kim/SNU)

Problem of Hash-Based Approach

• Accurately captures frequency information

– By maintaining counters

• Cannot appropriately capture recency
information due to its exponential batch decay
process (i.e., to decreases all counter values
by a half at a time)

Data Separation Techniques (Jihong
Kim/SNU)

19

Multiple BF-based scheme

• Overview
– Multiple bloom filters

• To capture finer‐grained recency

• To reduce memory space and overheads

– Multiple hash functions
• To reduce false identification

• Frequency
– Does not maintain access counters

• Recency
– Different recency coverage

20
Data Separation Techniques (Jihong

Kim/SNU)

Bloom Filter (from

Wikipedia)

• A space-efficient probabilistic data structure
proposed by Bloom in 1970

• Used to test if 𝛼 ∈ 𝑆

• Allows False Positives, but no False Negatives

– “possibly in 𝑆” or “definitely not in 𝑆”

Data Separation Techniques (Jihong
Kim/SNU)

21

Basic Operations

22
Data Separation Techniques (Jihong

Kim/SNU)

Capturing Frequency

• No access counters

– Needs a different mechanism

• For frequency capturing

– Chooses one of BFs in a round-robin manner

– If the chosen BF has already recorded the LBA

• Records to another BF available.

– Shortcut decision

• If all BFs store the LBA information

– Simply define the data as hot

➔ The Number of BFs can provide frequency information

23
Data Separation Techniques (Jihong

Kim/SNU)

Capturing Recency

• After a decay period (T)
– Choose one of V-BFs in a round-robin manner

– Erase all information (i.e., reset all bits to 0)

➔ Each BF retains a different recency coverage.

24
Data Separation Techniques (Jihong

Kim/SNU)

Recency Coverage

• For finer-grained recency

– Each BF covers a different recency coverage

• The reset BF (BFv): Shortest (latest) coverage

• The next BF (BF1): Longest (oldest) coverage

– Each BF has a different recency value

25
Data Separation Techniques (Jihong

Kim/SNU)

Example: Hot/Cold Checkup Based on Recency Weight

• Assign a different recency weight to each BF

– Recency value is combined with frequency value for hot data
decision.

26
Data Separation Techniques (Jihong

Kim/SNU)

1

0

1

…

0

0

1

1

BF0

0

1

1

…

1

0

0

1

BF1

1

1

0

…

0

0

1

0

BF2

0

0

0

…

0

0

0

0

BF3

BF with valid data reset BF

H1

H2

LBA X

w/o a recency weight

Threshold value: 1.75

Frequency value of X = 1 + 0 + 1
= 2Frequency value of Y = 1 + 1 + 0
= 2

LBA Y

Both HOT!

with a recency weight

Frequency value of X = 0.5x1 + 1x0 + 1.5x1 =
2

Weight 0.5 1 1.5
Frequency value of Y = 0.5x1 +1x 1 + 0 = 1.5

Hot!

Cold!

Performance Evaluation

• Evaluation setup

– Four schemes

• Multiple bloom filter scheme (refer to as MBF)

• Multiple hash function scheme (refer to as MHF)

– Four realistic workloads

• Financial1, MSR (prxy volume 0), Distilled, and Real SSD

27
Data Separation Techniques (Jihong

Kim/SNU)

Performance Evaluation

• Performance metrics
– False identification rate

• Try to compare each identification result of each
scheme whenever a request is issued

–Memory consumption

–Runtime overhead
• Measure CPU clock cycles per operation

28
Data Separation Techniques (Jihong

Kim/SNU)

False Identification Rate
(MBF vs. MHF)

29
Data Separation Techniques (Jihong

Kim/SNU)

Memory Impact and Computational
Overheads

30
Data Separation Techniques (Jihong

Kim/SNU)

Problems of Hot/cold Separator

– Problem 1: Wide variations on future update times

– Problem 2: If there is no clear temporal locality, hot/cold separator does not
work

31

Hot block

Page 0

Page 1

Page 2

Page 3

Timeline

Program A Program B

Hot/cold Separator

Hot data may be
invalidated in different
times because of different
update localities

Data Separation Techniques (Jihong
Kim/SNU)

ORA: Oracle Predictor on Future Update
Time

• Perfect knowledge on future update times of
data

• Can sort data based on the future update times
of data

• An FTL with ORA can gather data with similar
update times into the same block

• Can be used as lower bound of GC

32
Data Separation Techniques (Jihong

Kim/SNU)

