Week 13 Mining Association Rules

Seokho Chi Professor | Ph.D. SNU Construction Innovation Lab

Source: Tan, Kumar, Steinback (2006)

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Association Rule Mining

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Itemset: a collection of one or more items
 - 1 item set: {milk}, 3 item set: {milk, bread, diaper}
- Support count (θ) : frequency of occurrence of an itemset
 - $-\theta(\{\text{milk, bread, diaper}\}) = 2$
- Support (S): fraction of transactions that contain an itemset
 - $S(\{milk, bread, diaper\}) = 2/5$
- Frequent itemset: an item set whose support is greater than or equal to a minimum support threshold(minsup)

Association Rule Mining

- Association rule: an implication expression of the form X
 - → Y where X and Y are item sets
 - {milk, diaper} → {bread}, {milk} → {diaper, bread}
- Rule evaluation metrics
 - Support (S): fraction of transactions that contain both X and Y
 - Confidence (C): measure how often items in Y appear transactions that contain X
 - {Milk, Diaper} \rightarrow {Beer}
 - -S = 2/5: milk, diaper & beer among total
 - C = 2/3: beer among milk, diaper

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule Discovery: Application

Marketing and Sales Promotion:

Let the rule discovered be

```
{Bagels, ... } --> {Potato Chips}
```

- Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels.
- Bagels in antecedent and Potato chips in consequent => Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds

