
Chapter 35
Approximation Algorithm

Introduction to Data Structures

Kyuseok Shim

ECE, SNU.

Outline
◼ In this chapter, we present some examples of polynomial-time

approximation algorithms for several NP-complete problems.

Coping with

NP-Complete Problems

◼ We have at least three ways to get around NP-
completeness.

◼ If the actual inputs are small, an algorithm with exponential
running time may be perfectly satisfactory.

◼ We may be able to isolate important special cases that we
can solve in polynomial time.

◼ We might come up with approaches to find near-optimal
solutions in polynomial time (either in the worst case or the
expected case).

◼ We call an algorithm that returns near-optimal
solutions an approximation algorithm.

Approximation Ratios

◼ Suppose that we are working on an optimization
problem in which each potential solution has a
positive cost, and we wish to find a near-optimal
solution.

◼ Depending on the problem, we may define an optimal
solution as one with maximum possible cost or one
with minimum possible cost.

◼ Note that we assume that all solutions have positive
cost, these ratios are always well defined.

Approximation Ratios
◼ We say that an algorithm for a problem has an

approximation ratio 𝜌(𝑛) if, for any input of size n,
the cost C of the solution produced by the algorithm
is within a factor of 𝜌(𝑛) of the cost C* of an optimal
solution:

◼ max
𝐶

𝐶∗
,
𝐶∗

𝐶
≤ 𝜌(𝑛)

◼ For maximization problem, 1 ≤
𝐶∗

𝐶
≤ 𝜌(𝑛)

◼ For minimization problem, 1 ≤
𝐶

𝐶∗
≤ 𝜌(𝑛)

◼ If an algorithm achieves an approximation ratio of
𝜌 𝑛 , we call it a 𝜌(𝑛)-approximation algorithm.

Approximation Ratios

◼ Because we assume that all solutions have positive
cost, the approximation ratios are always well defined.

◼ The approximation ratio of an approximation
algorithm is never less than 1, since C/C* ≤1 implies
C*/C ≥ 1.

◼ Therefore, a 1-approximation algorithm produces an
optimal solution, and an approximation algorithm with
a large approximation ratio may return a solution that
is much worse than optimal.

Approximation Ratios

◼ Some NP-complete problems allow polynomial-time
approximation algorithms that can achieve
increasingly better approximation ratios by using
more and more computation time.

Approximation Scheme

◼ An approximation scheme for an optimization
problem is an approximation algorithm

◼ that takes as input not only an instance of the problem,

◼ but also a value ϵ > 0

◼ such that for any fixed ϵ, the scheme is an (1+ ϵ)-
approximation algorithm.

Approximation Scheme
◼ Polynomial-time approximation scheme

◼ For any fixed ϵ > 0, the scheme runs in time polynomial in
the size n of its input instance.

◼ The running time can increase very rapidly as ϵ decreases.

◼ e.g.) a scheme with O(n2/Є) time

◼ Ideally, if ϵ decreases by a constant factor, the
running time to achieve the desired approximation
should not increase by more than a constant factor.

Approximation Scheme
◼ Fully polynomial-time approximation scheme

◼ Running time is polynomial both in 1/ϵ and in the size n of
the input instance.

◼ With such a scheme, any constant-factor decrease in ϵ
comes with a corresponding constant-factor increase in the
running time.

◼ e.g.) a scheme with O((1/ϵ)2n3) time

VERTEX-COVER Problem

VERTEX-COVER Problem
◼ Vertex cover of an undirected graph G = (V, E) is a

subset V’ ⊆ V such that if (u, v) is an edge of G, then
either u ∈ V’ or v ∈ V’.

◼ Vertex cover problem is to find an optimal vertex
cover, or a vertex cover of minimum size in a given
undirected graph.

◼ This problem is the optimization version of an NP-
complete decision problem.

◼ Even though we don’t know how to find an optimal
vertex cover in a graph G in polynomial time, we can
efficiently find a vertex cover that is near-optimal.

Approximation Algorithm for VERTEX-COVER
Problem

◼ The following algorithm returns a vertex cover whose size is
guaranteed to be no more than twice the size of an optimal
vertex cover.

◼ Its running time is O (|V| + |E|) time using adjacency lists to
represent E’.