Motivation Example

33

R0 R1 R2 R3

R0

R1

R2

R3

Block0
(Hot block)

R4 R5 R6 R7

R4

R5

R6

R7

Block1
(Hot block)

R0(1)

R2(2)

R6(3)

R7(4)

Block0

R1(13)

R3(14)

R4(15)

R5(16)

Block1

Hot/cold Separator ORA

HOT
FTL with Hot-cold
Separator writes
according to the request
order if all requests are
hot

FTL with ORA gathers data
with similar update times

R0 is updated at
time 1
R1 is updated at
time 13

If a GC process was triggered at time 10,

4 copies + 2 erasures 1 erasure

1 13 2 14 15 16 3 4Update time

Data Separation Techniques (Jihong
Kim/SNU)

Hot/cold Separator vs. ORA

• ORA can reduce GC overhead significantly

34

78% 76%

Update time is a more important factor in data
separation technique than frequency of updates

Data Separation Techniques (Jihong
Kim/SNU)

Basic Idea

• Program Context-Aware Data Separation Technique

– Predicts update times of data based on program
behavior

– A program behaves similarly when the same
program context is executed

– Indentifies what program contexts repeatedly
generate data with similar update times

35
Data Separation Techniques (Jihong

Kim/SNU)

Overview of Program Context

• A program context represents an execution path which generates write
requests

• Identification
• Each program context is identified by summing program counter values of each

execution path of function calls
Reference
Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, “Program Counter Based Pattern Classification in Buffer Caching ,” OSDI,

2004
36

a()

b()

write()

Functions in
execution paths

main()

c()

d()

e()

f()

System call

PC1 PC2 PC3 PC4

g()

h()

PC : Program Context

Data Separation Techniques (Jihong
Kim/SNU)

Program Context–Based Update Time Prediction

• Indirectly predict future update times of data by exploiting program
contexts

37

a()

b()

System call

Program
Context

(PC)

Logical
Block

Address

PC1

Time

write()

c()

d()

e()

f()

PC2 PC3

a()

b()

PC1

c()

d()

e()

f()

PC2 PC3

PC1

PC2

g()

h()

PC4

PC3

PC4

g()

h()

PC4

a()

b()

PC1

c()

d()

e()

f()

PC2 PC3

Update

These data are updated in a similar period when PC1, PC2, and PC3 are
executed

Data Separation Techniques (Jihong
Kim/SNU)

Separating Data using Program
Contexts

38

Logical
Block

Address

Time

Program Context 1

Program Context 2

Program Context 3Sequential
Update

Separates these data based on
PCs

Simultaneously updated group 1 Simultaneously updated group 2

Block 0 Block 1 Block 2 Block 3

Data generated by Program Context 2 Data generated by Program Context 1
and Program Context 3

FTL with this data separator stores data based on simultaneously updated
group

Data Separation Techniques (Jihong
Kim/SNU)

Experimental Environments (1)

• Used a trace-driven NAND flash memory simulator
– Parameters

• Techniques for comparison
– HASH: Hash-based hot/cold separation technique
– ORA: Oracle predictor on future update times of data

39

Flash Translation Layer

Mapping Scheme Page-level mapping

GC Triggering 5%

Flash memory

Read Time (1 page) 25usec

Write Time (1 page) 200usec

Erase Time (1 block) 1200usec

Data Separation Techniques (Jihong
Kim/SNU)

Experimental Environments (2)

• Benchmarks characteristics

40

Benchmarks Scenario The number of writes (unit: page) The number of updates (unit: page)

cscope Linux source code examination 17575 15398

gcc Building Linux Kernel 10394 3840

viewperf Performance measurement 7003 119

tpc-h Accesses to database 23522 20910

tpc-r Accesses to database 21897 18803

multi1 cscope + gcc 28400 19428

multi2 cscope + gcc + viewperf 35719 20106

Data Separation Techniques (Jihong
Kim/SNU)

Result: Total Execution Time of GC

41

Total execution times for copies
(READ+WRITE) are reduced

Random update (Low
locality)

Reduces the total execution time of garbage collection on
average 58% over HASH.Data Separation Techniques (Jihong

Kim/SNU)

Reference

• J. Hsieh et al, "Efficient on-line identification of hot data for
flash-memory management," SAC 2005.