Mining Association Rules

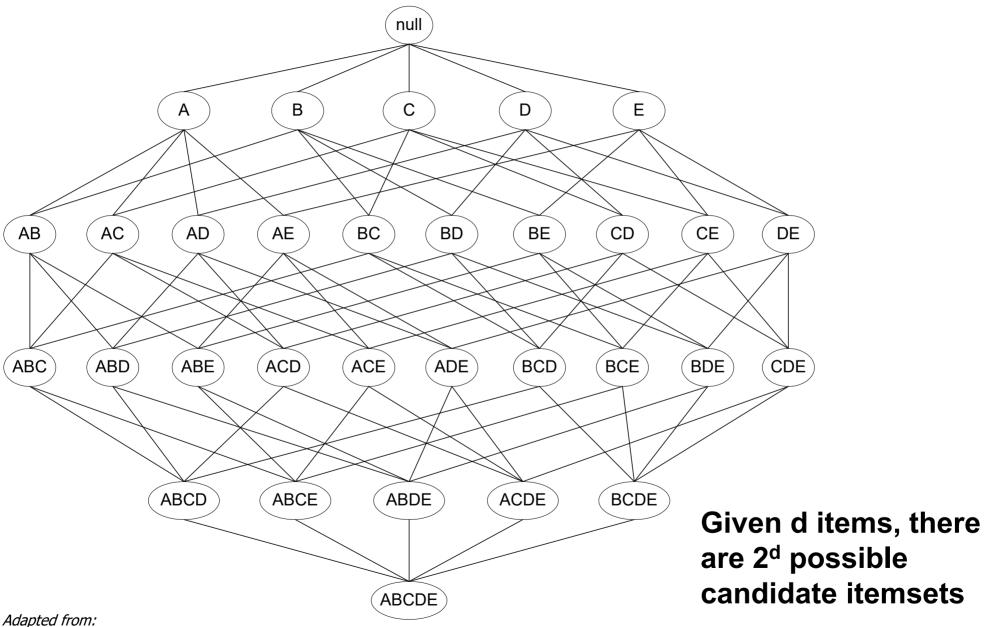
TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
 \{ \text{Milk,Diaper} \} \rightarrow \{ \text{Beer} \} \ (\text{s=0.4, c=0.67})   \{ \text{Milk,Beer} \} \rightarrow \{ \text{Diaper} \} \ (\text{s=0.4, c=1.0})   \{ \text{Diaper,Beer} \} \rightarrow \{ \text{Milk} \} \ (\text{s=0.4, c=0.67})   \{ \text{Beer} \} \rightarrow \{ \text{Milk,Diaper} \} \ (\text{s=0.4, c=0.67})   \{ \text{Diaper} \} \rightarrow \{ \text{Milk,Beer} \} \ (\text{s=0.4, c=0.5})   \{ \text{Milk} \} \rightarrow \{ \text{Diaper,Beer} \} \ (\text{s=0.4, c=0.5})
```

Observations:

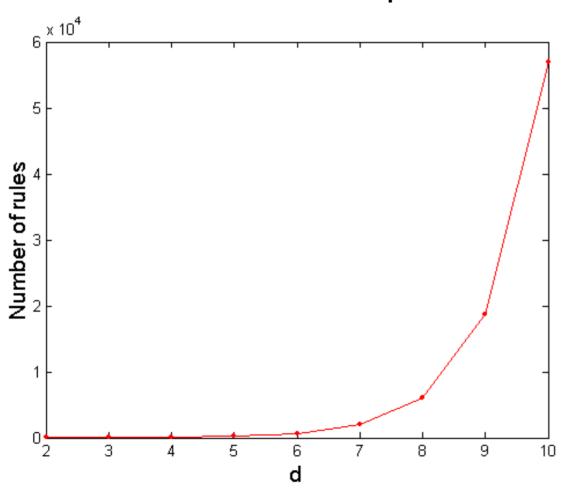
- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple support and confidence requirements


Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

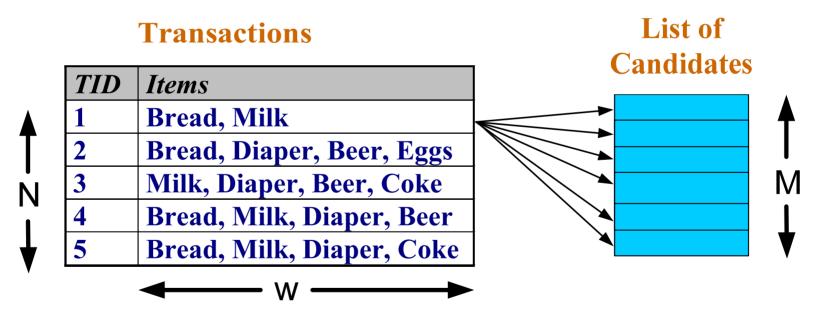
- Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- However, frequent itemset generation is computationally expensive


Frequent Itemset Generation

Adapted from:

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

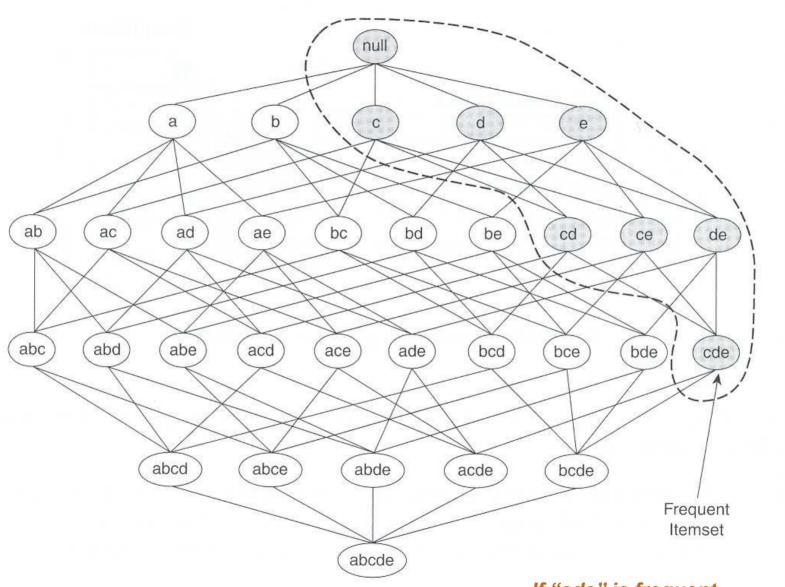
Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

Match each transaction against every candidate

Frequent Itemset Generation Strategies

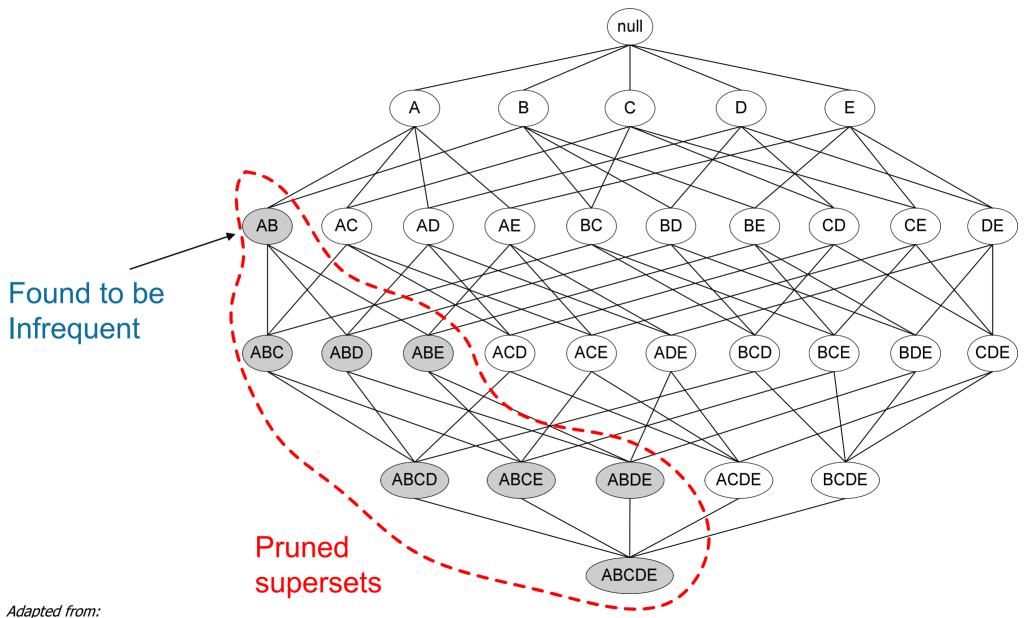
- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M (ex. Apriori principle)
- Reduce the number of comparisons (N&M)
 - No need to match every candidate against every transaction
 - Use efficient data structures either to store the candidates or to compress the transactions (ex. FP-Growth algorithm)


Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support


Illustrating Apriori Principle

Adapted from:

Tan, Steinbach, Kumar - Introduction to Data Mining Han, Kamber - Data Mining: Concepts and Techniques If "cde" is frequent, all things are also frequent!

Illustrating Apriori Principle

Adapted from:

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

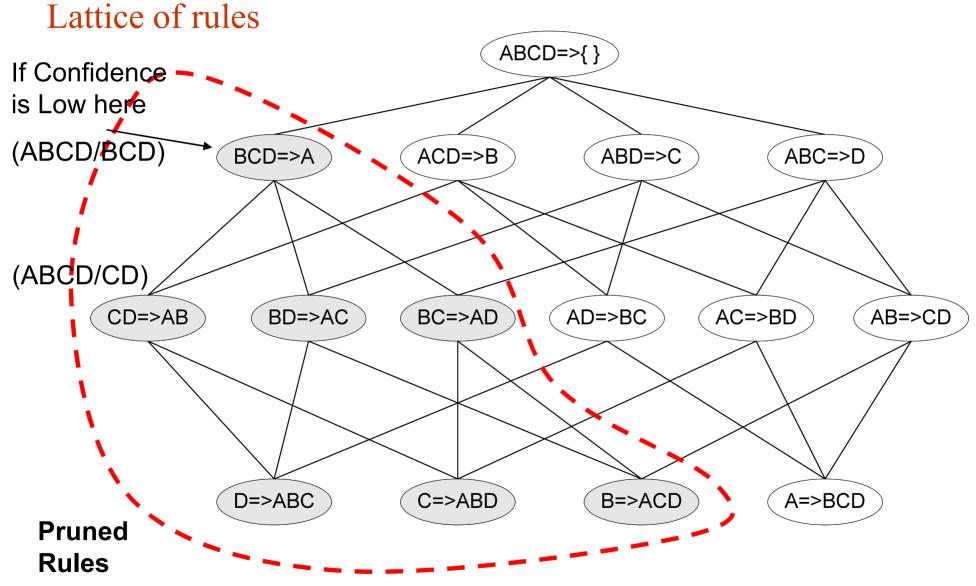
If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Apriori Algorithm

Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Rule Generation


Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

