Week 13 Mining Association Rules

Seokho Chi
Professor | Ph.D.
SNU Construction Innovation Lab

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$\{$ Diaper $\} \rightarrow$ Beer $\}$, \{Milk, Bread\} \rightarrow \{Eggs,Coke\}, $\{$ Beer, Bread $\} \rightarrow\{$ Milk $\}$,

Implication means co-occurrence, not causality!

Association Rule Mining

- Itemset: a collection of one or more items

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- 1 item set: \{milk\}, 3 item set: \{milk, bread, diaper\}
- Support count (θ): frequency of occurrence of an itemset
- $\theta(\{$ milk, bread, diaper $\})=2$
- Support (S): fraction of transactions that contain an itemset
- S(\{milk, bread, diaper\}) $=2 / 5$
- Frequent itemset: an item set whose support is greater than or equal to a minimum support threshold(minsup)

Association Rule Mining

- Association rule: an implication expression of the form X $\rightarrow Y$ where X and Y are item sets
- \{milk, diaper $\} \rightarrow$ \{bread\}, \{milk\} \rightarrow \{diaper, bread $\}$
- Rule evaluation metrics
- Support (S): fraction of transactions that contain both X and Y
- Confidence (C): measure how often items in Y appear transactions that contain X
- \{Milk, Diaper\} \rightarrow \{Beer\}
- $S=2 / 5$: milk, diaper \& beer among total
- $C=2 / 3$: beer among milk, diaper

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule Discovery: Application

- Marketing and Sales Promotion:
- Let the rule discovered be

```
{Bagels, ... } --> {Potato Chips}
```

- Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels.
- Bagels in antecedent and Potato chips in consequent => Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconfthresholds

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple support and confidence requirements

Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- However, frequent itemset generation is computationally expensive

Frequent Itemset Generation

Adapted from:
Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Computational Complexity

- Given d unique items:
- Total number of itemsets $=2^{\text {d }}$
- Total number of possible association rules:

$$
\begin{aligned}
R & =\sum_{k=1}^{d+1}\left[\binom{d}{k} \times \sum_{j=1}^{d+k}\binom{d-k}{j}\right] \\
& =3^{d}-2^{d+1}+1
\end{aligned}
$$

If $\mathbf{d = 6}, \mathbf{R}=\mathbf{6 0 2}$ rules

Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
- Complete search: $M=2^{\text {d }}$
- Use pruning techniques to reduce M (ex. Apriori principle)
- Reduce the number of comparisons (N\&M)
- No need to match every candidate against every transaction
- Use efficient data structures either to store the candidates or to compress the transactions (ex. FPGrowth algorithm)

Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Illustrating Apriori Principle

Found to be Infrequent

Adapted from:

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Illustrating Apriori Principle

Adapted from:

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Apriori Algorithm

- Method:
- Let $\mathrm{k}=1$
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
- Generate length ($k+1$) candidate itemsets from length k frequent itemsets
- Prune candidate itemsets containing subsets of length k that are infrequent
- Count the support of each candidate by scanning the DB
- Eliminate candidates that are infrequent, leaving only those that are frequent

Rule Generation

Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L: f$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules: $\begin{array}{llll}A B C \rightarrow D, & A B D \rightarrow C, & A C D \rightarrow B, & B C D \rightarrow A, \\ A \rightarrow B C D, & B \rightarrow A C D, & C \rightarrow A B D, & D \rightarrow A B C \\ A B \rightarrow C D, & A C \rightarrow B D, & A D \rightarrow B C, & B C \rightarrow A D, \\ B D \rightarrow A C, & C D \rightarrow A B, & & \end{array}$
- If $|\mathrm{L}|=k$, then there are $2^{k}-2$ candidate association rules (ignoring $L \rightarrow \varnothing$ and $\varnothing \rightarrow L$)

Rule Generation for Apriori Algorithm

Lattice of rules

Adapted from:

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Compact Representation of Frequent Itemsets

- Some itemsets are redundant because they have identical support as their supersets
- Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

- Frequent itemsets that begin with item $a:\{a\},\{a, c\},\{a, d\},\{a, e\},\{a, c, e\} \rightarrow$ subset of either $\{a, c, e\}$, or $\{a, d\}$
- Other frequent itemsets: $\{b\},\{b, c\},\{b, d\},\{b, e\}, \ldots,\{c, d\},\{b, c, d, e\} \rightarrow$ subset $o f\{b, c, d, e\}$

Thus, maximal itemsets $\{a, c, e\},\{a, d\},\{b, c, d, e\}$ provide a compact representation of the frequent itemsets!

