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Outline
◼ In this chapter, we  present some examples of polynomial-time 

approximation algorithms for several NP-complete problems.



Coping with 

NP-Complete Problems

◼ We have at least three ways to get around NP-
completeness.

◼ If the actual inputs are small, an algorithm with exponential 
running time may be perfectly satisfactory. 

◼ We may be able to isolate important special cases that we 
can solve in polynomial time. 

◼ We might come up with approaches to find near-optimal 
solutions in polynomial time (either in the worst case or the 
expected case). 

◼ We call an algorithm that returns near-optimal 
solutions an approximation algorithm. 



Approximation Ratios

◼ Suppose that we are working on an optimization 
problem in which each potential solution has a 
positive cost, and we wish to find a near-optimal 
solution. 

◼ Depending on the problem, we may define an optimal 
solution as one with maximum possible cost or one 
with minimum possible cost.

◼ Note that we assume that all solutions have positive 
cost, these ratios are always well defined. 



Approximation Ratios
◼ We say that an algorithm for a problem has an 

approximation ratio 𝜌(𝑛) if, for any input of size n, 
the cost C of the solution produced by the algorithm 
is within a factor of 𝜌(𝑛) of the cost C* of an optimal 
solution: 

◼ max
𝐶

𝐶∗
,
𝐶∗

𝐶
≤ 𝜌(𝑛)

◼ For maximization problem, 1 ≤
𝐶∗

𝐶
≤ 𝜌(𝑛)

◼ For minimization problem, 1 ≤
𝐶

𝐶∗
≤ 𝜌(𝑛)

◼ If an algorithm achieves an approximation ratio of 
𝜌 𝑛 , we call it a 𝜌(𝑛)-approximation algorithm.



Approximation Ratios

◼ Because we assume that all solutions have positive 
cost, the approximation ratios are always well defined. 

◼ The approximation ratio of an approximation 
algorithm is never less than 1, since C/C* ≤1 implies 
C*/C ≥ 1. 

◼ Therefore, a 1-approximation algorithm produces an 
optimal solution, and an approximation algorithm with 
a large approximation ratio may return a solution that 
is much worse than optimal. 



Approximation Ratios

◼ Some NP-complete problems allow polynomial-time 
approximation algorithms that can achieve 
increasingly better approximation ratios by using 
more and more computation time. 



Approximation Scheme

◼ An approximation scheme for an optimization 
problem is an approximation algorithm 

◼ that takes as input not only an instance of the problem, 

◼ but also a value ϵ > 0 

◼ such that for any fixed ϵ, the scheme is an (1+ ϵ)-
approximation algorithm.



Approximation Scheme
◼ Polynomial-time approximation scheme

◼ For any fixed ϵ > 0, the scheme runs in time polynomial in 
the size n of its input instance.

◼ The running time can increase very rapidly as ϵ decreases. 

◼ e.g.) a scheme with O(n2/Є) time

◼ Ideally, if ϵ decreases by a constant factor, the 
running time to achieve the desired approximation 
should not increase by more than a constant factor. 



Approximation Scheme
◼ Fully polynomial-time approximation scheme

◼ Running time is polynomial both in 1/ϵ and in the size n of 
the input instance.

◼ With such a scheme, any constant-factor decrease in ϵ
comes with a corresponding constant-factor increase in the 
running time.

◼ e.g.) a scheme with O((1/ϵ )2n3) time



VERTEX-COVER Problem



VERTEX-COVER Problem
◼ Vertex cover of an undirected graph G = (V, E) is a 

subset V’ ⊆ V such that if (u, v) is an edge of G, then 
either u ∈ V’ or v ∈ V’.

◼ Vertex cover problem is to find an optimal vertex 
cover, or a vertex cover of minimum size in a given 
undirected graph.

◼ This problem is the optimization version of an NP-
complete decision problem. 

◼ Even though we don’t know how to find an optimal 
vertex cover in a graph G in polynomial time, we can 
efficiently find a vertex cover that is near-optimal.