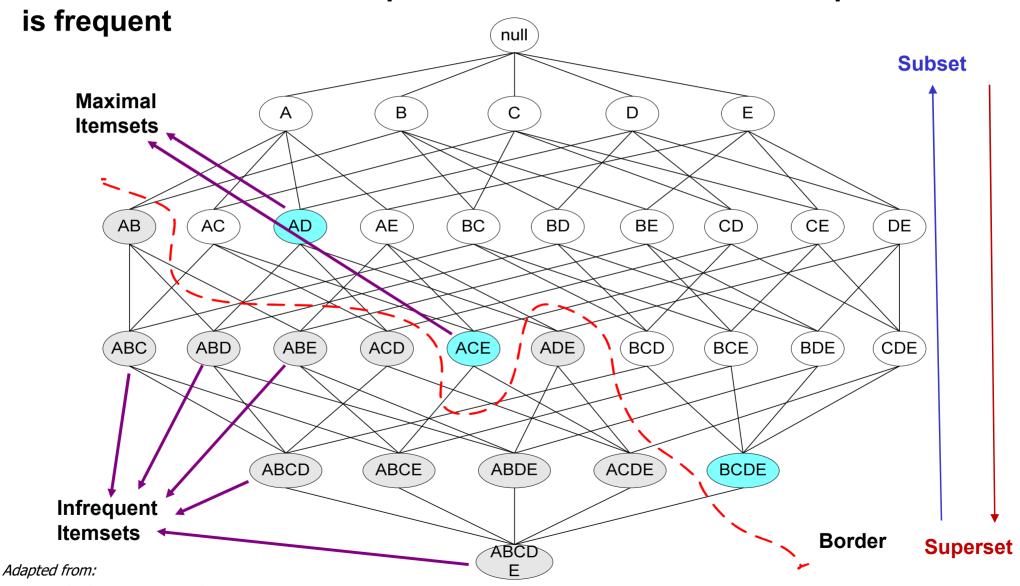
- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L$: f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AC, BD \rightarrow AC, CD \rightarrow AB,

■ If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

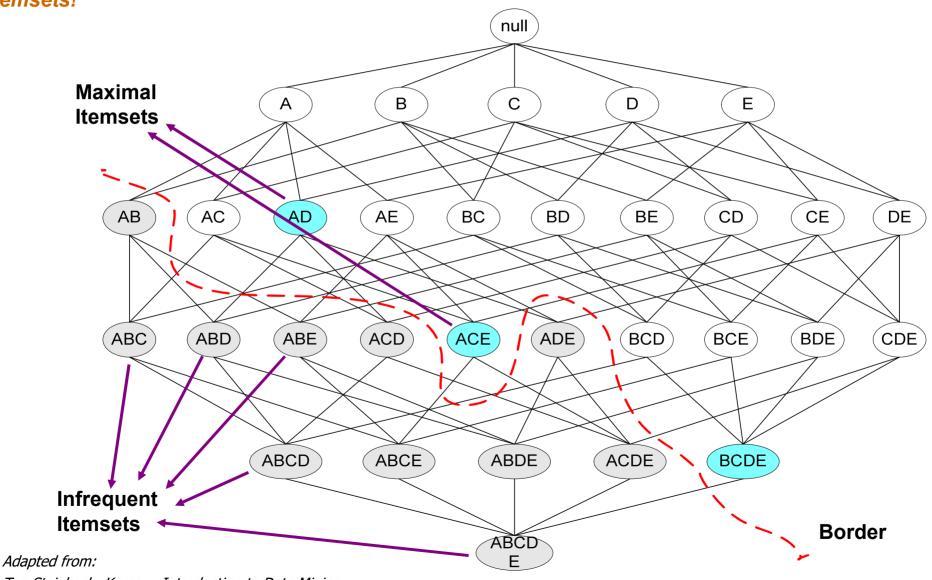
Rule Generation for Apriori Algorithm

Adapted from:


Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

Need a compact representation

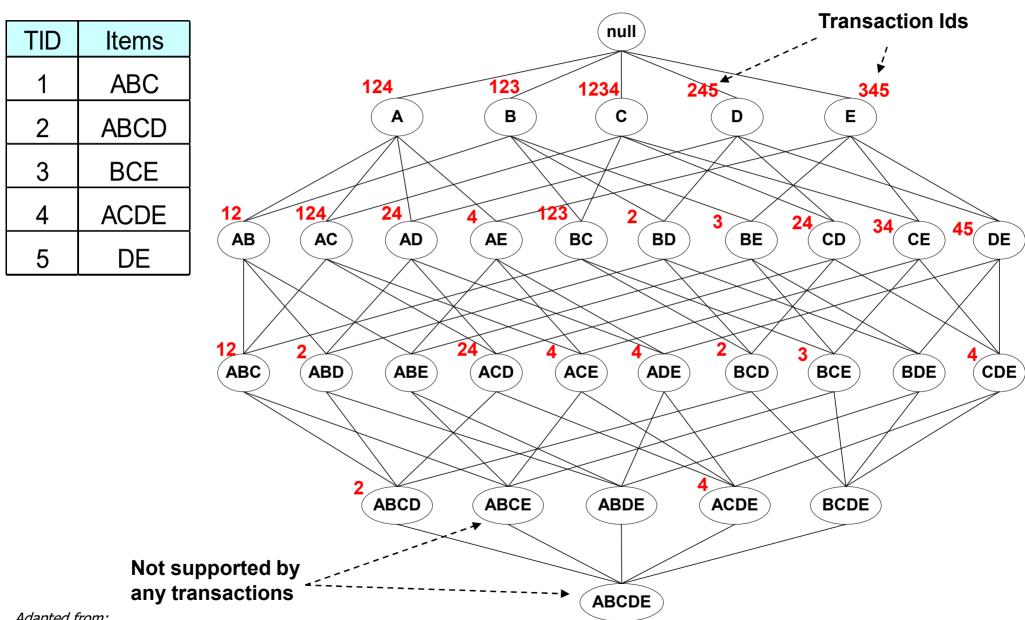

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets

- Frequent itemsets that begin with item a : {a}, {a, c}, {a, d}, {a, e}, {a, c, e} → subset of either {a, c, e}, or {a, d}
- Other frequent itemsets : $\{b\}$, $\{b, c\}$, $\{b, d\}$, $\{b, e\}$, ..., $\{c, d\}$, $\{b, c, d, e\} \rightarrow \text{subset of } \{b, c, d, e\}$

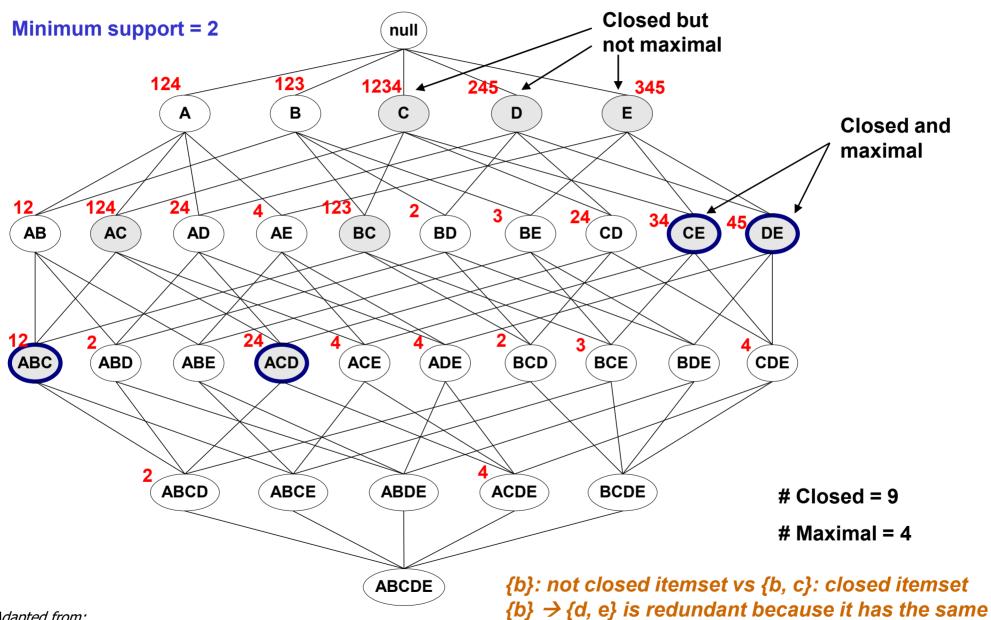
Thus, maximal itemsets {a, c, e}, {a, d}, {b, c, d, e} provide a compact representation of the frequent itemsets!

Closed Itemset


- An itemset is closed if none of its immediate supersets has the same support as the itemset (ex. {B} vs {A,B}, {B,C} and others)
- An itemset is not closed if at least one of its immediate supersets has the same support (ex. {A} vs {A,B})

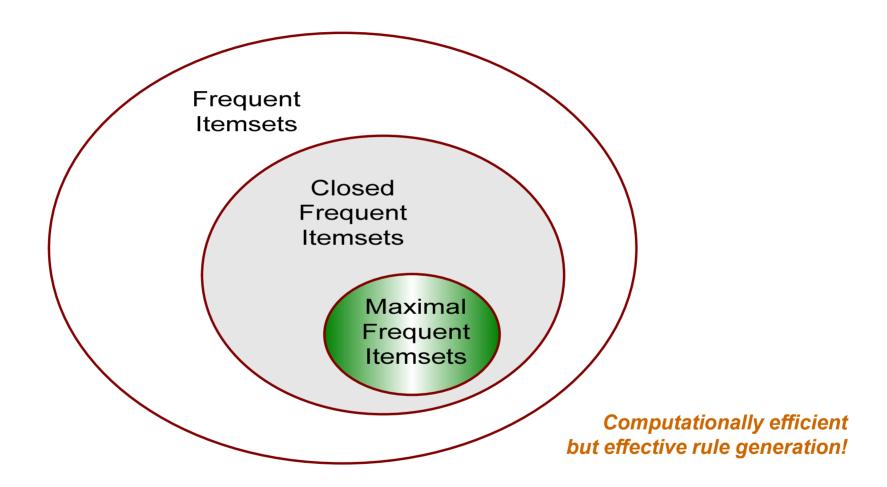
TID	Items	
1	{A,B}	
2	$\{B,C,D\}$	
3	$\{A,B,C,D\}$	
4	$\{A,B,D\}$	
5	$\{A,B,C,D\}$	

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3


Itemset	Support
{A,B,C}	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

Adapted from:


Maximal vs Closed Frequent Itemsets

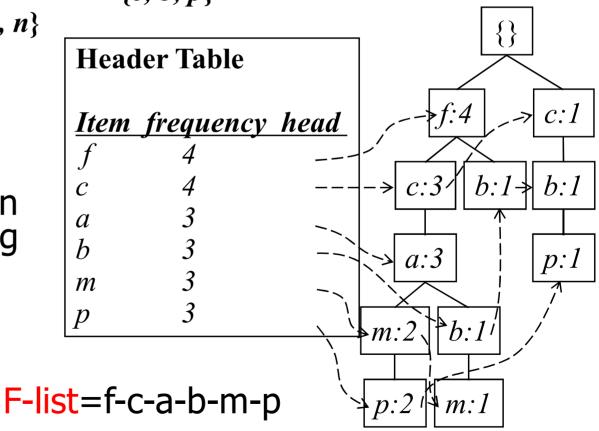
support and confidence as $\{b, c\} \rightarrow \{d, e\}$

Adapted from:

Maximal vs Closed Itemsets

FP-growth Algorithm

 Use a compressed representation of the database using an FP-tree (Frequent-Pattern Tree)


Reduce the number of comparisons between transactions and candidates

 Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

Construct FP-tree from a Transaction Database

<u>TID</u>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	•
300	$\{b, f, h, j, o, w\}$	{ <i>f</i> , <i>b</i> }	min_support = 3
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \bar{l}, p, m, n\}$	2}	

