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Outline

* Introduction to Data Separation

* Data Separation Techniques for NAND flash

— 2-Queue Based Approach
— HASH Based Approach
— Program Context Approach



Classification of Data

e Key factors in classifying data

— Frequency
* More frequently accessed data are likely to be accessed
again in near future

— Recency (i.e., closeness to the present)

* Many access patterns in workloads exhibit high
temporal localities

* Recently accessed data are more likely to be accessed
again in near future



Data Separation in Computer

Data Cache

— Caching hot data in the memory space in advance, we can
significantly improve system performance

Sensor Network using FlashDB

— In FlashDB, the B-tree node can be stored either in read-
optimized mode or in write-optimized mode, whose decision
can be easily made on the basis of a hot data identification
algorithm

Hard Disk Drive

— Determine hot blocks and cluster them together so that they
can be accessed more efficiently with less physical arm
movement

Hot data identification has a big potential to be exploited
by many other applications



Data Separation in NAND

* Garbage collection

— Reduce garbage collection cost by collecting and
storing hot data to the same block

 Wear leveling

— Improve flash reliability by allocating hot data to
the flash blocks with low erase count



Hot Data Identifier in FTL

Application 1 | | Application 2 | --+| Application 3
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Flash Memory
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Efficient Hot Data Identification

* Effective capture of recency information as
well as frequency information

* Small Memory Consumption
— Need to store hotness information
— Limited SRAM size for FTL

* Low Computational Overhead

— It has to be triggered whenever every write
request is issued



2-Level LRU

* Maintains hot list and candidate list
— Operate under LRU
— Save memory space (i.e. sampling-based approach)

e Performance is sensitive to the sizes of both lists
* High computational overhead
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A Multi-Hash-Function Approach

e A Multi-Hash-Function Framework

— Identify each data request using hash value

* |dentify hot data in a constant time

— Just access hash table without search

* Reduce the required memory space

— A lot of data requests share a hotness information
entry of hash tables
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A Multi-Hash-Function Framework
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* Component
— Kindependent hash functions
— Me-entry hash table
— C-bit counters

* Operation

— Status Update
* Updating of the status of an LBA
* Storing frequency information

— Hotness Checkup

e The verification of whether an LBA is for hot
data

— Decay
* Decaying of all counters
* Storing recency information



Status Update (Counter Update)

e A writeis issued to the FTL

* The corresponding LBA y is hashed simultaneously by K given hash

functions.

* Each counter corresponding to the K hashed values (in the hash table) is
incremented by onel_’lcénsﬁeflect the fact tiaat—th-e—l:BA is written again
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Hotness Checkup

e An LBA s to be verified as a location for hot data.

 Check if the H most significant bits of every counter of the K hashed

values contain a non-zero bit value.
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Decay

For every given number of sectors have
been written, called the “decay period” of
the write numbers, the values of all
counters are divided by 2 in terms of a right
shifting of their bits.

(K=4,H=2)
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An Implementation Strategy

* In order to reduce the chance of false identification, only
counters of the K hashed values that have the minimum value
are increased
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Performance Evaluation

* Metrics
— Impacts of Hash-Table Sizes
— Runtime Overheads

* Experiment Setup
— Number of hash functions: 2
— Counter size: 4 bits
— Flash memory size: 512 MB
— Hot-data threshold: 4



Impacts of Hash-Table Sizes (1)
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Impacts of Hash-Table Sizes (2)
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Runtime Overheads

Multi-Hash-Function Two-Level LRU List*
Framework (2KB) (512/1024)

Average Deviation Average Deviation
& Standard & Standard

Checkup 2431.358 97.98981 4126.353 2328.367
Status Update 1537.848 45.09809 12301.75 11453.72
Decay 3565 90.7671 N/A N/A

Unit: CPU cycles

Data Separation Techniques (Jihong
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Problem of Hash-Based Approach

* Accurately captures frequency information

— By maintaining counters

* Cannot appropriately capture recency
information due to its exponential batch decay

process (i.e., to decreases all counter values
by a half at a time)