Approximation Algorithm for VERTEX-COVER 
Problem

◼ The following algorithm returns a vertex cover whose size is 
guaranteed to be no more than twice the size of an optimal 
vertex cover. 

◼ Its running time is O (|V| + |E|) time using adjacency lists to 
represent E’.

APPROX-VERTEX-COVER(G)

1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v ) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C
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APPROX-VERTEX-COVER(G)
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2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v ) be an arbitrary edge of E ’
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Approximation Algorithm for VERTEX-COVER 
Problem

APPROX-VERTEX-COVER(G)
1. C = Ø

2. E’ = G.E

3. while E’ ≠ Ø

4. let (u, v ) be an arbitrary edge of E ’

5. C = C ∪ {u, v }

6. remove from E’ every edge incident on either u or v

7. return C C=Ø

E’={(a,b), (b,c), (c,d), (c,e), (d,e), (d,f), (e,f), (d,g)}
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Problem
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2. E’ = G.E

3. while E’ ≠ Ø
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Approximation Algorithm for VERTEX-COVER 
Problem

◼ An optimal solution
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Approximation Algorithm for VERTEX-COVER 
Problem

◼ Theorem 35.1
◼ APPROX-VERTEX-COVER is a polynomial-time 2-

approximation algorithm.

◼ Proof

◼ We have already shown that APPROX-VERTEX-COVER runs 
in polynomial time.

◼ The set C of vertices that is returned by APPROX-VERTEX-
COVER is a vertex cover, since the algorithm loops until 
every edge in G.E has been covered by some vertex in C.

◼ Let A represent the set of edges (and their endpoints) that 
are included in C.



Approximation Algorithm for VERTEX-COVER 
Problem

◼ Theorem 35.1
◼ APPROX-VERTEX-COVER is a polynomial-time 2-

approximation algorithm.

◼ Proof
◼ In order to cover the edges in A, an optimal vertex cover C*

must include at least one endpoint of each edge that is 
included in C. 

◼ Since once an edge is picked, all other edges that are 
incident on its endpoints are deleted from E’ and thus no two 
edges in A share an endpoint.

◼ Thus, no two edges in A are covered by the same vertex in 
C* and we have |C* |≥ |A |.

◼ Each iteration of APPROX-VERTEX-COVER picks an edge for 
which neither endpoint is in C
➔ |C | = 2 |A | and |C | ≤ 2 |C* |                             



TRAVELING-SALESMAN 
Problem



TRAVELING-SALESMAN 
Problem

◼ In the Traveling Salesman problem, we are given an 
undirected complete graph 𝐺 = (𝑉, 𝐸) that has a 
nonnegative integer cost 𝑐 𝑢, 𝑣 associated with each 
edge (𝑢, 𝑣).

◼ Traveling Salesman problem is to find a hamiltonian
cycle, or a tour of 𝐺 with minimum cost.

◼ This problem is the optimization version of an NP-
complete decision problem. 

◼ Even though we don’t know how to find a tour in a 
graph 𝐺 in polynomial time, we can efficiently find a 
tour that is near-optimal.



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Triangle inequality

◼ In many practical situations, the least costly way 
to go from a place 𝑢 to a place 𝑤 is to go directly

◼ For all vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉, we have 𝑐 𝑢,𝑤 ≤
𝑐 𝑢, 𝑣 + 𝑐 𝑣,𝑤



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ The following algorithm returns tour whose cost is guaranteed to 
be no more than twice the cost of an optimal tour. 

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻

◼ Its running time is 𝑂( 𝑉 2) time.

𝑂 1

𝑂 𝑉 2

𝑂 𝑉
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Approximation Algorithm for TRAVELING-SALESMAN 
Problem

APPROX-TSP-TOUR(G, c)

1. select a vertex 𝑟 ∈ 𝐺. 𝑉 to be a “root” vertex

2. compute a minimum spanning tree 𝑇 for 𝐺
from root 𝑟 using MST-PRIM(G, c, r)

3. let 𝐻 be a list of vertices, ordered according to when
they are first visited in a preorder tree walk of 𝑇

4. return the hamiltonian cycle 𝐻



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Theorem 35.2
◼ APPROX-TSP-TOUR is a polynomial-time 2-approximation

algorithm for the TRAVELING-SALESMAN problem with the 
triangle inequality.