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Effect of Support Distribution

- How to set the appropriate *minsup* threshold?
 - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D}
 can have same support & confidence
- In the original formulation of association rules, support & confidence are the only measures used
- Interestingness measures can be used to prune/rank the derived patterns

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \to Y$

	Y	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	[T]

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

 f_{01} : support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Support (Tea \rightarrow Coffee) = 15 / 100 = 15%

Confidence (Tea \rightarrow Coffee) = 15 / 20 = 75%

but the fraction of people who drink coffee, regardless of whether they drink tea is 90%

⇒ Although confidence is high, rule is misleading

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Tea \rightarrow Coffee X

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

Confidence=5/20=0.25

P(CoffeeX) = 0.1 Lift = 2.5 > 1

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

*Measure of the performance of a targeting model with respect to the population as a whole Good if the response within the target is much better than the average for the population

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

# Measure Formula 1 ϕ -coefficient 2 Goodman-Kruskal's (λ) 3 Odds ratio (α) 4 Yule's Q 5 Yule's Y 6 Kappa (κ) 7 Mutual Information (M) 8 J-Measure (J) 9 Gini index (G) # Measure Formula $ \frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}} $ $ \frac{P(A,B)P(\overline{A},\overline{B})}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\alpha-1}{\alpha+1} $ $ \frac{P(A,B)P(\overline{A},\overline{B})}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} $ $ \frac{P(A,B)P(\overline{A},\overline{B})-P(A,B)P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} $ $ \frac{P(A,B)P(\overline{A},\overline{B})-P(A,B)P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} $ $ \frac{P(A,B)P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} $ $ \frac{P(A,B)P(\overline{A},\overline{B})-P(A,B)P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} $ $ \frac{P(A,B)P(\overline{A},\overline{B},\overline{B},\overline{B},\overline{B},\overline{B},\overline{B},\overline{B},B$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)
Yule's Q $ \begin{array}{ll} \hline{P(A,\overline{B})P(\overline{A},B)} \\ \hline{P(A,B)P(AB)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} \\ \hline{P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)} = \frac{\alpha-1}{\alpha+1} \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)} - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)P(A,B) - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B)P(A,B) - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B) - P(A,\overline{B})P(\overline{A},B) \\ \hline{P(A,B)P(A,B)P(A,B)P(A,B)P(A,B) - P(A,\overline{B},B) - P(A,\overline{B},B) \\ P(A,B)P(A,B)P(A,B)P(A,B) - P$	
$\begin{array}{lll} 5 & \text{Yule's } Y \\ 6 & \text{Kappa } (\kappa) \\ 7 & \text{Mutual Information } (M) \\ 8 & \text{J-Measure } (J) \\ 9 & \text{Gini index } (G) \\ \end{array} \begin{array}{ll} \frac{\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(A,B)}}{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(AB)}{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}} \\ \frac{P(A,B)+P(A,B)-P(A)P(B)}{1-P(A)P(B)-P(A)P(B)} \\ \frac{P(A,B)+P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(AB)}{1-P(A)P(B)-P(A)P(B)} \\ \frac{P(A,B)+P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(B,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(B,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(B,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(B,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(B,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ \frac{P(A,B)+P(A,B)P(A,B)P(A,B)P(A,B)}{1-P(A,B)P(A,B)P(A,B)} = \frac{\sqrt{a}-1}{\sqrt{a}+1} \\ P(A,B$	
$ \begin{array}{ c c c c }\hline 6 & \text{Kappa } (\kappa) & \frac{\dot{P}(A,B) + P(\overline{A},\overline{B}) - \dot{P}(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})} \\ 7 & \text{Mutual Information } (M) & \frac{\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))} \\ 8 & \text{J-Measure } (J) & \max\left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{A})}), \\ & P(A,B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})\right) \\ 