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16.1 Introduction

Ideal gas (intermolecular interactions)

Compressed gases and Liquids

Solid state

Random motion

Pseudocrystalline structure

Crystalline structure
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• Einstein’s Solid

Einstein assumed the solid as the crystal lattice structure of 

particles connected by oscillators of nature frequency 𝜈𝐸. 

Therefore, there are 3N oscillators for a solid with N particles.

Oscillation (Simple harmonic motion)
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• For each molecule,

Since the molecules of a solid are free to oscillate in three dimensions, 

a mean energy 3kT is assigned to each molecule.

• At moderate T,

𝑥 − 𝑑𝑖𝑟.

1

2
𝑘𝑇 𝑓𝑜𝑟 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

1

2
𝑘𝑇 𝑓𝑜𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

→ 𝑘𝑇 𝑚𝑒𝑎𝑛 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

U = 3N𝑘𝑇 = 3𝑛𝑅𝑇

𝑢 =
𝑈

𝑛
= 3𝑅𝑇 Internal energy per mole

𝐶𝑣 =
𝜕𝑢

𝜕𝑇 𝑣
= 3𝑅 Dulong-Petit Relation

Oscillation
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

At high temperatures, 𝐶𝑣 is very nearly equal to the classical value 3𝑅, 

but it decreases to zero at 0 K. 

At low temperatures, Einstein suggested that quantum theory should be 

applied to this problem.

Fig. The specific heat capacity of various solids as a function of T/θE. 
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• At low temperatures, energy level of simple harmonic oscillator

𝜀𝑛 = 𝑛 +
1

2
ℎ𝜈 n = 0,1,2 ⋯

𝑍 = ∑exp − 𝑛 +
1

2
ℎ𝜈/𝑘𝑇 =

exp(−
ℎ𝜈
2𝑘𝑇

)

1 − exp(−
ℎ𝜈
𝑘𝑇
)

𝑁𝑛
𝑁

=
exp(−

𝜀𝑛
𝑘𝑇
)