◼ Proof

◼ We have already shown that APPROX-TSP-TOUR runs in 
polynomial time.

◼ Let 𝐻∗ denote an optimal tour.

◼ We obtain a spanning tree 𝑇′ by deleting any edge from the
tour 𝐻∗, and each edge is nonnegative.

◼ Let 𝑇 be a minimum spanning tree of 𝐺.

◼ Thus, the we have 𝑐 𝑇 ≤ 𝑐 𝑇′ ≤ 𝑐 𝐻∗
(35.4)



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Proof (contd.)

◼ Let 𝑊 be a full walk of the minimum spanning tree 𝑇.

◼ A full walk lists the vertices when they are first visited 
and also whenever they are returned to after a visit to a 
subtree.

Full walk
𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Proof (cont.)
◼ Since the full walk traverses every edge of T exactly twice, we have

◼ 𝑐 𝑊 = 2𝑐 𝑇

◼ Since we have 𝑐 𝑇 ≤ 𝑐 𝐻∗ (35.4), we obtain 
𝑐 𝑊 ≤ 2𝑐 𝐻∗

Full walk
𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎

(35.5)

(35.6)



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Proof (cont.)

◼ By the triangle inequality, we can delete a visit to any 
vertex from 𝑊 and the cost does not increase.

◼ If we delete a vertex 𝑣 from 𝑊 between visits to 𝑢 and 
𝑤, the resulting ordering specifies going directly from 𝑢
to 𝑤.



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Proof (cont.)

◼ By repeatedly applying this operation, we can remove from 
𝑊 all but the first visit to each vertex.

◼ This ordering is the same as that obtained by a preorder 
walk of the tree 𝑇.

Full walk
𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎

Preorder walk
𝑎, 𝑏, 𝑐, ℎ, 𝑑, 𝑒, 𝑓, 𝑔

deleted



Approximation Algorithm for TRAVELING-SALESMAN 
Problem

◼ Proof (cont.)

◼ Let 𝐻 be the cycle corresponding to this preorder walk.

◼ It is a hamiltonian cycle, since every vertex is visited exactly 

once.

◼ It is the cycle computed by APPROX-TSP-TOUR.

◼ Since 𝐻 is obtained by deleting vertices from the full walk 𝑊
and 

◼ 𝑐 𝑇 ≤ 𝑐 𝑇′ ≤ 𝑐 𝐻∗

◼ 𝑐 𝑊 = 2𝑐 𝑇 ≤ 2𝑐 𝐻∗

◼ Thus, we have 
◼ 𝑐 𝐻 ≤ 𝑐 𝑊 = 2𝑐 𝑇 ≤ 2𝑐 𝐻∗

(35.4)

(35.5) and (35.6)



The General TRAVELING-SALESMAN Problem

◼ If we drop the assumption that the cost function 𝑐
satisfies the triangle inequality, then we cannot find 
good approximate tours in polynomial time unless 
𝑃 = 𝑁𝑃.

◼ Theorem 35.3

◼ If 𝑃 ≠ 𝑁𝑃, then for any constant 𝜌 ≥ 1, there is no 
polynomial-time approximation algorithm with 
approximation ratio 𝜌 for the general traveling-
salesman problem.



The General TRAVELING-SALESMAN Problem

◼ Proof sketch (by contradiction) 

◼ Suppose to the contrary that for some number 𝜌 ≥ 1, there 
is a polynomial-time approximation algorithm 𝐴 with 
approximation ratio 𝜌. 

◼ Without loss of generality, we assume that 𝜌 is an integer, 

by rounding it up if necessary. 

◼ We shall then show how to use 𝐴 to solve instances of the 

HAMILTONIAN-CYCLE problem in polynomial time. 