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

- An itemset is closed if none of its immediate supersets has the same support as the itemset (ex. $\{B\}$ vs $\{A, B\}$, $\{B, C\}$ and others)
- An itemset is not closed if at least one of its immediate supersets has the same support (ex. $\{A\}$ vs $\{A, B\}$)

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

Itemset	Support
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

Itemset	Support
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	2
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$	3
$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}\}$	2
$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	3
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	2

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

Adapted from:
Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

FP-growth Algorithm

- Use a compressed representation of the database using an FP-tree (Frequent-Pattern Tree)

Reduce the number of comparisons between transactions and candidates

- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

Construct FP-tree from a Transaction Database

TID	Items bought	(ordered) frequent items
$\mathbf{1 0 0}$	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
$\mathbf{2 0 0}$	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
$\mathbf{3 0 0}$	$\{b, f, h, j, o, w\}$	$\{f, b\}$
$\mathbf{4 0 0}$	$\{b, c, k, s, p\}$	$\{c, b, p\}$
$\mathbf{5 0 0}$	$\{a, f, c, e, l, p, m, n\}$	

1. Scan DB once, find frequent 1-itemset (single item pattern)
2. Sort frequent items in frequency descending order, f-list
3. Scan DB again, construct FP-tree

$$
\text { min_support }=3
$$

F-list=f-c-a-b-m-p

Effect of Support Distribution

- How to set the appropriate minsup threshold?
- If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
- If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
- many of them are uninteresting or redundant
- Redundant if $\{A, B, C\} \rightarrow\{D\}$ and $\{A, B\} \rightarrow\{D\}$ can have same support \& confidence
- In the original formulation of association rules, support \& confidence are the only measures used
- Interestingness measures can be used to prune/rank the derived patterns

Computing Interestingness Measure

- Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $\mathrm{X} \rightarrow \mathrm{Y}$

	Y	\bar{Y}	
X	f_{11}	f_{10}	f_{1+}
\bar{X}	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	$\|T\|$

$f_{11}:$ support of X and Y
$f_{10}:$ support of X and \bar{Y}
$f_{01}:$ support of \bar{X} and Y
$f_{00}:$ support of \bar{X} and \bar{Y}

Used to define various measures
support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
$\overline{\text { Tea }}$	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Support (Tea \rightarrow Coffee) $=15 / 100=15 \%$
Confidence (Tea \rightarrow Coffee) $=15 / 20=75 \%$
but the fraction of people who drink coffee, regardless of whether they drink tea is 90%
\Rightarrow Although confidence is high, rule is misleading

Statistical-based Measures

- Measures that take into account statistical dependence

$$
\text { Lift }=\frac{P(Y \mid X)}{P(Y)}
$$

$$
\text { Interest }=\frac{P(X, Y)}{P(X) P(Y)}
$$

$$
P S=P(X, Y)-P(X) P(Y)
$$

$$
\phi-\text { coefficient }=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}
$$