Multiple BF-based scheme

* QOverview
— Multiple bloom filters

* To capture finer-grained recency
e To reduce memory space and overheads

— Multiple hash functions

* To reduce false identification
* Frequency

— Does not maintain access counters

* Recency

— Different recency coverage

Data Separation Techniques (Jihong
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BIOOm Fllter (from

Wikipedia)
* A space-efficient probabilistic data structure

proposed by Bloom in 1970
e Usedtotestifa € S

* Allows False Positives, but no False Negatives
— “possibly in S” or “definitely not in §”

{x,yz}
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Basic Operations

Whenever write requests are issued, one

N

1
bloom filter is selected sequentially and 0
the hash values (I.B.A) are recorded to it )
I

O

Hash Functions :

— - h,

LBAs

X.Y.Z...
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Capturing Frequency

* No access counters
— Needs a different mechanism
* For frequency capturing
— Chooses one of BFs in a round-robin manner

— |If the chosen BF has already recorded the LBA
e Records to another BF available.

— Shortcut decision

e If all BFs store the LBA information
— Simply define the data as hot

=» The Number of BFs can provide frequency information

Data Separation Techniques (Jihong
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Capturing Recency

e After a decay period (T)
— Choose one of V-BFs in a round-robin manner
— Erase all information (i.e., reset all bits to 0)

=» Each BF retains a different recency coverage.
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For finer-grained recency

Recency Coverage

— Each BF covers a different recency coverage

* The reset BF (BF,): Shortest (latest) coverage

* The next BF (BF,): Longest (oldest) coverage

— Each BF has a different recency value
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Example: Hot/Cold Checkup Based on Recency Weight

* Assign a different recency weight to each BF

— Recency value is combined with frequency value for hot data

decision.

with & nescrEmayy wees gt

LBA X

LBAY

Frequency value of X = 0.5X1+11x0 + 1.5x1 #Hot!
gr%quency value of Y = 0.5x1+0@x 1 + 0 = 1.5Cold!

=2
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Performance Evaluation

e Evaluation setup
— Four schemes
* Multiple bloom filter scheme (refer to as MBF)
* Multiple hash function scheme (refer to as MHF)
— Four realistic workloads
* Financiall, MSR (prxy volume 0), Distilled, and Real SSD



Performance Evaluation

* Performance metrics

—False identification rate

* Try to compare each identification result of each
scheme whenever a request is issued

—Memory consumption
— Runtime overhead

* Measure CPU clock cycles per operation



False Identification Rate

(MBF vs. MHF)

15 —e—MBF & MHF <32 —e—MBF -~ MHF
x 230 . By
< ‘E e EIE'E 4 E"
& €25 B 7 i L
€10 c o R S: Q
10 020 B :: . M
c =1 s ! L .
2 3 2 ; Ul
E £15 4 O B4
5 $10 -
= -V aa V e atdin > '
= @ 5
2 0 £ o
L1
“ 1 5 9 13 17 21 25 29 1 5 9 13 17 21 25 29

Number of Write Requests (Unit: 300K)

(a) Financial1

Data Separation Techniques (Jihong
Kim/SNU)

Number of Write Requests (Unit: 150K)

(b) MSR

29



Memory Impact and Computational
Overheads
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Problems of Hot/cold Separator

—  Problem 1: Wide variations on future update times

invalidated in different
times because of different

Timeline
Hot/cold Separator
Page 0 6@- Hot data may be
Page 1 € o -
Page 2 @-
Page 3 update localities

Hot block

—  Problem 2: If there is no clear temporal locality, hot/cold separator does not

work

Data Separation Techniques (Jihong
Kim/SNU)
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ORA: Oracle Predictor on Future Update

Time

* Perfect knowledge on future update times of
data

* Can sort data based on the future update times

of ¢
* An

ata
-TL with ORA can gather data with similar

upc

ate times into the same block

 Can be used as lower bound of GC

Data Separation Techniques (Jihong 37
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Motivation Example

Jpdetetime {% ( % (3 (% (?ﬂ (% (% (%

V2
Hot/cold Separator ORA
Hé)} with Hot-cold _
parator writes Ry is updated at FTwith ORA gathers data
accqrding to the request titme 1.3 with similar update times
ordgr if all requests are
hot
5 < R, 0 R,(13)
R, Rg 5 R5(14)
2 6 i 6 R,(15)
R; 5 = Rs(16)
BlockO Blockl BlockO Block1
(Hot block) (Hot block)