◼ Since the HAMILTONIAN-CYCLE problem is NP-complete, if 
we can solve it in polynomial time, then 𝑃 = 𝑁𝑃.



The General TRAVELING-SALESMAN Problem

◼ Proof

◼ Let 𝐺 = 𝑉, 𝐸 be an instance of the 

HAMILTONIAN-CYCLE problem.

◼ We wish to determine efficiently whether 𝐺
contains a hamiltonian cycle by making use of the 
hypothesized approximation algorithm 𝐴.



The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)

◼ We turn 𝐺 into an instance of the TRAVELING-
SALESMAN problem in 𝑂 𝑉 2 time as follows.

◼ Let 𝐺′ = 𝑉, 𝐸′ be the complete graph on 𝑉.

◼ Assign an integer cost to each edge in 𝐸′ as 

follows

◼ 𝑐 𝑢, 𝑣 = ቊ
1 if 𝑢, 𝑣 ∈ 𝐸,

𝜌 𝑉 + 1 otherwise



The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)
◼ Consider the TRAVELING-SALESMAN problem with 𝐺′ and 

the cost function 𝑐.

◼ If the original graph 𝐺 has a hamiltonian cycle 𝐻, the cost 
function 𝑐 assigns to each edge of 𝐻 a cost of 1, and so 𝐺′

contains a tour of cost 𝑉 .

◼ On the other hand, if 𝐺 does not contain a hamiltonian cycle, 
then any tour of 𝐺′ must use some edge not in 𝐸.

◼ But any tour that uses an edge not in E has a cost of at least 

◼ 𝜌 𝑉 + 1 + 𝑉 − 1 = 𝜌 𝑉 + 𝑉 > 𝜌 𝑉



The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)
◼ Because edges not in 𝐺 are so costly, there is a gap of at 

least 𝜌 𝑉 between the cost of a tour that is a hamiltonian
cycle in 𝐺 (cost 𝑉 ) and the cost of any other tour (cost at 
least 𝜌 𝑉 + 𝑉 ).

◼ Thus, the cost of a tour that is not a hamiltonian cycle in 𝐺 is 
at least a factor of 𝜌 + 1 greater than the cost of a tour that 
is a hamiltonian cycle in 𝐺.



The General TRAVELING-SALESMAN Problem

◼ Proof (cont.)
◼ Suppose that we apply a 𝜌-approximation algorithm 𝐴 to the 

TRAVELING-SALESMAN problem with 𝐺′ and 𝑐.

◼ If 𝐺 contains a hamiltonian cycle, then 𝐴 must return a tour 
of cost less than 𝜌 𝑉 .

◼ 𝐺′ has an optimal tour with cost 𝑉 only.

◼ If 𝐺 has no hamiltonian cycle, then 𝐴 returns a tour of cost 
more than 𝜌 𝑉 .

◼ 𝐺′ has an optimal tour with cost at least 𝜌 + 1 𝑉 .

◼ Thus, we can use 𝐴 to solve the HAMILTONIAN-CYCLE 

problem in polynomial time.



SET-COVERING Problem



SET-COVERING Problem

◼ An optimization problem that models many problems that 
require resources to be allocated. 

◼ Its corresponding decision problem generalizes the NP-complete 
vertex cover problem and is therefore also NP-hard. 

◼ The approximation algorithm developed to handle the vertex-
cover problem doesn’t apply here, however, and so we need to 
try other approaches. 

◼ We shall examine a simple greedy heuristic with a logarithmic 
approximation ratio.



An Example of the Set-
Covering Problem

An instance (𝑋, ℱ) of the set-covering 
problem, where 𝑋 consists of the 12 
points and ℱ ={S1, S2, S3, S4, S5, S6}

s3
s4 s5

A minimum size set cover is
{S3, S4, S5} with size 3.

s1

s2

s3 s4 s5

s6



Problem Formulation

◼ Given an instance (𝑋, ℱ) of the set-covering problem 

where

◼ a finite set 𝑋

◼ a family F of subsets of 𝑋

◼ 𝑋 = 𝑆∈ℱڂ 𝑆

◼ We say a subset 𝑆 ∈ ℱ covers its elements.