9 & \text{Gini index } (G) & \max\left(P(A)[P(B A)^{2} + P(\overline{B} A)^{2}] + P(\overline{A})[P(B \overline{A})^{2} + P(\overline{A})] + P(\overline{A})[P(B \overline{A})^{2}] + P(\overline{A})[P(B \overline{A})^{2}]$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8 J-Measure (J) $ \max \left(P(A,B) \log \frac{P(A_i), -\sum_j P(B_j) \log P(B_j)}{P(B)} \right) $ $ P(A,B) \log \left(\frac{P(B A)}{P(B)} \right) + P(\overline{A}B) \log \left(\frac{P(\overline{B} A)}{P(\overline{B})} \right), $ $ P(A,B) \log \left(\frac{P(A B)}{P(A)} \right) + P(\overline{A}B) \log \left(\frac{P(\overline{A} B)}{P(\overline{A})} \right) $ $ P(A,B) \log \left(\frac{P(A B)}{P(A)} \right) + P(\overline{A}B) \log \left(\frac{P(\overline{A} B)}{P(\overline{A})} \right) $	
8 J-Measure (J) $\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \\ P(A,B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(A)}), \\ P(A,B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(A)}) \right) \\ \max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B})^2] + P(\overline{A})[P(B \overline{A})^2] + P(\overline{A})[P(B \overline$	
$\begin{array}{c c} P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})}) \\ \text{9} & \text{Gini index } (G) \\ & \max\left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B})^2] \\ & -P(B)^2 - P(\overline{B})^2, \end{array}$	
9 Gini index (G) $\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B})^2 - P(\overline{B})^2\right)$	
$-P(B)^2-P(\overline{B})^2,$	
	$(\overline{B} \overline{A})^{2}]$
$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{B})^{2}] + P(\overline{B})[P(A B)^{2} + P(\overline{B})^{2}] + P(\overline{B})[P(A B)^{2}] + $	$[\overline{1} \overline{B})^2]$
$-P(A)^2-P(\overline{A})^2$	
$egin{array}{ c c c c c }\hline 10 & \operatorname{Support}\left(s ight) & P(A,B) & \hline \end{array}$	
11 Confidence (c) $\max(P(B A), P(A B))$	
$egin{array}{ c c c c } 12 & \operatorname{Laplace}\left(L ight) & \operatorname{max}\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight) \end{array}$	
13 Conviction (V) $\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})}, rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$	
14 Interest (I) $\frac{P(A,B)}{P(A)P(B)}$	