APPROX-VERTEX-COVER(G)

1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C=Ø

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C=Ø

E’={(a,b), (b,c), (c,d), (c,e), (d,e), (d,f), (e,f), (d,g)}

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C=Ø

E’={(a,b), (b,c), (c,d), (c,e), (d,e), (d,f), (e,f), (d,g)}

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c}

E’={(d,e), (d,f), (e,f), (d,g)}

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c}

E’={(d,e), (d,f), (e,f), (d,g)}

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c,e,f}

E’={(d,g)}

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c,e,f}

E’={(d,g)}

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c,e,f,d,g}

E’=Ø

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c,e,f,d,g}

E’=Ø

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C={b,c,e,f,d,g}

E’=Ø

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

◼ An optimal solution

b

a

d

e f g

c

Approximation Algorithm for VERTEX-COVER
Problem

◼ Theorem 35.1
◼ APPROX-VERTEX-COVER is a polynomial-time 2-

approximation algorithm.

◼ Proof

◼ We have already shown that APPROX-VERTEX-COVER runs
in polynomial time.

◼ The set C of vertices that is returned by APPROX-VERTEX-
COVER is a vertex cover, since the algorithm loops until
every edge in G.E has been covered by some vertex in C.

◼ Let A represent the set of edges (and their endpoints) that
are included in C.

Approximation Algorithm for VERTEX-COVER
Problem

◼ Theorem 35.1
◼ APPROX-VERTEX-COVER is a polynomial-time 2-

approximation algorithm.

◼ Proof
◼ In order to cover the edges in A, an optimal vertex cover C*

must include at least one endpoint of each edge that is
included in C.

◼ Since once an edge is picked, all other edges that are
incident on its endpoints are deleted from E’ and thus no two
edges in A share an endpoint.

◼ Thus, no two edges in A are covered by the same vertex in
C* and we have |C* |≥ |A |.

◼ Each iteration of APPROX-VERTEX-COVER picks an edge for
which neither endpoint is in C
➔ |C | = 2 |A | and |C | ≤ 2 |C* |

TRAVELING-SALESMAN
Problem

TRAVELING-SALESMAN
Problem

◼ In the Traveling Salesman problem, we are given an
undirected complete graph 𝐺 = (𝑉, 𝐸) that has a
nonnegative integer cost 𝑐 𝑢, 𝑣 associated with each
edge (𝑢, 𝑣).

◼ Traveling Salesman problem is to find a hamiltonian
cycle, or a tour of 𝐺 with minimum cost.

◼ This problem is the optimization version of an NP-
complete decision problem.

◼ Even though we don’t know how to find a tour in a
graph 𝐺 in polynomial time, we can efficiently find a
tour that is near-optimal.

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Triangle inequality

◼ In many practical situations, the least costly way
to go from a place 𝑢 to a place 𝑤 is to go directly

◼ For all vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉, we have 𝑐 𝑢,𝑤 ≤
𝑐 𝑢, 𝑣 + 𝑐 𝑣,𝑤

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ The following algorithm returns tour whose cost is guaranteed to
be no more than twice the cost of an optimal tour.

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

◼ Its running time is 𝑂(𝑉 2) time.

𝑂 1

𝑂 𝑉 2

𝑂 𝑉

Approximation Algorithm for TRAVELING-SALESMAN
Problem

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

Approximation Algorithm for TRAVELING-SALESMAN
Problem

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

Approximation Algorithm for TRAVELING-SALESMAN
Problem

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

Approximation Algorithm for TRAVELING-SALESMAN
Problem

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

Approximation Algorithm for TRAVELING-SALESMAN
Problem

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Theorem 35.2
◼ APPROX-TSP-TOUR is a polynomial-time 2-approximation

algorithm for the TRAVELING-SALESMAN problem with the
triangle inequality.

◼ Proof

◼ We have already shown that APPROX-TSP-TOUR runs in
polynomial time.

◼ Let 𝐻∗ denote an optimal tour.

◼ We obtain a spanning tree 𝑇′ by deleting any edge from the
tour 𝐻∗, and each edge is nonnegative.

◼ Let 𝑇 be a minimum spanning tree of 𝐺.

◼ Thus, the we have 𝑐 𝑇 ≤ 𝑐 𝑇′ ≤ 𝑐 𝐻∗
(35.4)

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Proof (contd.)

◼ Let 𝑊 be a full walk of the minimum spanning tree 𝑇.

◼ A full walk lists the vertices when they are first visited
and also whenever they are returned to after a visit to a
subtree.