◼ Find a minimum-size subset 𝒞 ⊂ ℱ whose members 
cover all of 𝑋 (𝒞: set-cover)



NP-Completeness of the Set-Covering Problem

◼ Given a directed graph G=(V,E) and integer k, define 𝑋=E and 
ℱ=V.

◼ The reduction is done in polynomial time.
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NP-Completeness of the Set-Covering Problem

◼ The set-covering problem is NP-hard.

◼ The graph G has a vertex cover of size k if and only if the set 
X has a set-cover of size k.

◼ The set-covering problem is in NP.

◼ Given a set-cover C, that |C|=k and C covers X can be 
verified in polynomial time. 

◼ Thus, the set-covering problem is NP-complete.



NP-Completeness of the Set-Covering Problem

◼ An optimal solution
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A Greedy Approximation  
Algorithm

GREEDY-SET-COVER(𝑋,ℱ)

1. 𝑈 = 𝑋
2. 𝒞 = ∅

3. while 𝑈 ≠ ∅

4. select an 𝑆 ∈ ℱ that maximizes |𝑆 ∩ 𝑈|

5. 𝑈 = 𝑈 − 𝑆

6. 𝒞 = 𝒞 ∪ {𝑆}

7. return 𝒞



A Greedy Approximation  
Algorithm

GREEDY-SET-COVER(𝑋,ℱ)

1. 𝑈 = 𝑋
2. 𝒞 = ∅

3. while 𝑈 ≠ ∅

4. select an 𝑆 ∈ ℱ that maximizes |𝑆 ∩ 𝑈|

5. 𝑈 = 𝑈 − 𝑆

6. 𝒞 = 𝒞 ∪ {𝑆}

7. return 𝒞

𝑂(|𝑋||ℱ|min(|𝑋|, |ℱ|)) : time complexity

min(|𝑋|, |ℱ|)

𝑂(|𝑋||ℱ|)



Proof of σ𝑥∈𝑆 𝑐𝑥 ≤ 𝐻( 𝑆 )

◼ Consider any set 𝑆 ∈ ℱ,

◼ Let 𝑢𝑖 = |𝑆 − (𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖)| with i = 1,…, 𝒞 .

◼ Note that 𝑢𝑖 is the number of elements in S that remain uncovered 
after the algorithm has selected the sets 𝑆1, 𝑆2,…, 𝑆𝑖.

◼ We define 𝑢0 = |𝑆| to be the number of elements of S, which are all 
initially uncovered.

◼ Let 𝑘 be the least index such that 𝑢𝑘 = 0

◼ Each element of 𝑆 is covered by at least one of the sets 𝑆1, 𝑆2,… 𝑆𝑘.

◼ Some elements in S is uncovered by 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑘−1.



An Example of ui

◼ 𝑢𝑖 = 𝑆 − 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖 where S can be the largest when S=X

◼ The greedy solution: S1, S4, S5, S3

◼ |S1|=6

◼ |S4-S1|=3

◼ |S5-(S1 ∪ S4)|=2

◼ |S3-(S1 ∪ S4 ∪ S5)|=1

◼ Let S=S2

◼ u0=|S2|=4

◼ u1=|S2- S1|=2

◼ u2=|S2-(S1 ∪ S4)|=1

◼ u3=|S2-(S1 ∪ S4 ∪ S5)|=0

◼ ∑cx = 2*1/6+1*1/3+1*1/2=4/3

The greedy solution

s1

s4
s5s3

s2



Proof of 

𝑥∈𝑆

𝑐𝑥 ≤ 𝐻( 𝑆 )

◼ Consider any set 𝑆 ∈ ℱ.

◼ Let 𝑢𝑖 = |𝑆 − (𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖)| for i = 1,…, 𝒞 .

◼ Let 𝑘 be the least index such that 𝑢𝑘 = 0

◼ Then, 𝑢𝑖−1 ≥ 𝑢𝑖, and 𝑢𝑖−1 − 𝑢𝑖 elements of 𝑆 are covered for the first time by 𝑆𝑖
for i = 1,…,k.

