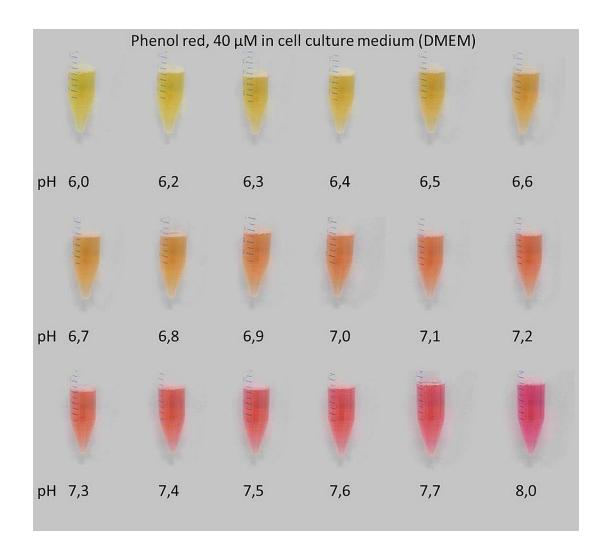

Growth Conditions of Animal Cells

Mammalian cells

- 37°C, pH ≈ 7.3
- Doubling time: 12 to 20 h
- Carbonate buffer (HCO₃²⁻/H₂CO₃⁻) using 5% CO₂enriched air
- HEPES (*N*-[2-hydroxyethyl]piperazine-*N*'-[2ethanesulfonic acid]) buffer can be used without CO₂.
- Insect cells
 - 28°C, pH ≈ 6.2
- Fish cells
 - 25~35°C, pH = 7.0 ~7.5

Carbonate-Bicarbonate Buffer



Carbonate-Bicarbonate Buffer

$$CO_{2} + H_{2}O \xrightarrow{} H_{2}CO_{3} \xrightarrow{} H^{+} + HCO_{3} \xrightarrow{} H^{+} + CO_{3}^{2-}$$

$$+ H_{2}O \qquad H_$$

Phenol Red in Medium

Growth Kinetics of Mammalian Cells

- The pattern of the mammalian cell growth is similar to microbial growth.
- Stationary phase is relatively short.
 - The concentration of viable cells drops sharply thereafter, as a result of the accumulation of toxic metabolic products (lactate and ammonia).
- Toxic metabolites
 - Lactate: product of glucose metabolism
 - Ammonia: result of glutamine metabolism

Kinetics of Product Formation

- Most of the products of mammalian cell cultures are mixed-growth associated.
- Product formation both during and after the growth phase
- Luedeking-Piret equation (e.g., Mab formation by hybridoma cells)

$$\frac{1}{X} \frac{dP}{dt} = q_p = \alpha \mu + \beta$$

Oxygen Requirement of Animal Cell

- Much lower O₂ requirement than microbial cells
 - 0.06 to 0.2 x 10⁻¹² mol O₂/h-cell
- Surface aeration from the head space
 - 2 to 5 cm deep for shallow culture
 - Spinner flask with magnetically driven agitator at 10 to 60 rpm

Forced Aeration

- Forced aeration for submerged cultivation of denser cultures
- Shear sensitive issues
 - Special aeration and agitation systems are designed.
 - Rising air bubble and bubble rupture at the medium surface cause the shear damage (cell lysis)
 - Chemicals (e.g., Pluronic F-68) can be added for the shear protection
 - Even the sublytic level of shear can cause the alteration of the product quality
 - Also processes, such as N-linked glycosylation, can be altered by shear.