𝑍
=
exp −

𝑛 +
1
2

ℎ𝜈

𝑘𝑇
𝑍

• The partition function

• For 3N simple harmonic independent oscillators, the total energy is

𝑬 = 𝟑𝑵∑
𝑵𝒏

𝑵
𝜺𝒏 = 𝟑𝑵

∑ 𝒏 +
𝟏
𝟐

𝒉𝝂 ∙ 𝐞𝐱𝐩 − 𝒏 +
𝟏
𝟐

𝒉𝝂/𝒌𝑻

𝒁
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• The total energy is

𝐸 = 3𝑁
∑ 𝑛 +

1
2

ℎ𝜈 ∙ exp − 𝑛 +
1
2

ℎ𝜈/𝑘𝑇

𝑍

= 3𝑁
∑ 𝑛ℎ𝜈 +

1
2
ℎ𝜈 ∙ exp

−𝑛ℎ𝜈
𝑘𝑇

exp
−ℎ𝜈
2𝑘𝑇

exp
−ℎ𝜈
2𝑘𝑇

∑exp
−𝑛ℎ𝜈
𝑘𝑇

= 3𝑁
1

2
ℎ𝜈 + 3𝑁

∑𝑛ℎ𝜈 ∙ exp
−𝑛ℎ𝜈
𝑘𝑇

∑exp
−𝑛ℎ𝜈
𝑘𝑇 = 𝑘𝑇2

𝜕

𝜕𝑇
ln ∑exp

−𝑛ℎ𝜈

𝑘𝑇
=
𝒉𝝂 ∙ 𝐞𝐱𝐩

−𝒉𝝂
𝒌𝑻

𝟏 − 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻

∗
𝜕

𝜕𝑇
ln ∑exp

−𝑛ℎ𝜈

𝑘𝑇
=

𝜕

𝜕𝑇
ln 1 + exp

−1ℎ𝜈

𝑘𝑇
+ exp

−2ℎ𝜈

𝑘𝑇
+⋯ ≈

𝜕
𝜕𝑇

ln
1

1 − exp
−ℎ𝜈
𝑘𝑇

=
𝐞𝐱𝐩

−𝒉𝝂
𝒌𝑻

∙
𝒉𝝂
𝒌𝑻𝟐

𝟏 − 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻

• Equation for the vibrational energy of an Einstein solid

∴ 𝑬 =
𝟑𝑵

𝟐
𝒉𝝂 +

𝟑𝑵𝒉𝝂 ∙ 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻

𝟏 − 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• With 𝑁𝑘 = 𝑛𝑅, 

• The Einstein temperature, 𝜃𝐸 is defined as

• For 1 kmole,

𝑪𝒗 = 𝟑𝑹
𝜽𝑬
𝑻

𝟐 𝐞𝐱𝐩(
𝜽𝑬
𝑻
)

𝒆𝒙𝒑(
𝜽𝑬
𝑻
) − 𝟏

𝟐

𝐶𝑣 =
𝜕𝐸

𝜕𝑇
𝑣

= 3𝑁ℎ𝜈
−exp

ℎ𝜈
𝑘𝑇

−ℎ𝜈
𝑘𝑇2

exp
ℎ𝜈
𝑘𝑇

− 1
2 = 3𝑁𝑘

ℎ𝜈

𝑘𝑇

2 exp
ℎ𝜈
𝑘𝑇

exp
ℎ𝜈
𝑘𝑇

− 1
2

𝜃𝐸 =
ℎ𝜈𝐸
𝑘
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• 𝜃𝐸=?

It is not possible to find a value of 𝜃𝐸 which gives a good agreement with 

experiments at both high and low temperatures.

1. Proper 𝜃𝐸 gives a good agreement at high temperatures,

2. At low temperatures     ->      𝑪𝒗,𝒆𝒙𝒑. > 𝑪𝒗,𝒕𝒉𝒆𝒐𝒓𝒚

3. When T -> 0, comparison with experiment is not satisfactory.

𝑇/𝜃𝐸

𝑪𝒗/3𝑅

Fig. Specific heat as function of Einstein temperature
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16.2 Einstein’s Theory of the Heat Capacity of a Solid

• Einstein

Einstein theory assumes that all the molecules oscillate with 

the same frequency 𝝂

• Nernst and Lindemann

Nernst and Lindemann assume that the molecules of a solid 

could oscillate at two frequencies,  𝝂 and 𝟐𝝂

• Born, Von Karman, and Debye

They considered that the thermal vibrations of the individual 

molecules could be replaced by a set of stationary elastic 

waves having a continuous range of frequencies up to a 

certain maximum value, 𝝂 , 𝟐𝝂,⋯ , 𝝂𝒎𝒂𝒙
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16.3 Debye’s Theory of the Heat Capacity of a Solid

• Debye’s solid

Debye assumed solid as a continuous elastic solid composed of 

particles called phonon with stationary elastic sound waves.  

Therefore a solid of Debye’s theory is viewed as phonon gas.

L

Dilute phonon 

gas
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16.3 Debye’s Theory of the Heat Capacity of a Solid

• Phonon

The Debye theory of solids, where the bosons are the excitations of 

vibrational modes known as phonons

The principal difference between Einstein’s description and Debye’s 

model is in the assumption about the frequency spectrum of the 

lattice vibration, shown graphically in Fig. 

Fig. Frequency spectra of crystal vibrations: 

(a) Einstein model; (b) Debye model. (a)                                                    (b)
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16.3 Debye’s Theory of the Heat Capacity of a Solid

There is no restriction on the number of phonons per energy level.

Thus, phonons are bosons. 

The occupation number must be given by the Bose-Einstein distribution.

In this expression, the chemical potential 𝜇 must be set equal to zero.

Because the total number N of phonons is not an independent variable 

but rather is determined by the volume and temperature of the 

particular crystal being considered.  