◼ Thus, σ𝑥∈𝑆 𝑐𝑥 = σ𝑖=1
𝑘 (𝑢𝑖−1 − 𝑢𝑖) ∙

1

|𝑆𝑖−(𝑆1∪𝑆2∪⋯∪𝑆𝑖−1)|

◼ Since the greedy choice of 𝑆𝑖 guarantees that 𝑆 cannot cover more new 
elements than 𝑆𝑖 does, observe that 

𝑆𝑖 − 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖−1 ≥ 𝑆 − 𝑆1 ∪ 𝑆2 ∪⋯∪ 𝑆𝑖−1
= 𝑢𝑖−1

◼ We obtain σ𝑥∈𝑆 𝑐𝑥 ≤ σ𝑖=1
𝑘 (𝑢𝑖−1 − 𝑢𝑖) ∙

1

𝑢𝑖−1



Proof of 

𝑥∈𝑆

𝑐𝑥 ≤ 𝐻( 𝑆 )

◼ σ𝑥∈𝑆 𝑐𝑥 ≤ σ𝑖=1
𝑘 (𝑢𝑖−1 − 𝑢𝑖) ∙

1

𝑢𝑖−1
= σ𝑖=1

𝑘 σ
𝑗=𝑢𝑖+1
𝑢𝑖−1 1

𝑢𝑖−1

≤ σ𝑖=1
𝑘 σ

𝑗=𝑢𝑖+1
𝑢𝑖−1 1

𝑗
(because 𝑗 ≤ 𝑢𝑖−1)

= σ𝑖=1
𝑘 (σ𝑗=1

𝑢𝑖−1 1

𝑗
− σ

𝑗=1
𝑢𝑖 1

𝑗
) = σ𝑖=1

𝑘 (𝐻 𝑢𝑖−1 − 𝐻(𝑢𝑖))

= 𝐻 𝑢0 − 𝐻(𝑢𝑘) (because the sum telescopes)

= 𝐻 𝑢0 − 𝐻 0

= 𝐻 𝑢0 (because 𝐻 0 = 0)

= 𝐻( 𝑆 )



A Greedy Approximation  
Algorithm

◼ Corollary 35.5
◼ Greedy-Set-Cover is a polynomial-time (ln|𝑋|+1)-approximation 

algorithm.

◼ Proof

◼ Use inequality σ𝑘=1
𝑛 1

𝑘
≤ ln 𝑛 + 1 (A.14) and Theorem 35.4.



Subset-Sum Problem



Subset-Sum Problem
◼ Recall that an instance of the subset-sum problem is a pair (S, t), 

where
◼ S is a positive integer set {x1, x2, … xn}

◼ t is a positive integer

◼ This decision problem asks whether there exists a subset of S 
that adds up exactly to the target value t.
◼ NP-Complete (see Section 34.5.5)

◼ e.g.)
◼ S = {1, 2, 7, 14, 49, 54}, t = 58

◼ The subset S’ = {2, 7, 49} is a solution.



Subset-Sum Problem
◼ The optimization problem associated with this decision problem arises 

in practical applications. 

◼ We wish to find a subset of {x1, x2, … xn} whose sum is as large as 

possible but not larger than t.

◼ For example, we may have a truck that can carry no more than t 
pounds, and n different boxes to ship, the i-th of which weighs xi

pounds. 

◼ We wish to fill the truck with as heavy a load as possible without 
exceeding the weight limit.



Subset-Sum Problem
◼ We first present an exponential-time algorithm that computes 

the optimal value for this optimization problem.

◼ We next show how to modify the algorithm so that it becomes a 
fully polynomial-time approximation scheme.  

◼ Recall that a fully polynomial-time approximation scheme has a 
running time that is polynomial in 1/ε as well as in the size of 
the input.