Full walk
𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Proof (cont.)
◼ Since the full walk traverses every edge of T exactly twice, we have

◼ 𝑐 𝑊 = 2𝑐 𝑇

◼ Since we have 𝑐 𝑇 ≤ 𝑐 𝐻∗ (35.4), we obtain
𝑐 𝑊 ≤ 2𝑐 𝐻∗

Full walk
𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎

(35.5)

(35.6)

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Proof (cont.)

◼ By the triangle inequality, we can delete a visit to any
vertex from 𝑊 and the cost does not increase.

◼ If we delete a vertex 𝑣 from 𝑊 between visits to 𝑢 and
𝑤, the resulting ordering specifies going directly from 𝑢
to 𝑤.

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Proof (cont.)

◼ By repeatedly applying this operation, we can remove from
𝑊 all but the first visit to each vertex.

◼ This ordering is the same as that obtained by a preorder
walk of the tree 𝑇.

Full walk
𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎

Preorder walk
𝑎, 𝑏, 𝑐, ℎ, 𝑑, 𝑒, 𝑓, 𝑔

deleted

Approximation Algorithm for TRAVELING-SALESMAN
Problem

◼ Proof (cont.)

◼ Let 𝐻 be the cycle corresponding to this preorder walk.

◼ It is a hamiltonian cycle, since every vertex is visited exactly

once.

◼ It is the cycle computed by APPROX-TSP-TOUR.

◼ Since 𝐻 is obtained by deleting vertices from the full walk 𝑊
and

◼ 𝑐 𝑇 ≤ 𝑐 𝑇′ ≤ 𝑐 𝐻∗

◼ 𝑐 𝑊 = 2𝑐 𝑇 ≤ 2𝑐 𝐻∗

◼ Thus, we have
◼ 𝑐 𝐻 ≤ 𝑐 𝑊 = 2𝑐 𝑇 ≤ 2𝑐 𝐻∗

(35.4)

(35.5) and (35.6)

The General TRAVELING-SALESMAN Problem

◼ If we drop the assumption that the cost function 𝑐
satisfies the triangle inequality, then we cannot find
good approximate tours in polynomial time unless
𝑃 = 𝑁𝑃.

◼ Theorem 35.3

◼ If 𝑃 ≠ 𝑁𝑃, then for any constant 𝜌 ≥ 1, there is no
polynomial-time approximation algorithm with
approximation ratio 𝜌 for the general traveling-
salesman problem.

The General TRAVELING-SALESMAN Problem

◼ Proof sketch (by contradiction)

◼ Suppose to the contrary that for some number 𝜌 ≥ 1, there
is a polynomial-time approximation algorithm 𝐴 with
approximation ratio 𝜌.

◼ Without loss of generality, we assume that 𝜌 is an integer,

by rounding it up if necessary.

◼ We shall then show how to use 𝐴 to solve instances of the

HAMILTONIAN-CYCLE problem in polynomial time.

◼ Since the HAMILTONIAN-CYCLE problem is NP-complete, if
we can solve it in polynomial time, then 𝑃 = 𝑁𝑃.

The General TRAVELING-SALESMAN Problem

◼ Proof

◼ Let 𝐺 = 𝑉, 𝐸 be an instance of the

HAMILTONIAN-CYCLE problem.

◼ We wish to determine efficiently whether 𝐺
contains a hamiltonian cycle by making use of the
hypothesized approximation algorithm 𝐴.

The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)

◼ We turn 𝐺 into an instance of the TRAVELING-
SALESMAN problem in 𝑂 𝑉 2 time as follows.

◼ Let 𝐺′ = 𝑉, 𝐸′ be the complete graph on 𝑉.

◼ Assign an integer cost to each edge in 𝐸′ as

follows

◼ 𝑐 𝑢, 𝑣 = ቊ
1 if 𝑢, 𝑣 ∈ 𝐸,

𝜌 𝑉 + 1 otherwise

The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)
◼ Consider the TRAVELING-SALESMAN problem with 𝐺′ and

the cost function 𝑐.

◼ If the original graph 𝐺 has a hamiltonian cycle 𝐻, the cost
function 𝑐 assigns to each edge of 𝐻 a cost of 1, and so 𝐺′

contains a tour of cost 𝑉 .

◼ On the other hand, if 𝐺 does not contain a hamiltonian cycle,
then any tour of 𝐺′ must use some edge not in 𝐸.