Example: Lift

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria

 should we use to determine whether a measure is good or bad?| \# | Measure | Formula |
| :---: | :---: | :---: |
| 1 | ϕ-coefficient | $\frac{P(A, B)-P(A) P(B)}{}$ |
| 2 | | $\underline{y}^{\sqrt{P(A) P(B)(1-P(A))(1-P(B))}} \max _{k} P\left(A_{j}, B_{k}\right)+\sum_{k} \max _{j} P\left(A_{j}, B_{k}\right)-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right)$ |
| 2 | | ${ }_{P(A, B) P(\bar{A}, \bar{B})} \quad 2-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right)$ |
| 3 | Odds ratio (α) | $\frac{P(A, B) P(\bar{B}, \bar{B})}{P(A, \bar{B}) P(\bar{A}, B)}$ |
| 4 | Yule's Q | $\frac{P(A, B) P(\overline{A B})-P(A, \bar{B}) P(\bar{A}, B)}{P(A, B) P(\overline{A B})+P(A, \bar{B}) P(\bar{A}, B)}=\frac{\alpha-1}{\alpha+1}$ |
| 5 | Yule's Y | |
| 5 | Yule's Y | $\frac{\sqrt{P(A, B) P(\overline{A B}})}{\sqrt{P(A, \bar{B}) P(\bar{A}, \underline{B})}}=\frac{\sqrt{\alpha}+1}{}$ |
| 6 | Kappa (κ) | $\frac{P(A, B)+P(\bar{A}, \bar{B})-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}$ |
| | | |
| 7 | Mutual Information (M) | $\overline{\min \left(-\sum_{i} P\left(A_{i}\right) \log P\left(A_{i}\right),-\sum_{j} P\left(B_{j}\right) \log P\left(B_{j}\right)\right)}$ |
| 8 | J-Measure (J) | $\begin{array}{r} \max \left(P(A, B) \log \left(\frac{P(B \mid A \overline{ })}{P(B)}\right)+P(A \bar{B}) \log \left(\frac{P(\bar{B} \mid A)}{P(\bar{B})}\right),\right. \\ \left.P(A, B) \log \left(\frac{P(A \mid B)}{P(A)}\right)+P(\bar{A} B) \log \left(\frac{P(\bar{A} \mid B)}{P(\bar{A})}\right)\right) \end{array}$ |
| 9 | Gini index (G) | $\begin{gathered} \max \left(P(A)\left[P(B \mid A)^{\mathrm{a}}+P(\bar{B} \mid A)^{\mathrm{a}}\right]+P(\bar{A})\left[P(B \mid \bar{A})^{\mathrm{a}}+P(\bar{B} \mid \bar{A})^{\mathrm{a}}\right]\right. \\ \quad-P(B)^{\mathrm{a}}-P(\bar{B})^{\mathrm{a}} \\ P(B)\left[P(A \mid B)^{\mathrm{a}}+P(\bar{A} \mid B)^{\mathrm{a}}\right]+P(\bar{B})\left[P(A \mid \bar{B})^{\mathrm{a}}+P(\bar{A} \mid \bar{B})^{\mathrm{a}}\right] \\ \left.\quad-P(A)^{\mathrm{a}}-P(\bar{A})^{\mathrm{a}}\right) \end{gathered}$ |
| 10 | Support (s) | $P(A, B)$ |
| 11 | Confidence (c) | $\max (P(B \mid A), P(A \mid B))$ |
| 12 | Laplace (L) | $\max \left(\frac{N P(A, B)+1}{N P(A)+\mathrm{a}}, \frac{N P(A, B)+1}{N P(B)+\mathrm{a}}\right)$ |
| 13 | Conviction (V) | $\max \left(\frac{P(A) P(\bar{B})}{P(A \bar{B})}, \frac{P(B) P(\bar{A})}{P(B \bar{A})}\right)$ |
| 14 | Interest (I) | $\frac{P(A, B)}{P(A) P(B)}$ |
| 15 | cosine ($I S$) | $\frac{P(A, B)}{\sqrt{P(A) P(B)}}$ |
| 16 | Piatetsky-Shapiro's (PS) | $P(A, B)-P(A) P(B)$ |
| 17 | Certainty factor (F) | $\max \left(\frac{P(B \mid A)-P(B)}{1-P(B)}, \frac{P(A \mid B)-P(A)}{1-P(A)}\right)$ |
| 18 | Added Value ($A V$) | $\max (P(B \mid A)-P(B), P(A \mid B)-P(A))$ |
| 19 | Collective strength (S) | $\frac{P(A, B)+P(\overline{A B})}{P(A) P(B)+P(\bar{A}) P(\bar{B})} \times \frac{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A, B)-P(\overline{A B})}$ |
| 20 | Jaccard (ζ) | $\frac{P(A)+P(A, B)-P(A, B)}{P(B)}$ |
| 21 | Klosgen (K) | $\sqrt{P(A, B)} \max (P(B \mid A)-P(B), P(A \mid B)-P(A))$ |

Continuous and Categorical Attributes

How to apply association analysis formulation to nonasymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	IE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	IE	Yes
5	Australia	123	9	Male	Mozilla	No
\ldots						

Example of Association Rule:

$\{$ Number of Pages $\in[5,10) \wedge($ Browser=Mozilla $)\} \rightarrow\{$ Buy $=$ No $\}$

Handling Categorical Attributes

- Potential Issues
- What if attribute has many possible values
- Example: attribute country has more than 200 possible values
- Many of the attribute values may have very low support
» Potential solution: Aggregate the low-support attribute values
- What if distribution of attribute values is highly skewed
- Example: 95\% of the visitors have Buy = No
- Most of the items will be associated with (Buy=No) item
» Potential solution: drop the highly frequent items

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attributevalue pair
- Example: replace Browser Type attribute with
- Browser Type = Internet Explorer, Mozilla, or Netscape
- Then, YES/NO