An Exponential-Time Exact 
Algorithm

◼ Preliminary
◼ Given a integer set(list) S and a integer x

◼ S + x = {s+x : s∈S}
◼ e.g.) S={ 0, 1, 5, 9 }, S+2={ 2, 3, 7, 11 }

◼ Let Pi denote the set of all possible summation values that can 
be obtained by selecting a subset of { x1, x2, …, xi }

◼ e.g.) S={1,4,5}, P1={0,1}, P2={0,1,4,5}, P3={0,1,4,5,6,9,10}
◼ Pi = Pi-1 ∪ (Pi-1 + xi)

◼ Let Li be a sorted list containing every element of Pi whose 
value is not more than t



An Exponential-Time Exact 
Algorithm

◼ Preliminary

◼ We also use an auxiliary procedure MERGE-LISTS(L, L’), 
which returns the sorted list that is the merge of its two 
sorted input lists L and L’ with duplicate values removed. 

◼ Like the MERGE procedure we used in merge sort, MERGE-
LISTS runs in time O(|L|+|L’|). 

◼ We omit the pseudocode for MERGE-LISTS.



An Exponential-Time Exact 
Algorithm

EXACT-SUBSET-SUM(S, t)

1. n = |S|

2. L0 = <0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1, Li-1+xi)

5. remove form Li every element that is greater than t

6. return the largest element is Ln

◼ MERGE-LISTS(L, L’)

◼ Returns the sorted list like merge sort

◼ O(|L|+|L’|)

◼ Duplicate values are removed



An Exponential-Time Exact 
Algorithm

◼ EXACT-SUBSET-SUM is an exponential-time algorithm in general

◼ Because |Li| can be as much as 2i

◼ What is a special case where it becomes a polynomial-time 
algorithm?

◼ When t is polynomial in |S| or

◼ When all the numbers in S are bounded by a polynomial in |S|



Fully Polynomial-Time 
Approximation Scheme

◼ It is a (1+ε)-approximation algorithm.

◼ Running time is polynomial in 1/ε as well as in the size of the 
input.

◼ e.g.) O((1/ε)2n3)



Trimming
◼ Idea

◼ If two values in L are close, since we want just an approximate 
solution, then there is no reason to maintain both explicitly.

◼ To trim a list L by δ (0<δ<1) means

◼ To remove as many elements as possible, in a such way that, for 
every removed element y, there is an element z still in trimming 

result L’ satisfying 
𝑦

1+𝛿
≤ 𝑧 ≤ 𝑦.



Trimming
◼ For every removed element y, there is an element z still in trimming 

result L’ satisfying 
𝑦

1 + 𝛿
≤ 𝑧 ≤ 𝑦

◼ e.g.)

◼ δ = 0.1, L=<10,11,12,15,20,21,22,23,24,29>

◼ L’=<10,12,15,20,23,29>
◼ 11 is represented by 10 (11/1.1 ≤ 10 ≤ 11)

◼ 21 and 22 are represented by 20

◼ 24 is represented by 23



Trimming
◼ The following procedure trims list L=<y1,y2,…,ym> in time Θ(m), given L and 

𝛿, and assuming that L is sorted into monotonically increasing order. 

◼ The output of the procedure is a trimmed, sorted list.

TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

𝑦

1 + 𝛿
≤ 𝑧 ≤ 𝑦



Trimming
◼ The procedure scans the elements of L in monotonically increasing order.

◼ A number is appended onto the returned list L’ only if it is the first element of L 
or if it cannot be represented by the most recent number placed into L’.

TRIM(L, 𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’
𝑦

1 + 𝛿
≤ 𝑧 ≤ 𝑦



An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)

6. append yi onto the end of L’

7. last = yi

8. return L’

L 10 11 12 15 20 21 22 23 24 29𝛿 = 0.1
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An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m
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7. last = yi
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An Example of Trimming
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8. return L’
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An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m
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7. last = yi

8. return L’

𝛿 = 0.1 L 10 11 12 15 20 21 22 23 24 29

m = 10

last = 15

i

L’ 10 12 15
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An Example of Trimming
TRIM(L,𝛿)

1. let m be the length of L

2. L’ = <y1>

3. last = y1

4. for i =2 to m

5. if yi>last(1+𝛿)
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8. return L’
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APPROX-SUBSET-SUM
◼ Given input S, a target integer t, and an approximation 

parameter ε (0<ε<1),

◼ It returns a value z whose value is within a 1+ε factor of the 
optimal solution.