𝑓 𝜖𝑖 ≡
𝑁𝑖
𝑔𝑖

=
1

𝑒(𝜖𝑖−𝜇)/𝑘𝑇 − 1
0
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16.3 Debye’s Theory of the Heat Capacity of a Solid

• Quantum waves in a one-dimensional box

m m m m

k k k

a a a
Equilibrium distance

𝑦𝑛

𝑚
𝑑2𝑦𝑛
𝑑𝑥2

= 𝑘 𝑦𝑛+1 − 𝑦𝑛 − 𝑘 𝑦𝑛 − 𝑦𝑛−1

𝑦𝑛 = 𝐴 cos 2𝜋 𝜈𝑡 −
𝑛𝑎

𝜆
(𝜈: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝜆: 𝑤𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ)
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16.3 Debye’s Theory of the Heat Capacity of a Solid

• Quantum waves in a one-dimensional box

Wave function

Wave velocity

𝜓 = 𝐴 sin 𝑘𝑥 𝜓(0) = 𝜓(𝐿) = 0

𝑘 =
2𝜋

𝜆
=
𝑛𝜋

𝐿
𝑛 = 1,2,3⋯ ,

𝑐 = 𝜆𝜈

𝑛 =
2𝐿

𝜆
=
2𝐿

𝑐
𝜈 =

2𝑉1/3

𝑐
𝜈 𝑉 = L3

𝑛2 = 𝑛𝑥
2+𝑛𝑦

2+𝑛𝑧
2

Fig. A shell of thickness dn of an 

octant of a sphere of radius n
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16.3 Debye’s Theory of the Heat Capacity of a Solid

• Density of frequency distribution

Because there are 3N oscillators, there must be upper limit of 

frequency, 𝜈𝑚.

𝑔 𝜈 𝑑𝜈 ∶ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝜈 𝑡𝑜 𝜈 + 𝑑𝜈

𝑔 𝜈 𝑑𝜈 =
1

8
4𝜋𝑛2𝑑𝑛 =

𝜋

2
𝑛2𝑑𝑛

=
𝜋

2

4𝑉2/3

𝑐2
𝜈2

2𝑉1/3

𝑐
𝑑𝜈 =

4𝜋𝑉

𝑐3
𝜈2𝑑𝜈

Fig. Frequency spectra of crystal vibrations: 

(a) Einstein model; (b) Debye model. (a)                                                    (b)

𝑁

𝑉
:

1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

3𝑁 = න
0

𝜈𝑚

𝑔 𝜈 𝑑𝜈 = න
0

𝜈𝑚 4𝜋𝑉

𝑐3
𝜈2𝑑𝜈 =

4𝜋𝑉

𝑐3
1

3
𝜐𝑚

3

𝜐𝑚 ∝ (
𝑁

𝑉
)
1
3
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16.3 Debye’s Theory of the Heat Capacity of a Solid

• No restriction on the number of phonons per energy level. Thus phonons are 

bosons. So that phonon gas follows Bose-Einstein statistics. 

𝑁 𝜈 𝑑𝜈 =
𝑔 𝜈 𝑑𝜈

𝑒ℎ𝜈/𝑘𝑇 − 1
= ൞

9𝑁

𝜈𝑚
3

𝜈2𝑑𝜈

𝑒ℎ𝜈/𝑘𝑇 − 1
0

𝜈 ≤ 𝜈𝑚

𝜈 > 𝜈𝑚

𝑈 = න
0

𝜈𝑚 1

2
ℎ𝑣 +

ℎ𝑣

𝑒ℎ𝜈/𝑘𝑇 − 1
𝑔 𝜈 𝑑𝜈

= න
0

𝜈𝑚

ℎ𝑣𝑁 𝜈 𝑑𝜈 + න
0

𝜈𝑚 1

2
ℎ𝑣𝑔 𝜈 𝑑𝜈

𝑁(𝜀)