◼ But any tour that uses an edge not in E has a cost of at least

◼ 𝜌 𝑉 + 1 + 𝑉 − 1 = 𝜌 𝑉 + 𝑉 > 𝜌 𝑉

The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)
◼ Because edges not in 𝐺 are so costly, there is a gap of at

least 𝜌 𝑉 between the cost of a tour that is a hamiltonian
cycle in 𝐺 (cost 𝑉) and the cost of any other tour (cost at
least 𝜌 𝑉 + 𝑉).

◼ Thus, the cost of a tour that is not a hamiltonian cycle in 𝐺 is
at least a factor of 𝜌 + 1 greater than the cost of a tour that
is a hamiltonian cycle in 𝐺.

The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)
◼ Suppose that we apply a 𝜌-approximation algorithm 𝐴 to the

TRAVELING-SALESMAN problem with 𝐺′ and 𝑐.

◼ If 𝐺 contains a hamiltonian cycle, then 𝐴 must return a tour
of cost less than 𝜌 𝑉 .

◼ 𝐺′ has an optimal tour with cost 𝑉 only.

◼ If 𝐺 has no hamiltonian cycle, then 𝐴 returns a tour of cost
more than 𝜌 𝑉 .

◼ 𝐺′ has an optimal tour with cost at least 𝜌 + 1 𝑉 .

◼ Thus, we can use 𝐴 to solve the HAMILTONIAN-CYCLE

problem in polynomial time.

SET-COVERING Problem

SET-COVERING Problem

◼ An optimization problem that models many problems that
require resources to be allocated.

◼ Its corresponding decision problem generalizes the NP-complete
vertex cover problem and is therefore also NP-hard.

◼ The approximation algorithm developed to handle the vertex-
cover problem doesn’t apply here, however, and so we need to
try other approaches.

◼ We shall examine a simple greedy heuristic with a logarithmic
approximation ratio.

An Example of the Set-
Covering Problem

An instance (𝑋, ℱ) of the set-covering
problem, where 𝑋 consists of the 12
points and ℱ ={S1, S2, S3, S4, S5, S6}

s3
s4 s5

A minimum size set cover is
{S3, S4, S5} with size 3.

s1

s2

s3 s4 s5

s6

Problem Formulation

◼ Given an instance (𝑋, ℱ) of the set-covering problem

where

◼ a finite set 𝑋

◼ a family F of subsets of 𝑋

◼ 𝑋 = 𝑆∈ℱڂ 𝑆

◼ We say a subset 𝑆 ∈ ℱ covers its elements.

◼ Find a minimum-size subset 𝒞 ⊂ ℱ whose members
cover all of 𝑋 (𝒞: set-cover)

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

b

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

b

c

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

b

c

d

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

b

c

d

e

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

b

c

d

e

f

NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and
ℱ=V.

◼ The reduction is done in polynomial time.

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

a

b

c

d

e

g

f

NP-Completeness of the Set-Covering Problem

◼ The set-covering problem is NP-hard.

◼ The graph G has a vertex cover of size k if and only if the set
X has a set-cover of size k.

◼ The set-covering problem is in NP.

◼ Given a set-cover C, that |C|=k and C covers X can be
verified in polynomial time.

◼ Thus, the set-covering problem is NP-complete.

NP-Completeness of the Set-Covering Problem

◼ An optimal solution

b c d

a e f g

e1

e2 e4

e3

e5

e6

e7

e8

e1

e2

e4

e3

e5 e8

e6 e7

b d

e

An Example of Greedy Approximation

s1

s2

s3 s4 s5

s6

An instance of
the set covering problem

The greedy solution

An Example of Greedy Approximation

s2

s3 s5

s6

An instance of
the set covering problem

The greedy solution

s1
s1

s1

s4

An Example of Greedy Approximation

s2

s3 s4 s5

s6

An instance of
the set covering problem

The greedy solution

s1
s1

s4
s4

An Example of Greedy Approximation

s2

s3

s6

An instance of
the set covering problem

The greedy solution

s1
s1

s4
s5s5

s4

An Example of Greedy Approximation

s2

s6

An instance of
the set covering problem

The greedy solution

s1
s1

s4
s5s3s5

s4s3

A Greedy Approximation
Algorithm

GREEDY-SET-COVER(𝑋,ℱ)

1. 𝑈 = 𝑋
2. 𝒞 = ∅

3. while 𝑈 ≠ ∅

4. select an 𝑆 ∈ ℱ that maximizes |𝑆 ∩ 𝑈|

5. 𝑈 = 𝑈 − 𝑆

6. 𝒞 = 𝒞 ∪ {𝑆}

7. return 𝒞

A Greedy Approximation
Algorithm

GREEDY-SET-COVER(𝑋,ℱ)