Handling Continuous Attributes

- Different kinds of rules
- Age $\in[21,35) \wedge$ Salary $\in[70 k, 120 k) \rightarrow$ Buy
- Salary $\in[70 k, 120 k) \wedge$ Buy \rightarrow Age: $\mu=28, \sigma=4$
- Different methods
- Discretization-based
- Statistics-based

Discretization Issues

- Size of the discretized intervals affect support \& confidence

$$
\begin{aligned}
& \{\text { Refund }=\text { No, }(\text { Income }=\$ 51,250)\} \rightarrow\{\text { Cheat }=\text { No }\} \\
& \{\text { Refund }=\text { No, }(60 \mathrm{~K} \leq \text { Income } \leq 80 \mathrm{~K})\} \rightarrow\{\text { Cheat }=\text { No }\} \\
& \{\text { Refund }=\text { No, }(0 \mathrm{~K} \leq \text { Income } \leq 1 \mathrm{~B})\} \rightarrow\{\text { Cheat }=\text { No }\}
\end{aligned}
$$

- If interval is too small
- may not have enough support
- If interval is too large
- may not have enough confidence
- Potential solution: try all possible intervals

Sequence Data

Sequence Database:

Object	Timestamp	Events
A	10	$2,3,5$
A	20	6,1
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$7,8,1,2$
B	28	1,6
C	14	$1,8,7$

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

Formal Definition of a Sequence

- A sequence is an ordered list of elements (transactions)

$$
s=\left\langle e_{1} e_{2} e_{3} \ldots\right\rangle
$$

- Each element contains a collection of events (items)

$$
e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

- Each element is attributed to a specific time or location
- Length of a sequence, $|s|$, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

The 3-mile Island Accident was a partial meltdown of reactor number 2 of

- Web sequence
\{Homepage\} \{Electronics\} \{Digital Cameras\} \{Canon Digital Camera\} \{Shopping Cart\} \{Order Confirmation\} \{Return to Shopping\} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island
\{clogged resin\} \{outlet valve closure\} \{loss of feedwater\} \{condenser polisher outlet valve shut\} \{booster pumps trip\} \{main waterpump trips\} \{main turbine trips\} \{reactor pressure increases\}>
- Sequence of books checked out at a library \{Fellowship of the Ring\} \{The Two Towers\} \{Return of the King\}>

Formal Definition of a Subsequence

- A sequence $<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $<b_{1} b_{2} \ldots b_{m}>(m \geq n)$ if there exist integers $i_{1}<i_{2}<\ldots<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 1}, \ldots, a_{n} \subseteq b_{\text {in }}$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{8\}>$	$<\{2\}\{3,5\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{2,5\}>$	$<\{2\}\{4\}>$	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \geq minsup)

Sequential Pattern Mining: Definition

- Given:
- a database of sequences
- a user-specified minimum support threshold, minsup
- Task:
- Find all subsequences with support \geq minsup

Sequential Pattern Mining: Example

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

> Minsup = 50\%

Examples of Frequent Subsequences:

$$
\begin{array}{ll}
<\{1,2\}> & \mathrm{s}=60 \% \\
<\{2,3\}> & \mathrm{s}=60 \% \\
<\{2,4\}> & \mathrm{s}=80 \% \\
<\{3\}\{5\}> & \mathrm{s}=80 \% \\
<\{1\}\{2\}> & \mathrm{s}=80 \% \\
<\{2\}\{2\}> & \mathrm{s}=60 \% \\
<\{1\}\{2,3\}> & \mathrm{s}=60 \% \\
<\{2\}\{2,3\}> & \mathrm{s}=60 \% \\
<\{1,2\}\{2,3\}> & \mathrm{s}=60 \%
\end{array}
$$

Timing Constraints

x_{g} : max-gap
n_{g} : min-gap
m_{s} : maximum span
$\mathbf{x}_{\mathbf{g}}=\mathbf{2}, \mathbf{n}_{\mathbf{g}}=\mathbf{0}, \mathbf{m}_{\mathbf{s}}=\mathbf{4}$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{6\}\{5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1\}\{4\}>$	No
$<\{1\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{2\}\{3\}\{5\}>$	Yes
$<\{1,2\}\{3\}\{2,3\}\{3,4\}\{2,4\}\{4,5\}>$	$<\{1,2\}\{5\}>$	No

Adapted from:
Tan,Steinbach, Kumar - Introduction to Data Mining
Han, Kamber - Data Mining: Concepts and Techniques