15 cosine (IS) $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
17 Certainty factor (F) $\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$	
$ \begin{array}{ c c c c c }\hline 18 & \text{Added Value } (AV) & \max(P(B A)-P(B),P(A B)-P(A)) \end{array} $	
19 Collective strength (S) $ \begin{array}{c c} P(A,B) + P(\overline{AB}) \\ \hline P(A)P(B) + P(\overline{A})P(\overline{B}) \\ \hline P(A,B) \\ \hline P(A,B) \\ \hline P(A)P(B) - P(A,B) \\ \hline P(A,B) \\ \hline P(A)P(B) - P(A,B) \\ \hline \end{array} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})} $	
20 Jaccard (ζ) $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$	
21 Klosgen (K) $\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$	

Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	ΙE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	ΙE	Yes
5	Australia	123	9	Male	Mozilla	No

Example of Association Rule:

{Number of Pages \in [5,10) \land (Browser=Mozilla)} \rightarrow {Buy = No}

Handling Categorical Attributes

Too many categories will create less important rules with low support and confidence!

Potential Issues

- What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - » Potential solution: Aggregate the low-support attribute values
- What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - » Potential solution: drop the highly frequent items

Handling Categorical Attributes

Transform categorical attribute into asymmetric binary variables

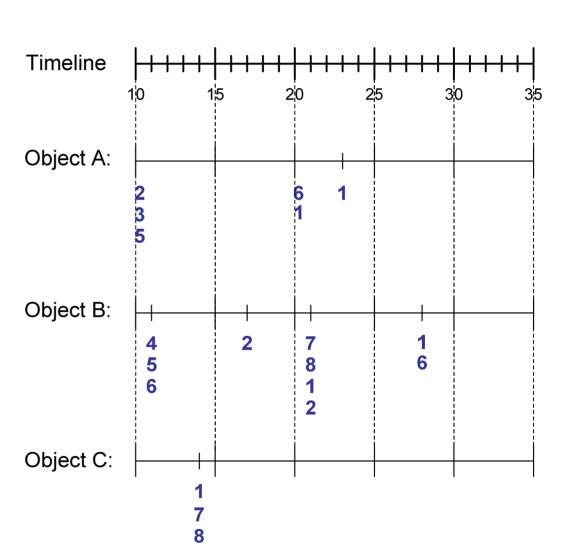
- Introduce a new "item" for each distinct attributevalue pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer, Mozilla, or Netscape
 - Then, YES/NO

Handling Continuous Attributes

- Different kinds of rules
 - Age∈[21,35) \land Salary∈[70k,120k) \rightarrow Buy
 - Salary∈[70k,120k) \land Buy \rightarrow Age: μ =28, σ =4
- Different methods
 - Discretization-based
 - Statistics-based

Discretization Issues

Size of the discretized intervals affect support & confidence

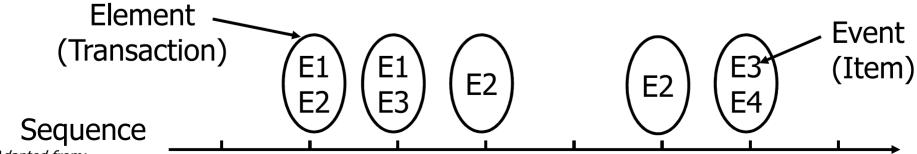

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No}
{Refund = No, (60K \leq Income \leq 80K)} \rightarrow {Cheat = No}
{Refund = No, (0K \leq Income \leq 1B)} \rightarrow {Cheat = No}
```