1. 𝑈 = 𝑋
2. 𝒞 = ∅

3. while 𝑈 ≠ ∅

4. select an 𝑆 ∈ ℱ that maximizes |𝑆 ∩ 𝑈|

5. 𝑈 = 𝑈 − 𝑆

6. 𝒞 = 𝒞 ∪ {𝑆}

7. return 𝒞

𝑂(|𝑋||ℱ|min(|𝑋|, |ℱ|)) : time complexity

min(|𝑋|, |ℱ|)

𝑂(|𝑋||ℱ|)

Proof of σ𝑥∈𝑆 𝑐𝑥 ≤ 𝐻(𝑆)

◼ Consider any set 𝑆 ∈ ℱ,

◼ Let 𝑢𝑖 = |𝑆 − (𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖)| with i = 1,…, 𝒞 .

◼ Note that 𝑢𝑖 is the number of elements in S that remain uncovered
after the algorithm has selected the sets 𝑆1, 𝑆2,…, 𝑆𝑖.

◼ We define 𝑢0 = |𝑆| to be the number of elements of S, which are all
initially uncovered.

◼ Let 𝑘 be the least index such that 𝑢𝑘 = 0

◼ Each element of 𝑆 is covered by at least one of the sets 𝑆1, 𝑆2,… 𝑆𝑘.

◼ Some elements in S is uncovered by 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑘−1.

An Example of ui

◼ 𝑢𝑖 = 𝑆 − 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖 where S can be the largest when S=X

◼ The greedy solution: S1, S4, S5, S3

◼ |S1|=6

◼ |S4-S1|=3

◼ |S5-(S1 ∪ S4)|=2

◼ |S3-(S1 ∪ S4 ∪ S5)|=1

◼ Let S=S2

◼ u0=|S2|=4

◼ u1=|S2- S1|=2

◼ u2=|S2-(S1 ∪ S4)|=1

◼ u3=|S2-(S1 ∪ S4 ∪ S5)|=0

◼ ∑cx = 2*1/6+1*1/3+1*1/2=4/3

The greedy solution

s1

s4
s5s3

s2

Proof of ෍

𝑥∈𝑆

𝑐𝑥 ≤ 𝐻(𝑆)

◼ Consider any set 𝑆 ∈ ℱ.

◼ Let 𝑢𝑖 = |𝑆 − (𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖)| for i = 1,…, 𝒞 .

◼ Let 𝑘 be the least index such that 𝑢𝑘 = 0

◼ Then, 𝑢𝑖−1 ≥ 𝑢𝑖, and 𝑢𝑖−1 − 𝑢𝑖 elements of 𝑆 are covered for the first time by 𝑆𝑖
for i = 1,…,k.

◼ Thus, σ𝑥∈𝑆 𝑐𝑥 = σ𝑖=1
𝑘 (𝑢𝑖−1 − 𝑢𝑖) ∙

1

|𝑆𝑖−(𝑆1∪𝑆2∪⋯∪𝑆𝑖−1)|

◼ Since the greedy choice of 𝑆𝑖 guarantees that 𝑆 cannot cover more new
elements than 𝑆𝑖 does, observe that

𝑆𝑖 − 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖−1 ≥ 𝑆 − 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖−1
= 𝑢𝑖−1

◼ We obtain σ𝑥∈𝑆 𝑐𝑥 ≤ σ𝑖=1
𝑘 (𝑢𝑖−1 − 𝑢𝑖) ∙

1

𝑢𝑖−1

Proof of ෍

𝑥∈𝑆

𝑐𝑥 ≤ 𝐻(𝑆)

◼ σ𝑥∈𝑆 𝑐𝑥 ≤ σ𝑖=1
𝑘 (𝑢𝑖−1 − 𝑢𝑖) ∙

1

𝑢𝑖−1
= σ𝑖=1

𝑘 σ
𝑗=𝑢𝑖+1
𝑢𝑖−1 1

𝑢𝑖−1

≤ σ𝑖=1
𝑘 σ

𝑗=𝑢𝑖+1
𝑢𝑖−1 1

𝑗
(because 𝑗 ≤ 𝑢𝑖−1)

= σ𝑖=1
𝑘 (σ𝑗=1

𝑢𝑖−1 1

𝑗
− σ

𝑗=1
𝑢𝑖 1

𝑗
) = σ𝑖=1

𝑘 (𝐻 𝑢𝑖−1 − 𝐻(𝑢𝑖))

= 𝐻 𝑢0 − 𝐻(𝑢𝑘) (because the sum telescopes)

= 𝐻 𝑢0 − 𝐻 0

= 𝐻 𝑢0 (because 𝐻 0 = 0)

= 𝐻(𝑆)

A Greedy Approximation
Algorithm

◼ Corollary 35.5
◼ Greedy-Set-Cover is a polynomial-time (ln|𝑋|+1)-approximation

algorithm.