If a GC process was triggered at time 10,

cogies + 2 erasures 1 erasure
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Hot/cold Separator vs. ORA

* ORA can reduce GC overhead significantly

Normalized Perforamnce

1 -

08

06

04 -

0.2 |

Total excuetion time of GC

Copied pages per victim block

m Hot/cold
m ORA

Update time is a more important factor in data
separation technique than frequency of updates

Data Separation Techniques (Jihong
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Basic Idea

* Program Context-Aware Data Separation Technique

— Predicts update times of data based on program
behavior

— A program behaves similarly when the same
program context is executed

— Indentifies what program contexts repeatedly
generate data with similar update times



Overview of Program Context

* A program context represents an execution path which generates write

requests
main()
o - (a0 [e0]  [e0]| &0
Functions in _ \l/ l/ J/ \l/ PC : Program Context
execution paths
System call write()

* |dentification

* Each program context is identified by summing program counter values of each
execution path of function calls
Reference
Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, “Program Counter Based Pattern Classification in Buffer Caching ,” OSDI,
Data Separation Techniqzt%)sll(Jihong
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Program Context—Based Update Time Prediction

* Indirectly predict future update times of data by exploiting program

contexts

PC1 PC2 PC3 PC4 [PC]. PC2 P(} PC4 [F’Cl PC2 PC3\

Program —oal) c) e) gl]al) c) el s al) c() el

CTEtCE;Xt — \’ \’ voov \’ VI V]V \’

_ b
() di) f() h( \b() d() f@ h() \b() d() f())
System call write()
Logical 4 PC1
Address ® rc2
PC3
PC4
D Update
/ Time

Data Separaﬁﬁlﬁégﬁ‘ﬁa%éséli@ﬂﬁodated in a similar period when PC1, PC2, and PC3 are
m
executed
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Logical ﬁ
Block
Address

Separating Data using Program
Contexts

Separates these data based on
PCs

Program Context 1

o o

\/2 . [ Program Context 2
Sequential ® Program Context 3
Update

Simultaneously updated group ]I

Time

Simultaneously updated group 2

Data generated by Program Context 2  Data generated by Program Context 1

and Program Context 3

FTL with this data separator stores data based on simultaneously updated

Data Separation Tg]gek-es (Vihong Block 1
Kim/SNU)
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Experimental Environments (1)

e Used a trace-driven NAND flash memory simulator
— Parameters

Mapping Scheme Page-level mapping

Flash Translation Layer
GC Triggering 5%

Read Time (1 page) | 25usec

Flash memory Write Time (1 page) | 200usec

Erase Time (1 block) | 1200usec

* Techniques for comparison
— HASH: Hash-based hot/cold separation technique
— ORA: Oracle predictor on future update times of data

Data Separation Techniques (Jihong
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Experimental Environments (2)

Benchmarks characteristics

Benchmarks Scenario The number of writes (unit: page) The number of updates (unit: page)
cscope Linux source code examination 17575 15398
gcc Building Linux Kernel 10394 3840
viewperf Performance measurement 7003 119
tpc-h Accesses to database 23522 20910
tpc-r Accesses to database 21897 18803
multil cscope + gcc 28400 19428

multi2 cscope + gec + viewperf 35719 20106




Result: Total Execution Time of GC
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Reference

* J. Hsieh et al, "Efficient on-line identification of hot data for
flash-memory management," SAC 2005.

 D. Park et al., “Hot Data Identification for Flash-based Storage
Systems Using Multiple Bloom Filters”, MSST 2011

 K.Haetal., “AProgram Context-Aware Data Separation

Technique for Reducing Garbage Collection Overhead in
NAND Flash Memory,” SNAPI 2011
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Outline

* Introduction to lifetime problem in SSDs

e SSD Lifetime Extension Techniques
— Compression Technique
— Deduplication Technique: CAFTL
— Dynamic Throttling: READY



Trend of NAND Device Technologies

A (2000~2012:ISSCC & VLSI)

(o)
'S / 2 years
S
S
MLC
@)
SLC )
Em 'R
2000 2002 2004 2006 2008 2010 2012 2014 Year

NAND capacity is continuously increased,
and NAND flash-based storages are widely adopted.