• D. Park et al., “Hot Data Identification for Flash-based Storage
Systems Using Multiple Bloom Filters”, MSST 2011

• K. Ha et al., “A Program Context-Aware Data Separation
Technique for Reducing Garbage Collection Overhead in
NAND Flash Memory,” SNAPI 2011

Data Separation Techniques (Jihong
Kim/SNU)

42

Lifetime Issues & Techniques

Jihong Kim

Dept. of CSE, SNU

Outline

• Introduction to lifetime problem in SSDs

• SSD Lifetime Extension Techniques

– Compression Technique

– Deduplication Technique: CAFTL

– Dynamic Throttling: READY

Lifetime Issues & Techniques (Jihong
Kim/SNU)

2

Trend of NAND Device Technologies

3

SLC

(2000~2012 : ISSCC & VLSI)
+100%

/ 2 years

C
a
p
a
ci

ty

2002 2004 2006 2008 2010 2012 20142000
Year

MLC

TLC

NAND capacity is continuously increased,

and NAND flash-based storages are widely adopted.

Trend of NAND Device Technologies

4

+100%

/ 2 years

2002 2004 2006 2008 2010 2012 20142000
Year

-35%

/ 2 years

Total amount of writes of NAND flash-based storages

does not increase as much as we expected.

Total amount of writes = Capacity × Endurance

To
ta

l
a
m

o
u
n
t

o
f
w

ri
te

s

Endurance

Lifetime Problem of NAND-based Storages

5

2002 2004 2006 2008 2010 2012 20142000
Year

Endurance

Decreasing lifetime is a main barrier for sustainable growth.

Total amount of writes

Li
fe

ti
m

e

Daily amount of data
Lifetime =

Daily workload × WAF

6

Lifetime ∝
Capacity× Endurance

Daily workload× WAF

Deduplication

Compression

Throttling

Optimization of

garbage collection

& wear leveling

Techniques for Improving Lifetime

Self-Healing SSDs

Dynamic erase voltage

and time scaling

Workload-Reduction Methods
for Extending SSD Lifetime

• Reduce amount of written data

– Compression technique

• Compressed data are stored

– Deduplication technique

• Prevent redundant data from being stored in SSDs

• Throttling SSD Performance

– Dynamic Throttling

• Guarantee the lifetime of SSD by throttling write traffic

Lifetime Issues & Techniques (Jihong
Kim/SNU)

7

PPC405 DRAM

PLB

Local Buffer

PLB Controller

Register

Interrupt

Bus
Controller

Flash Bus4x – One per Bus

Queue
Controller

BRAM Buffer

Shift
Reg

Shift
Reg

Local
Memory

Local
Memory

DecompressorCompressor

Compressor Module

Compression Technique in SSD

• Reduces the amount of data written
• Improve effectively both the write speed and the reliability of a SSD
• Case Study: BlueZip

Lifetime Issues & Techniques (Jihong
Kim/SNU)

8

Design of BlueZIP

• BlueZIP

– Based on the LZRW3 algorithm for compression/decompression

– Has a local memory which is used as a hash table for compression

– Compresses data and writes the compressed data into the BRAM buffer

– The flash controller reads the compressed data from the BRAM buffer
and writes them into the flash board

• FTL

– Gives BlueZIP multiple pages to compress and write them

– Accepts return value from BlueZip, which is the size of the compressed data

Lifetime Issues & Techniques (Jihong
Kim/SNU)

9

Flash Memory
BlueZIP Module

Compressor

BRAM BufferPages

Primary Performance Evaluation

• Reduce the write times by 15% on average
• Reduce the amount of written data by 26% on average

Lifetime Issues & Techniques (Jihong
Kim/SNU)

10

Deduplication Technique
- CAFTL

Data Redundancy in Storage

• Duplicate data rate – up to 85.9% over 15 disks in
CSE/OSU

Lifetime Issues & Techniques (Jihong
Kim/SNU)

12

Content-Aware Flash Translation Layer
(CAFTL)

• Key Idea

– Eliminating duplicate writes

– Coalescing redundant data

• Potential benefits

– Removing duplicate writes into flash memory ->
reducing “write/day”

– Extending available flash memory space ->
increasing available “flash space”

Lifetime =
Endurance x Capacity

Write/day x Efficiency of FTL

Lifetime Issues & Techniques (Jihong
Kim/SNU)