◼ Proof

◼ Use inequality σ𝑘=1
𝑛 1

𝑘
≤ ln 𝑛 + 1 (A.14) and Theorem 35.4.

Subset-Sum Problem

Subset-Sum Problem
◼ Recall that an instance of the subset-sum problem is a pair (S, t),

where
◼ S is a positive integer set {x1, x2, … xn}

◼ t is a positive integer

◼ This decision problem asks whether there exists a subset of S
that adds up exactly to the target value t.
◼ NP-Complete (see Section 34.5.5)

◼ e.g.)
◼ S = {1, 2, 7, 14, 49, 54}, t = 58

◼ The subset S’ = {2, 7, 49} is a solution.

Subset-Sum Problem
◼ The optimization problem associated with this decision problem arises

in practical applications.

◼ We wish to find a subset of {x1, x2, … xn} whose sum is as large as

possible but not larger than t.

◼ For example, we may have a truck that can carry no more than t
pounds, and n different boxes to ship, the i-th of which weighs xi

pounds.

◼ We wish to fill the truck with as heavy a load as possible without
exceeding the weight limit.

Subset-Sum Problem
◼ We first present an exponential-time algorithm that computes

the optimal value for this optimization problem.

◼ We next show how to modify the algorithm so that it becomes a
fully polynomial-time approximation scheme.

◼ Recall that a fully polynomial-time approximation scheme has a
running time that is polynomial in 1/ε as well as in the size of
the input.

An Exponential-Time Exact
Algorithm

◼ Preliminary
◼ Given a integer set(list) S and a integer x

◼ S + x = {s+x : s∈S}
◼ e.g.) S={ 0, 1, 5, 9 }, S+2={ 2, 3, 7, 11 }

◼ Let Pi denote the set of all possible summation values that can
be obtained by selecting a subset of { x1, x2, …, xi }

◼ e.g.) S={1,4,5}, P1={0,1}, P2={0,1,4,5}, P3={0,1,4,5,6,9,10}
◼ Pi = Pi-1 ∪ (Pi-1 + xi)

◼ Let Li be a sorted list containing every element of Pi whose
value is not more than t

An Exponential-Time Exact
Algorithm

◼ Preliminary

◼ We also use an auxiliary procedure MERGE-LISTS(L, L’),
which returns the sorted list that is the merge of its two
sorted input lists L and L’ with duplicate values removed.

◼ Like the MERGE procedure we used in merge sort, MERGE-
LISTS runs in time O(|L|+|L’|).

◼ We omit the pseudocode for MERGE-LISTS.

An Exponential-Time Exact
Algorithm

EXACT-SUBSET-SUM(S, t)

1. n = |S|

2. L0 = <0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1, Li-1+xi)

5. remove form Li every element that is greater than t

6. return the largest element is Ln

◼ MERGE-LISTS(L, L’)

◼ Returns the sorted list like merge sort

◼ O(|L|+|L’|)

◼ Duplicate values are removed

An Exponential-Time Exact
Algorithm

◼ EXACT-SUBSET-SUM is an exponential-time algorithm in general

◼ Because |Li| can be as much as 2i

◼ What is a special case where it becomes a polynomial-time
algorithm?

◼ When t is polynomial in |S| or

◼ When all the numbers in S are bounded by a polynomial in |S|

Fully Polynomial-Time
Approximation Scheme

◼ It is a (1+ε)-approximation algorithm.

◼ Running time is polynomial in 1/ε as well as in the size of the
input.

◼ e.g.) O((1/ε)2n3)

Trimming
◼ Idea

◼ If two values in L are close, since we want just an approximate
solution, then there is no reason to maintain both explicitly.

◼ To trim a list L by δ (0<δ<1) means

◼ To remove as many elements as possible, in a such way that, for
every removed element y, there is an element z still in trimming

result L’ satisfying
𝑦

1+𝛿
≤ 𝑧 ≤ 𝑦.