Trend of NAND Device Technologies

“ Total amount of writes = Capacity X Endurance J
2 A
o Endurance / 2 years
O (Y X XX
o
c
S
S
S ®q -35%
S / 2 years
IS
S
. . . . . . . . . . . . . . >
2000 2002 2004 2006 2008 2010 2002 2014y,

Total amount of writes of NAND flash-based storages

does not increase as much as we expected.



Lifetime Problem of NAND-based Storages

Total amount of writes

[Iodihmearrioomd opdate F

Lifetime =

>

Endurance

Lifetime

o o o o o o o o o o o o o o o >
2000 2002 2004 2006 2008 2010 2012 2014 Year

Decreasing lifetime is a main barrier for sustainable growth.



Techniques for Improving Lifetime

" Self-Healing SSDs

i L. Dynamic erase voltage
' and time scaling

Capacity % Endurance

Lifetime
Daily workload x WAF

. " Deduplication . " Optimization of

i Compression -4 garbage collection

.
.
.
.

. Throttling . & wear leveling



Workload-Reduction Methods
for Extending SSD Lifetime

e Reduce amount of written data

— Compression technique
* Compressed data are stored

— Deduplication technique
* Prevent redundant data from being stored in SSDs

* Throttling SSD Performance

— Dynamic Throttling
* Guarantee the lifetime of SSD by throttling write traffic

Lifetime Issues & Techniques (Jihong
Kim/SNU)



Compression Technique in SSD

e Reduces the amount of data written
* Improve effectively both the write speed and the reliability of a SSD
e (Case Study: BlueZip

PPC405 DRAM
PLB I f |
I Interrupt
Register Local Buffer
PLB Controller
. ' Local _ Local

Shift Memory Shift Memory

Compressor Module < Reg Reg

\\
Compressor Decompressor
4x — One per Bus Flash Bus d
BRAM Buffer




Design of BlueZIP

e BlueZIP
— Based on the LZRW3 algorithm for compression/decompression
— Has a local memory which is used as a hash table for compression
— Compresses data and writes the compressed data into the BRAM buffer
— The flash controller reads the compressed data from the BRAM buffer
and writes them into the flash board
* FTL
— Gives BlueZIP multiple pages to compress and write them
— Accepts return value from BlueZip, which is the size of the compressed data

Pages

Compressor

Flash Memory
BlueZIP Module




Primary Performance Evaluation

* Reduce the write times by 15% on average
* Reduce the amount of written data by 26% on average

m Amount of Data Written m Write Time

1.2

Normalized Value

Web Text Rand Average

Lifetime Issues & Techniques (Jihong
Kim/SNU)
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Deduplication Technique
- CAFTL



Data Redundancy in Storage

* Duplicate data rate — up to 85.9% over 15 disks in
CSE/OSU

— 100

80 -

60 .

40 -

20 -

Percentage of Total Blocks (%

o

1 2 3 4 5 6 7 8 9 1011 1213 14 15
Servers (1-4); Experimental (5-11); Office (12—-15)
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Content-Aware Flash Translation Layer

(CAFTL)
* Key Idea

— Eliminating duplicate writes
— Coalescing redundant data

e Potential benefits

— Removing duplicate writes into flash memory ->
reducing “write/day”

— Extending available flash memory space ->
increasing available “flash space”

Endurance x Capacity

Write/day x Efficiency of FTL

Lifetime =




Overview of CAFTL

* |In-line deduplication
— Proactively examines incoming data

— Cancels duplicate writes before committing a
request

— Best-effort solution
e Qut-of-line deduplication

— Periodically scans flash memory
— Coalesces redundant data out of line



Architecture of CAFTL

Incoming write

1

2|3

4

(1) Buffering

Fingerprint
Store —_—

Segment #0

Segment #1

r

Buffer

2 | 3

23

Segment #1024

(2) Fingerprinting l

|

Hash Engine

]_..