- If interval is too small
 - may not have enough support
- If interval is too large
 - may not have enough confidence
- Potential solution: try all possible intervals

Sequence Data

Sequence Database:

Object	Timestamp	Events
Α	10	2, 3, 5
Α	20	6, 1
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7



Adapted from:

Tan, Steinbach, Kumar - Introduction to Data Mining Han, Kamber - Data Mining: Concepts and Techniques

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Adapted from:

Tan, Steinbach, Kumar - Introduction to Data Mining Han, Kamber - Data Mining: Concepts and Techniques

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$S = \langle e_1 e_2 e_3 ... \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

The 3-mile Island Accident was a partial meltdown of reactor number 2 of 3-Mile Island Nuclear Generating Station in Pennsylvania and subsequent radiation leak that occurred in 1979.

{Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

 Sequence of initiating events causing the nuclear accident at 3-mile Island

{clogged resin} {outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips} {reactor pressure increases}>

Sequence of books checked out at a library

{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Formal Definition of a Subsequence

■ A sequence $\langle a_1 a_2 ... a_n \rangle$ is contained in another sequence $\langle b_1 b_2 ... b_m \rangle$ (m \geq n) if there exist integers $i_1 \langle i_2 \langle ... \langle i_n \text{ such that } a_1 \subseteq b_{i1}, a_2 \subseteq b_{i1}, ..., a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

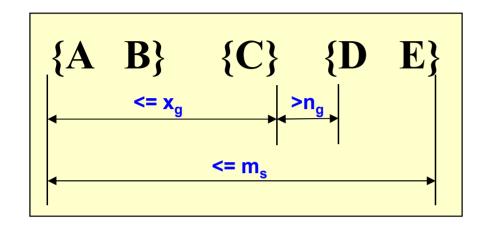
- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

Given:

- a database of sequences
- a user-specified minimum support threshold, minsup

Task:


Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,3,4 2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
Е	2	2, 4, 5

Minsup = 50% **Examples of Frequent Subsequences:** s=60% s=60% s=80% s=80% s=80% < {2} {2} > s=60% < {1} {2,3} > s=60% < {2} {2,3} > s=60% < {1,2} {2,3} > s=60%

Timing Constraints

x_q: max-gap

n_g: min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No