Trimming
◼ For every removed element y, there is an element z still in trimming

result L’ satisfying
𝑦

1 + 𝛿
≤ 𝑧 ≤ 𝑦

◼ e.g.)

◼ δ = 0.1, L=<10,11,12,15,20,21,22,23,24,29>

◼ L’=<10,12,15,20,23,29>
◼ 11 is represented by 10 (11/1.1 ≤ 10 ≤ 11)

◼ 21 and 22 are represented by 20

◼ 24 is represented by 23

Trimming
◼ The following procedure trims list L=<y1,y2,…,ym> in time Θ(m), given L and

𝛿, and assuming that L is sorted into monotonically increasing order.

◼ The output of the procedure is a trimmed, sorted list.

TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝑦

1 + 𝛿
≤ 𝑧 ≤ 𝑦

Trimming
◼ The procedure scans the elements of L in monotonically increasing order.

◼ A number is appended onto the returned list L’ only if it is the first element of L
or if it cannot be represented by the most recent number placed into L’.

TRIM(L, 𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’
𝑦

1 + 𝛿
≤ 𝑧 ≤ 𝑦

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

L 10 11 12 15 20 21 22 23 24 29𝛿 = 0.1

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

L 10 11 12 15 20 21 22 23 24 29𝛿 = 0.1

m = 10

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

L 10 11 12 15 20 21 22 23 24 29

L’ 10

𝛿 = 0.1

m = 10

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10 L’ 10

last = 10

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10 L’ 10

last = 10

i

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 12

i

L’ 10 12

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 15

i

L’ 10 12 15

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 20

i

L’ 10 12 15 20

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 20

i

L’ 10 12 15 20

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 20

i

L’ 10 12 15 20

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 23

i

L’ 10 12 15 20 23

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 23

i

L’ 10 12 15 20 23

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 29

i

L’ 10 12 15 20 23 29

An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 29

i

L’ 10 12 15 20 23 29

APPROX-SUBSET-SUM
◼ Given input S, a target integer t, and an approximation

parameter ε (0<ε<1),

◼ It returns a value z whose value is within a 1+ε factor of the
optimal solution.

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

n = 4

S 104 102 201 101

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L0 0

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L1 0 104

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L1 0 104

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L1 0 104

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L2 0 102 104 206

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L2 0 102 206

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L2 0 102 206

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L3 0 102 201 206 303 407

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L3 0 102 201 303 407

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L3 0 102 201 303

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L4 0 101 102 201 203 302 303 404

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L4 0 101 201 302 404

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L4 0 101 201 302

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

L4 0 101 201 302

z*

An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

L4 0 101 201 302

z*

An Example of APPROX-
SUBSET-SUM

◼ The algorithm returns z* = 302 as its answer, which is well within ε =
40% of the optimal answer 307 = 104 + 102 + 101.

◼ In fact, it is within 2%.

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

L4 0 101 201 302

z*

APPROX-SUBSET-SUM
◼ Theorem 35.8

◼ APPROX-SUBSET-SUM is a fully polynomial-time approximation
scheme for the subset-sum problem.

◼ Proof

◼ The operations of trimming Li in line 5 and removing from Li every
element that is greater than t maintain the property that every element
of Li is also a member of Pi.

◼ Therefore, the value 𝑧∗returned in line 8 is indeed the sum of some
subset of S.

APPROX-SUBSET-SUM
◼ Proof - continued

◼ Let y*∈ Pn denote an optimal solution to the subset-sum problem.

◼ Then, from line 6, we know that z*≤ y*.

◼ We need to show that

max
𝑦∗

𝑧∗
,
𝑧∗

𝑦∗
=

𝑦∗

𝑧∗
≤ 1 + 𝜖.

◼ We must also show that the running time of this algorithm is polynomial in
both 1/𝜖 and the size of the input (# of bits log t needed to represent t + #

of bits needed to represent the set S).

Proof of
𝑦∗

𝑧∗
≤ 1 + 𝜖

◼ Since 𝑧∗ ≤ 𝑦∗, we will show that
𝑦∗

𝑧∗
≤ 1 + 𝜖

◼ 𝑧∗ : approximate solution

◼ 𝑦∗ : optimal solution

◼ ∀𝑦 ∈ 𝑃𝑖, where 𝑦 ≤ 𝑡, ∃𝑧 ∈ 𝐿𝑖 s.t.
𝑦

1+
𝜖

2𝑛

𝑖 ≤ 𝑧 ≤ 𝑦 (Exercise 35.5-2)

◼ 𝑃𝑖 : the 𝑖-th set of all possible summation values

◼ 𝐿𝑖 : the 𝑖-th trimmed set

◼ Thus, for y* ∈ 𝑃𝑛, we have 𝑧 ∈ 𝐿𝑛 s.t.