𝑔(𝜀)
=

1

𝑒(𝜀−𝜇)/𝑘𝑇 − 1
𝜇 = 0, 𝜀 = ℎ𝜈

• The total energy 

# of photons 𝜈 𝑡𝑜 𝜈 + 𝑑𝜈

# of possible frequencies

𝑼− 𝑼𝟎 =
𝟗𝑵

𝒗𝒎
𝟑
න
𝟎

𝒗𝒎 𝒉𝒗𝟑𝒅𝒗

𝒆
𝒉𝒗
𝒌𝑻 − 𝟏

𝑈0 = න
0

𝜈𝑚 1

2
ℎ𝑣

4𝜋𝑉

𝑐3
𝜈2𝑑𝜈 =

2𝜋𝑉ℎ

𝑐3
න
0

𝜈𝑚

𝜈3𝑑𝜈

=
𝜋𝑉ℎ

2𝑐3
𝜈4 =

9

8
𝑁ℎ𝜈𝑚
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16.3 Debye’s Theory of the Heat Capacity of a Solid

Debye temperature 𝜃𝐷 is defined as

𝑈 − 𝑈0 =
9𝑁

𝑣𝑚
3
න
0

𝑣𝑚 ℎ𝑣3𝑑𝑣

𝑒ℎ𝜈/𝑘𝑇 − 1

𝐶𝑣 =
𝜕𝑈

𝜕𝑇
=

9𝑁

𝜈𝑚
3
න
0

𝜈𝑚 𝑑

𝑑𝑇

1

𝑒ℎ𝜈/𝑘𝑇 − 1
ℎ𝜈3𝑑𝜈

=
9𝑁

𝜈𝑚
3
න
0

𝜈𝑚
ℎ𝜈
𝑘𝑇2

𝑒ℎ𝜈/𝑘𝑇

𝑒ℎ𝜈/𝑘𝑇 − 1 2
ℎ𝜈3𝑑𝜈

=
9𝑁ℎ2

𝜈𝑚
3

1

𝑘𝑇2
න
0

𝜈𝑚 𝜈4𝑒ℎ𝜈/𝑘𝑇

𝑒ℎ𝜈/𝑘𝑇 − 1 2
𝑑𝜈

= 𝟗𝑵𝒌
𝑻

𝜽𝑫

𝟑

න
𝟎

𝜽𝑫/𝑻 𝒙𝟒𝒆𝒙

(𝒆𝒙 − 𝟏)𝟐
𝒅𝒙

𝐿𝑒𝑡 𝑥 =
ℎ𝜈

𝑘𝑇
, 𝑥𝑚=

ℎ𝜈𝑚
𝑘𝑇

=
𝜃𝐷
𝑇

𝜽𝑫 ≡
𝒉𝒗𝒎
𝒌



19/19

16.3 Debye’s Theory of the Heat Capacity of a Solid

For high temperatures, T ≫ 𝜃𝐷 𝑎𝑛𝑑 𝑥 ≪ 1. So 𝑒𝑥 − 1 ≈ 𝑥, 𝑒𝑥 = 1.

For low temperatures, T ≪ 𝜃𝐷

න
0

𝜃𝐷
𝑇
𝑥2𝑑𝑥 =

1

3

𝜃𝐷
𝑇

3

𝐶𝑣 ≈ 9𝑁𝑘
𝑇

𝜃𝐷

3

න
0

𝜃𝐷
𝑇 𝑥4𝑒𝑥

𝑥2
𝑑𝑥 = 9𝑁𝑘

𝑇

𝜃𝐷

3
1

3

𝜃𝐷
𝑇

3

= 3𝑁𝑘

න
0

∞ 𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥 =

4𝜋4

15

𝑪𝒗 =
𝟒𝝅𝟒

𝟏𝟓

𝑻

𝜽𝑫

𝟑

𝟗𝑵𝒌 =
𝟏𝟐𝝅𝟒

𝟓
𝑵𝒌

𝑻

𝜽𝑫

𝟑

𝐶𝑣 = 9𝑁𝑘
𝑇

𝜃𝐷

3

න
0

𝜃𝐷/𝑇 𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

Debye’s 𝑇3 law