Bioreactor for Animal Cell Culture

- Gentle aeration and agitation
 - Minimization of shear damage to cells
- Well-controlled homogeneous environmental conditions
 - T, pH, DO, redox potential
 - Supply of CO₂-enriched air
- Large surface-volume ratio of support materials for anchorage-dependent cells
- Removal of toxic metabolic products
 - Lactic acid, ammonium

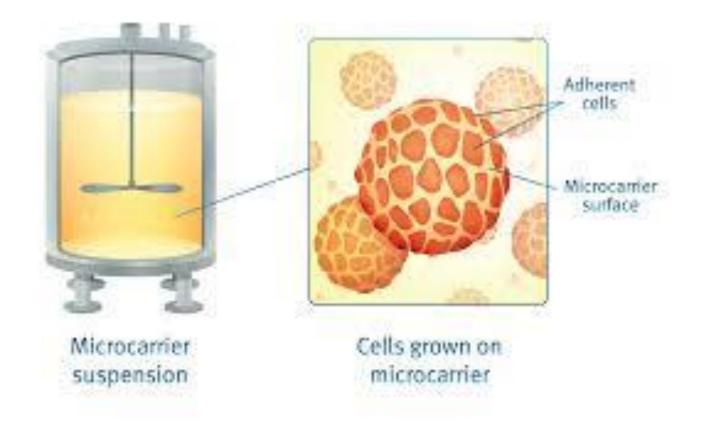
Lab-Scale Cultivation

- Lab-scale reactors are placed in a CO₂ incubator at 37°C.
- T-flask (25 mL to 100 mL)

Spinner flask (100 mL to 1 L)

Lab-Scale Cultivation

 Roller bottles (50 mL to 5 L) rotating about 1 to 5 rpm

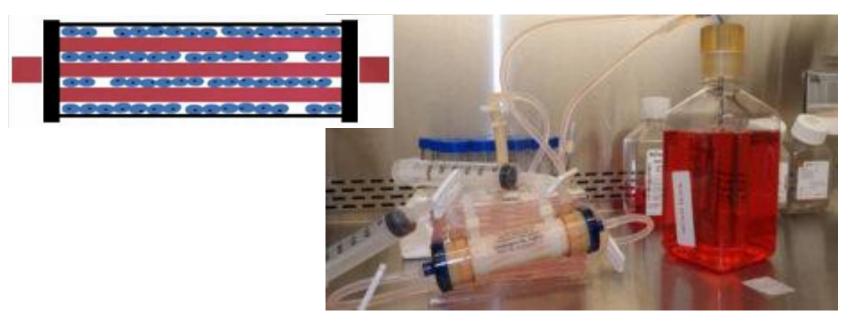

Roller Bottle for Commercial Production

Challenge

- High labor requirements
- Bottle-to-bottle variability
- Commercial Production of Erythropoietin
 - Highly automated facility using robots
- Production of Some Vaccines

Bioreactors for Anchorage-Dependent Cells

Microcarrier systems

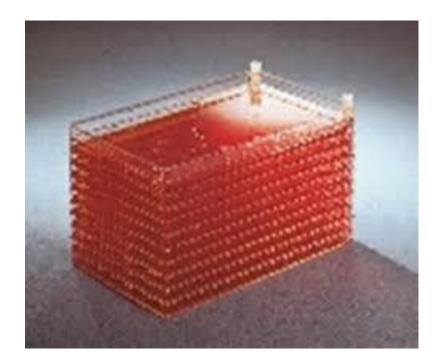


Microcarriers

- Large surface per unit volume of reactor
 - ~70,000 cm²/L
- High cell concentrations in the medium
 - > 10⁷ cells/mL
- Dextran- and DEAE-based microcarriers are commonly used.
 - DEAE-Sephadex, DEAE-polyacrylamide
- The surface can be modified by addition of compound, such as collagen, to promote cell adhesion and enhance cell function.

Bioreactors for Anchorage-Dependent Cells

Hollow-fiber reactors


- Ceramic matrix systems
- Weighted porous beads

Hollow-fiber Reactors

- The control of environmental conditions especially in the shell side is very difficult.
- Hollow-fiber reactors have been used for the production of extracellular proteins such as Mab's from hybridoma cells.
 - Mab concentration: 50 mg/mL
 - Long-term perfusion operation (e.g., 100 days)
- To overcome some of the difficulties in axialflow hollow-fiber reactors, radial-flow or crossflow hollow-fiber units have been developed.

Disposable Systems Using Multiple Plates