13

Overview of CAFTL

• In-line deduplication

– Proactively examines incoming data

– Cancels duplicate writes before committing a
request

– Best-effort solution

• Out-of-line deduplication

– Periodically scans flash memory

– Coalesces redundant data out of line

Lifetime Issues & Techniques (Jihong
Kim/SNU)

14

Architecture of CAFTL

Lifetime Issues & Techniques (Jihong
Kim/SNU)

15

Fingerprint Store Challenges

• Fingerprint store
– Maintains fingerprints in memory

• Challenges
– Memory overhead (25 bytes each)

– Fingerprint store lookup overhead

• Observations and indications
– Skewed duplication fingerprint distribution – only 10~20%

• Most fingerprints are not duplicate -> waste of memory space

• Most lookups cannot find a match -> waste of lookup latencies
Store only the most likely-to-be-duplicate fingerprints in memory

Lifetime Issues & Techniques (Jihong
Kim/SNU)

16

Challenges of Existing Mapping Table

• When a physical page is relocated
to another place, all the logical
pages mapped to this page

should be updated quickly

• For update request, the physical
page cannot be invalidated if the
page is shared

– Must track the number of referencing
logical pages

Lifetime Issues & Techniques (Jihong
Kim/SNU)

17

Two-Level Indirect Mapping

• Virtual Block Address (VBA) is
introduced
– Additional indirect mapping level
– Represents a set of LBAs mapped to

same PBA
– Each entry consists of

{PBA, reference}

• Significantly simplifies reverse
updates

• Secondary mapping table can be
small
– Since most logical pages are unique

• Incurs minimal additional lookup
overheadLifetime Issues & Techniques (Jihong

Kim/SNU)
18

Sampling for Hashing

• Most writes are unique -> most hashing
operations turn out useless eventually

• Intuition
– If a page in a write is a duplicate page, the other pages

are likely to be duplicate too

• Sampling
– Select one page in a write request as a sample
– If the sample page is duplicate, hash and examine the

other pages
– Otherwise, stop fingerprinting the whole request at

earliest time

Lifetime Issues & Techniques (Jihong
Kim/SNU)

19

Selecting Sample Pages

• Content-based sampling
– Selecting/comparing the first four bytes (i.e. sample bytes) in each

page
• Concatenating the four bytes into a 32-bit numeric value

– The page with the largest value is the sample page

Lifetime Issues & Techniques (Jihong
Kim/SNU)

20

Out-of-line Deduplication

• Periodically launched during device idle time

• Uses external merge sort to identify duplicate
fingerprint

– Part of the meta data page array is loaded into
memory and sorted and temporarily stored in
flash

• CAFTL reserves dedicated number of flash
pages to store metadata (e.g. LBA and
fingerprint)

– For 32GB SSD with 4KB pages, it needs only 0.6%
of flash space

Lifetime Issues & Techniques (Jihong
Kim/SNU)

21

Example of Out-of-line
Deduplication

Lifetime Issues & Techniques (Jihong
Kim/SNU)

22

PBA

PBA 7

PBA 20

Flash

Page#0

Page#1

Page#2

Page#3

Page#K

LBA

0

1

2

3

4

5

6

7

n-1

n

…

VBA

0

1

2

3

m

…

…

Primary mapping table Secondary mapping table

…

{Hash value, LBA/VBA}

{dltjdwls. LBA 0}

{rlaxowls , LBA 2}

{qkrwltjd, LBA 4}

{dltjdwls, LBA 3}

…

Reserved page for metadata

External sorting & temporary storing

{dltjdwls. LBA 0}

{dltjdwls, LBA 3}

{qkrwltjd, LBA 4}

{rlaxowls , LBA 2}

match!