-

(3) Lookup

0x743728fd43
(160-bit SHA-1)

Find a match? —

(4) If match,

update

mapping tables

(5) If no match,
write to flash

Mapping Tables

Primary
Mapping
Table

Sec.

Mapping
Table

Flash
Memory




Fingerprint Store Challenges

~100 g
* Fingerprint store V

80}
60t 10-20%

40

— Maintains fingerprints in memory

* Challenges
— Memory overhead (25 bytes each g
— Fingerprint store lookup overhead™ ° 5 o 15 20 25 30 35 40 45 %0

Duplication Level

ntage of Total Fingerprints (%

20 |

NP LIN OO0~ NP LN —
i i = it

RN R SR W WP W

e Observations and indications

— Skewed duplication fingerprint distribution — only 10~20%
* Most fingerprints are not duplicate -> waste of memory space

Store only the most likely-to-be-duplicate fingerprints in memory

Lifetime Issues & Techniques (Jihong
Kim/SNU)
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Challenges of Existing Mapping Table

* When a physical page is relocated LE;% Flash
to another place, all the logical 1 > 0
pages mapped to this page 3 -

should be updated quickly

* For update request, the physical 2
page cannot be invalidated if the | :
page is shared nd k

— Must track the number of referencing Mapping
] table  Flash Mem.
logical pages

Lifetime Issues & Techniques (Jihong 17
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Two-Level Indirect Mapping

Virtual Block Address (VBA) is
introduced

— Additional indirect mapping level

— Represents a set of LBAs mapped to
same PBA

— Each entry consists of

{PBA, reference}
Significantly simplifies reverse
updates

Secondary mapping table can be
small

— Since most logical pages are unique

Incurs minimal additional lookup
overheac

LBA F:.rBB’E~ Flash
0
1 -
) 0
3
VBA | PBA 1
0
%__’. -
7 2
3
n-1 m-1
n m -k

Primary Secondary  Flash
mapping table mapping table Mem.



Sampling for Hashing

* Most writes are unique -> most hashing
operations turn out useless eventually

* [ntuition
— If a page in a write is a duplicate page, the other pages
are likely to be duplicate too
 Sampling
— Select one page in a write request as a sample

— If the sample page is duplicate, hash and examine the
other pages

— Otherwise, stop fingerprinting the whole request at
earliest time

Lifetime Issues & Techniques (Jihong 19
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Selecting Sample Pages

* Content-based sampling

— Selecting/comparing the first four bytes (i.e. sample bytes) in each
page

e Concatenating the four bytes into a 32-bit numeric value
— The page with the largest value is the sample page

Content-based Sampling
1 2 3 4

1 - 0 2

\

The page with
maximum sample byte

Lifetime Issues & Techniques (Jihong
Kim/SNU)
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Out-of-line Deduplication

e Periodically launched during device idle time

e Uses external merge sort to identify duplicate
fingerprint
— Part of the meta data page array is loaded into
memory and sorted and temporarily stored in
flash
 CAFTL reserves dedicated number of flash
pages to store metadata (e.g. LBA and
fingerprint)
— For 32GB SSD with 4KB pages, it needs only 0.6%
6f'flash space



Example of Out-of-line

LBA [ETAYAY:Y

0

NN OO 1A WN R

n-1

n

Primary mapping table

Lifetime Issues & Techniques (Jihong

Deduplication

VBA 2

VBA O

PBA 1

VBA2 |~

PBA 2

VBA1 VBA

VBA O > 0

VBA 1 1

— 2

3
m

Kim/SNU)

®» Page#0
Page#l
Page#2
PBA
PBA 7
Page#3
PBA 20
PBA O —>
>
Page#K

Secondary mapping table

match!
{ditjdwls. LBA 0}
{ditjdwls, LBA 3}
{gkrwltjd, LBA 4}
{rlaxowls , LBA 2}

L}

External sorting & temporary storing

{Hash value, LBA/VBA}

{dltjdwls. VBA 2}
{rlaxowls , LBA 2}
{gkrwltjd, LBA 4}
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Performance Evaluation

e SSD simulator

— Microsoft Research SSD extension for Disksim
simulator

— Simulator augmented with CAFTL designh and on-
device buffer

Flash page size 4KB Flash Read 25ps
Pages / block 64 Flash write 200ps
Blocks / plane 2048 Flash Erase 1.5ms
Num of pkgs 10 SHA-1 hashing 47,548 cycles