𝑦∗

1+
𝜖

2𝑛

𝑛 ≤ 𝑧 ≤ 𝑦∗.

◼ Since there exists an element z ∈ Ln fulfilling the above inequality, the inequality must hold for z*, which is
the largest value in Ln. That is,

𝑦∗

𝑧∗
≤ 1 +

𝜖

2𝑛

𝑛
.

Proof of
𝑦∗

𝑧∗
≤ 1 + 𝜖

◼ Since
𝑦∗

𝑧∗
≤ 1 +

𝜖

2𝑛

𝑛
, to show that

𝑦∗

𝑧∗
≤ 1 + 𝜖, we prove that 1 +

𝜖

2𝑛

𝑛
≤ 1 + 𝜖.

◼ The function (1+ 𝜖/2n)n increases with n as it approaches its limit of 𝑒𝜖/2 since

◼ 1 +
𝜖

2𝑛

𝑛
monotonically increases (

𝑑

𝑑𝑛
1 +

𝜖

2𝑛

𝑛
> 0)

◼ lim
𝑛→∞

1 +
𝜖

2𝑛

𝑛
= 𝑒𝜖/2 (By equation (3.14)).

◼ Now, we have 1 +
𝜖

2𝑛

𝑛
≤ 𝑒𝜖/2

≤ 1 +
𝜖

2
+

𝜖

2

2
(by inequality 3.13)

≤ 1 + 𝜖.

◼ Thus, y*/z* ≤ 1 + 𝜖 .

1 + 𝑥 ≤ 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2

Proof of Time Complexity

◼ We will show that a bound of |𝐿𝑖| is polynomial in the size of input and
1

𝜖
.

◼ After trimming, successive element 𝑧 and 𝑧′ must have the relationship
𝑧′

𝑧
> 1 +

𝜖

2𝑛
.

◼ Therefore, 𝐿𝑖 contains 0, possibly the value 1, and up to additional log1+𝜖/2𝑛 𝑡 values

because

◼ 𝐿𝑖 < |{0,1,1 +
𝜖

2𝑛
, 1 +

𝜖

2𝑛

2
, … , 1 +

𝜖

2𝑛

𝑘
}| where 𝑘 is the smallest integer s.t. 𝑡 < 1 +

𝜖

2𝑛

𝑘+1
.

◼ Thus, log1+𝜖/2𝑛 𝑡 < 𝑘 + 1.

◼ That is, log1+𝜖/2𝑛 𝑡 ≤ 𝑘.

Proof of Time Complexity

◼ From the previous observation, |𝐿𝑖| is at most

log
1+

𝜖

2𝑛
𝑡 + 2 =

ln t

ln(1+
𝜖

2𝑛
)
+ 2

≤
ln 𝑡
𝜖
2𝑛

1+
𝜖
2𝑛

+ 2 (By inequality 3.17)

=
2𝑛 1+

𝜖

2𝑛
ln 𝑡

𝜖
+ 2

=
2𝑛+𝜖 ln(𝑡)

𝜖
+ 2

<
1

𝜖
3𝑛 ∗ ln 𝑡 + 2.

𝒙

𝟏 + 𝒙
≤ ln(𝟏 + 𝒙) ≤ 𝑥

1 −
1

𝑡
≤ ln 𝑡 for 𝑡 > 0

⇒ 𝑡 ← 1 + 𝑥 then

∴
𝑥

1 + 𝑥
≤ ln(1 + 𝑥)

𝟎 < 𝝐 < 𝟏 < 𝒏

Proof of Time Complexity

◼ With |𝐿𝑖| = 𝑂(
1

𝜀
⋅ 𝑛 ⋅ ln 𝑡), the bound is polynomial in the size of the

input ln 𝑡 ,
1

𝜀
and n.

◼ Since the running time of APPROX-SUBSET-SUM is polynomial in |Li|,
we can conclude that APPROX-SUBSET-SUM is a fully polynomial-time
approximation scheme.

Any Question?

	WEEK-16-1-CH35 (part 1).pdf
	WEEK-16-2-CH35 (part 2).pdf