PBA 0

PBA/VBA

PBA 0

VBA 0

PBA 1

PBA 2

VBA 1

VBA 0

VBA 1

PBA 3

Page#3

VBA 2

VBA 2

{dltjdwls. VBA 2}

Performance Evaluation

• SSD simulator

– Microsoft Research SSD extension for Disksim
simulator

– Simulator augmented with CAFTL design and on-
device buffer

• SSD configurations

– Default configuration numbers

– Estimated latencies of hashing code on ARM simulator

Lifetime Issues & Techniques (Jihong
Kim/SNU)

23

Workloads and Trace Collection

• Desktop (d1, d2)
– Typical office workloads
– Irregular idle intervals and small reads/writes

• Hadoop (h1-h7)
– TPC-H data warehouse queries were executed on a

Hadoop distributed system platform
– Intensive large write of temp data

• Transaction (t1, t2)
– TPC-C workloads were executed for transaction

processing
– Intensive write operations

Lifetime Issues & Techniques (Jihong
Kim/SNU)

24

Effectiveness of Deduplication

• Removing duplicate writes

Lifetime Issues & Techniques (Jihong
Kim/SNU)

25

Effectiveness of Deduplication

• Extending flash space
– Space saving rate : (n-m) / n

• n–total # of occupied blocks of flash memory w/o CAFTL
• m–total # of occupied blocks of flash memory w/ CAFTL

Smaller workloads

Lifetime Issues & Techniques (Jihong
Kim/SNU)

26

Dynamic Throttling- READY

Unpredictable Lifetime

• The lifetime of SSDs strongly fluctuates
depending on the write intensiveness of a given
workload

Lifetime Issues & Techniques (Jihong
Kim/SNU)

28

Required lifetime

B
an

d
w

id
th

(M
B

/s
ec

) Write intensiveness is low

B
an

d
w

id
th

(M
B

/s
ec

)

Write intensiveness is high

Cannot guarantee
the required lifetime

Required Lifetime

Lifetime Guarantee Using Static Throttling

• To guarantee the SSD lifetime, some SSD vendors
start to adopt a static throttling technique

Lifetime Issues & Techniques (Jihong
Kim/SNU)

29

B
an

d
w

id
th

(M
B

/s
ec

)

Tssd

Limited bandwidth
(e.g, 2.5 MB/s =
375 TB / 5 yrs.)

<Static throttling>

• Static throttling is likely to underutilize the
endurance of SSDs, incurring performance
degradation

The data written < 375 TB

B
an

d
w

id
th

(M
B

/s
ec

)

Cannot guarantee
the required lifetime

<No throttling> Tssd

Underutilize the Endurance of SSDs

• Self Recovery Effect of Memory Cell
– Repetitive P/E cycles cause damage to memory cells
– The damage of cells can be partially recovered during the idle time between

two consecutive P/E cycles

Lifetime Issues & Techniques (Jihong
Kim/SNU)

30

substrate

n+ n+

Control Gate

Floating GateOxide

ΘΘΘΘ

<Erased Cell>

Cell Programming
(Damage)

substrate

n+ n+

Control Gate

ΘΘ
Θ
Θ

<Programmed Cell>

Trapped Charge

substrate

n+ n+

Control Gate

ΘΘ Θ

<Programmed Cell>

Θ Charge

detrapping

Idletime
(Recovery)

Effective P/E Cycles

• The effective number of P/E cycles is much higher than
P/E cycles denoted by datasheets

• Example: 20nm 2-bit MLC flash memory with 3K P/E
cycles

Lifetime Issues & Techniques (Jihong
Kim/SNU)

31

• The endurance can be improved if the self-recovery is exploited in throttling
write traffic…

REcovery-Aware DYnamic throttling (READY)

• Guarantee lifetime of SSDs by

– Throttling SSD performance depending on the
write demands of a workload

– Exploiting the self-recovery effect of memory cells,
which improves the effective P/E cycles

Lifetime Issues & Techniques (Jihong
Kim/SNU)

32

Benefit of READY

Lifetime Issues & Techniques (Jihong
Kim/SNU)

33

B
an

d
w

id
th

(M
B

/s
ec

)

<Static throttling>

Wwork < Cssd

Tssd

B
an

d
w

id
th

(M
B

/s
ec

)

<Dynamic throttling>

Wwork = Cssd

Tssd

B
an

d
w

id
th

(M
B

/s
ec

)

<Recovery-Aware Dynamic throttling>

Wwork = C’
ssd (= Cssd + ΔCssd)

Tssd

The improved endurance
by the self-recovery effect

Cssd: the number of

writable bytes to SSDs
(e.g., 375 TB)

Wwork: the number of

bytes written by
a workload

Tssd: the target

SSD lifetime
(e.g., 5 years)

Design Goals of READY

• Design goal 1: minimize average response times
– Determine a throttling delay as low as possible so that the