Over-provisioning 15% CRC32 hashing 4,120 cycles

Lifetime Issues & Techniques (Jihong
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Workloads and Trace Collection

* Desktop (d1, d2)

— Typical office workloads
— Irregular idle intervals and small reads/writes

 Hadoop (h1-h7)

— TPC-H data warehouse queries were executed on a
Hadoop distributed system platform

— Intensive large write of temp data

e Transaction (t1, t2)

— TPC-C workloads were executed for transaction
processing

— Intensive write operations



Effectiveness of Deduplication

* Removing duplicate writes

w
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i ofﬂine | [
0 no—sampling 86.2%
m 128KB

dl d2 h1 h2 h3 h4 h5 he h7 t1 112
d — desktop; h — hadoop; t - transaction

o8]
o
|

= N N
&) o &)
| I 1

-
-
I

Perc. of Removed Writes (%)
&)
I

o

Lifetime Issues & Techniques (Jihong
Kim/SNU)




Effectiveness of Deduplication

* Extending flash space
— Space saving rate : (n-m) / n
* n—total # of occupied blocks of flash memory w/o CAFTL
* m-total # of occupied blocks of flash memory w/ CAFTL

)
8]
] |
N I
rNO
24
o |
3
=2
5 —
«

w
o
|

— — ] MO
(& (@) o (@)
T T T T

of Save Flash Space (%)

Smaller workloads

/

Pe
o

d1

- _ _ d — desktop; h - hadoop; t - transaction
Lifetime Issues & Techniques (Jihong

2
Kim/SNU) °



Dynamic Throttling- READY



Unpredictable Lifetime

* The lifetime of SSDs strongly fluctuates

depending on the write intensiveness of a given
workloag

=

Required lifetime

Bandwidt
(MB/sec

Write intensiveness is high

Cannot guarantee
. _the required lifetime

VAl

| |
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Lifetime Guarantee Using Static Throttling

* To guarantee the SSD lifetime, some SSD vendors
start to adopt a static throttling technique

Lifetime Issue
I

Bandwidth
(MB/sec)

. Cannot guarantee
. ,the required lifetime
v

<No throttling> T

[
I I -

The data written <375 TB

Bandwidth
(MB/sec)

Limited bandwidth

(e.g, 2.5 MB/s =
375TB /5 yrs.)

<Static throttling> Tssa

Static throttling is likely to underutilize the
endurance of SSDs, incurring performance

degradation
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Underutilize the Endurance of SSDs

* Self Recovery Effect of Memory Cell

— Repetitive P/E cycles cause damage to memory cells

— The damage of cells can be partially recovered during the idle time between
two consecutive P/E cycles

Control Gate

I
Oxide Floating Gate OE CICHENC
n+ n+ n+ n+ n+ l n+
rapped Charge
@ @ @ @ @ Charge
detrappin
substrate substrate substrate

<Erased Cell>

Cell Programming

<Programmed Cell>

(Damage)

<Programmed Cell>

Idletime
(Recovery)




Effective P/E Cycles

* The effective number of P/E cycles is much higher than
P/E cycles denoted by datasheets

* Example: 20nm 2-bit MLC flash memory with 3K P/E
cycles

9000 I I I I I I 1 1

8000

7000 B J _
6000

5000

8

Achievable P/E cycles

4000 |/ .

3000 II ] ] ] ] | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Idletime (second)

. The endurance can be improved if the self-recovery is exploited in throttling
write traffic...