SSD is completely worn out at the required lifetime

• Design goal 2: minimize response time variations
– Distribute a throttling delay as evenly as possible over

every write request

Lifetime Issues & Techniques (Jihong
Kim/SNU)

34

Overall Architecture of READY

Lifetime Issues & Techniques (Jihong
Kim/SNU)

35

Write Demand Predictor

Throttling Delay Estimator

Epoch-Capacity Regulator

Recovery Model

Monitoring past I/O demands

Predict future I/O demands Throttling Delay

Apply throttling delays

Write Demand Predictor

• Write demand predictor exploits cyclical behaviors of
enterprise workloads to predict future write demands

Lifetime Issues & Techniques (Jihong
Kim/SNU)

36

Time

W
ri

te
 d

e
m

an
d

(w
ri

tt
en

 b
yt

es
 p

e
r

se
c)

(i-1)th epoch i-th epoch (i+1)th epoch

Predict that the same number of data
will be written during the i-th epoch

Cyclical Period
= Epoch

Throttling Delay Estimator

• Decide a throttling delay so that the data written
during the next epoch is properly throttled

• Calculate a throttling delay by using the predicted
write demand and the remaining lifetime

Lifetime Issues & Techniques (Jihong
Kim/SNU)

37

… …

present

(i-1)th epoch
Time

W
ri

te
 d

em
an

d

i-th epoch (i+1)th epoch

Past Future

Future write demand

i-th epoch capacity =
Remaining SSD lifetime

of remaining epochs

Change Throttling Delay

• Case 1: predicted write demand = epoch capacity
– Don’t change a throttling delay

• Case 2: predicted write demand > epoch capacity
– Increase a throttling delay to reduce the number of data

written

• Case 3: predicted write demand < epoch capacity
– Decrease a throttling delay to increase the number of data

written

Lifetime Issues & Techniques (Jihong
Kim/SNU)

38

Epoch-Capacity Regulator

• Distribute a throttling delay to every page write evenly
– This is beneficial in minimizing response time variations

Lifetime Issues & Techniques (Jihong
Kim/SNU)

39

B
an

d
w

id
th

(M
B

/s
ec

)

<Static throttling> Tssd

B
an

d
w

id
th

(M
B

/s
ec

)

<Recovery-Aware Dynamic throttling> Tssd

No throttling delay

Low
write demand

Apply throttling delay

High
write demand

Distribute throttling delays

Experimental Setting

• Use the DiskSim-based SSD simulator for evaluations
– 20 nm 2-bit MLC NAND flash memory with 3K P/E cycles
– The target SSD lifetime is set to 5 years

• Evaluated SSD configurations

• Benchmarks

Lifetime Issues & Techniques (Jihong
Kim/SNU)

40

NT No Throttling

ST Static Throttling

DT Dynamic Throttling

READY Recovery-Aware Dynamic Throttling

Trace Duration
Data written

per hour (GB)
WAF

SSD capacity
(GB)

Proxy 1 week 4.94 1.62 32

Exchange 1 day 20.61 2.24 128

map 1 day 23.82 1.68 128

Lifetime Analysis

• NT cannot guarantee the required SSD lifetime
• READY achieves the lifetime close to 5 years
• ST and DT exhibit the lifetime much longer than 5 years

Lifetime Issues & Techniques (Jihong
Kim/SNU)

41

Required
lifetime

Data Written to SSD during 5 years

• ST and DT uselessly throttles write performance even
through they can write more data to the SSD

• READY exhibits 10% higher endurance than NT
because of the increased recovery time

Lifetime Issues & Techniques (Jihong
Kim/SNU)

42

Performance Analysis

• NT exhibits the best performance among all the configurations
• READY performs better than ST and DT while guaranteeing the

required lifetime

Lifetime Issues & Techniques (Jihong
Kim/SNU)

43

References

• 박지훈, 김지홍, “BlueZIP : 고성능솔리드스테
이트드라이브를위한압축모듈,” 대한임베디
드공학회추계학술대회, 2010.

• F. Chen et. al., “CAFTL: a content-aware flash
translation layer enhancing the lifespan of flash
memory based solid state drives,” In Proceedings
of FAST ‘11, 2011.

• S. Lee et. al., “Lifetime management of flash-
based SSDs using recovery-aware dynamic
throttling,”
In Proceedings of FAST ‘12, 2012.

Lifetime Issues & Techniques (Jihong
Kim/SNU)

44