Lifetime Issues & Techniques (Jihong
Kim/SNU)
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REcovery-Aware DYnamic throttling (READY)

* Guarantee lifetime of SSDs by

— Throttling SSD performance depending on the
write demands of a workload

— Exploiting the self-recovery effect of memory cells,
which improves the effective P/E cycles

Lifetime Issues & Techniques (Jihong
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Benefit of READY

C..4: the number of
writable bytes to SSDs
(e.g., 375 TB)

Bandwidth

A 4

<Static throttling> T
ssd W01 the number of
bytes written by
| Waork = Cssd a workload

T, 4 the target

SSD lifetime
> (e.g., 5 years)

Bandwidth
(MB/sec)

<Dynamic throttling>

The improved endurance
by the self-recovery effect

-

Bandwidth
(MB/sec)

<Recovery-Aware Dynamic throttling> T
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Design Goals of READY

* Design goal 1: minimize average response times

— Determine a throttling delay as low as possible so that the
SSD is completely worn out at the required lifetime

e Design goal 2: minimize response time variations

— Distribute a throttling delay as evenly as possible over
every write request

Lifetime Issues & Techniques (Jihong
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Overall Architecture of READY

Throttling Delay Estimatons«: - Recovery Model
Predict futur%mands T@g Delay

Write Demand Predictor

Monitoring past |/O demand

Epoch-Capacity Regulator

|

Apply throttling delays™™,
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Write Demand Predictor

* Write demand predictor exploits cyclical behaviors of
enterprise workloads to predict future write demands

Predict that the same number of data

will be Wh epoch

J
L M L \'L M |

l ! W. .ud w |l ‘ Mh (

(i- 1)th epoch i-th epoch (i+ )th epoch Time

Write demand
(written bytes per sec)

___-
—




Throttling Delay Estimator

* Decide a throttling delay so that the data written
during the next epoch is properly throttled

e Calculate a throttlinﬁ delay by using the predicted
write demand and the remaining lifetime

_ ~ Remaining SSD lifetime
i-th epoch capacity =
present # of remaining epochs

Future wirite demand ™% S

Past Future

Write demand

i ! ! = Time
(i-1)th epoch i-th epoch  (i+1)th epoch




Change Throttling Delay

* Case 1: predicted write demand = epoch capacity
— Don’t change a throttling delay

* Case 2: predicted write demand > epoch capacity

— Increase a throttling delay to reduce the number of data
written

* Case 3: predicted write demand < epoch capacity

— Decrease a throttling delay to increase the number of data
written



Epoch-Capacity Regulator

* Distribute a throttling delay to every page write evenly
— This is beneficial in minimizing response time variations

R No throttling delay Apply throttling delay

|

4 )
I Low \ V [

wMem d write demand

. J

\ y,
<Static throttling> Tssd

Bandwidth
(MB/sec)

v

Distribute throttling delays

Bandwidth
(MB/sec)

Lifetime Issues & Techniques (Jihong

Kim/SNU) <Recovery-Aware Dynamic throttling>
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Experimental Setting

 Use the DiskSim-based SSD simulator for evaluations
— 20 nm 2-bit MLC NAND flash memory with 3K P/E cycles
— The target SSD lifetime is set to 5 years

e Evaluated SSD configurations

NT No Throttling
ST Static Throttling
DT Dynamic Throttling
READY Recovery-Aware Dynamic Throttling

e Benchmarks

Trace Duration pl)ee;tligl::rrit(tgg) WAF SEL (C (? g)a gy

Proxy 1 week 4.94 1.62 32
Exchange 1 day 20.61 2.24 128

map 1 day 23.82 1.68 128




Lifetime Analysis

'\ NT

ST C—
DT =
READY 3

40
. 35
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L 30
)
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—

proxy

exchange

NT cannot guarantee the required SSD lifetime

READY achieves the lifetime close to 5 years

map

ST and DT exhibit the lifetime much longer than 5 years




Data Written to SSD during 5 years

1200 I
NT C——

B ST C—

1000 DT
_READY —

800

600 |- .

400 | -

200 -

Data written for 5 years (TB)

0
proxy exchange map

ST and DT uselessly throttles write performance even
through they can write more data to the SSD

 READY exhibits 10% higher endurance than NT
because of the increased recovery time



Performance Analysis

7000 I T T
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* NT exhibits the best performance among all the configurations

 READY performs better than ST and DT while guaranteeing the
required lifetime
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