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101
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APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)
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8. return z*
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An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L1 0 104

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L1 0 104

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L1 0 104

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L2 0 102 104 206

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L2 0 102 206



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L2 0 102 206



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L3 0 102 201 206 303 407

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L3 0 102 201 303 407



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L3 0 102 201 303



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

L4 0 101 102 201 203 302 303 404

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

i

n = 4



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L4 0 101 201 302 404



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

i

L4 0 101 201 302



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

L4 0 101 201 302

z*



An Example of APPROX-
SUBSET-SUM

APPROX-SUBSET-SUM(S, t, ε)

1. n = |S|

2. L0=<0>

3. for i = 1 to n

4. Li = MERGE-LISTS(Li-1,Li-1+xi)

5. Li = TRIM(Li, ε/2n)

6. remove from Li every element that is greater than t

7. let z* be the largest value in Ln

8. return z*

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

n = 4

L4 0 101 201 302

z*



An Example of APPROX-
SUBSET-SUM

◼ The algorithm returns z* = 302 as its answer, which is well within ε = 
40% of the optimal answer 307 = 104 + 102 + 101.

◼ In fact, it is within 2%.

t = 308, ε=0.4 , 𝛿=ε/2n=0.05

S 104 102 201 101

L4 0 101 201 302

z*



APPROX-SUBSET-SUM
◼ Theorem 35.8

◼ APPROX-SUBSET-SUM is a fully polynomial-time approximation 
scheme for the subset-sum problem.

◼ Proof

◼ The operations of trimming Li in line 5 and removing from Li every 
element that is greater than t maintain the property that every element 
of Li is also a member of Pi.

◼ Therefore, the value 𝑧∗returned in line 8 is indeed the sum of some 
subset of S.



APPROX-SUBSET-SUM
◼ Proof - continued

◼ Let y*∈ Pn denote an optimal solution to the subset-sum problem.

◼ Then, from line 6, we know that z*≤ y*. 

◼ We need to show that

max
𝑦∗

𝑧∗
,
𝑧∗

𝑦∗
=

𝑦∗

𝑧∗
≤ 1 + 𝜖.

◼ We must also show that the running time of this algorithm is polynomial in 
both 1/𝜖 and the size of the input (# of bits log t needed to represent t + # 

of bits needed to represent the set S).



Proof of 
𝑦∗

𝑧∗
≤ 1 + 𝜖

◼ Since 𝑧∗ ≤ 𝑦∗, we will show that 
𝑦∗

𝑧∗
≤ 1 + 𝜖

◼ 𝑧∗ : approximate solution

◼ 𝑦∗ : optimal solution

◼ ∀𝑦 ∈ 𝑃𝑖, where 𝑦 ≤ 𝑡, ∃𝑧 ∈ 𝐿𝑖 s.t.
𝑦

1+
𝜖

2𝑛

𝑖 ≤ 𝑧 ≤ 𝑦 (Exercise 35.5-2)

◼ 𝑃𝑖 : the 𝑖-th set of all possible summation values

◼ 𝐿𝑖 : the 𝑖-th trimmed set

◼ Thus,  for y* ∈ 𝑃𝑛, we have 𝑧 ∈ 𝐿𝑛 s.t.

𝑦∗

1+
𝜖

2𝑛

𝑛 ≤ 𝑧 ≤ 𝑦∗.

◼ Since there exists an element z ∈ Ln fulfilling the above inequality, the inequality must hold for z*, which is 
the largest value in Ln. That is,

𝑦∗

𝑧∗
≤ 1 +

𝜖

2𝑛

𝑛
.



Proof of 
𝑦∗

𝑧∗
≤ 1 + 𝜖

◼ Since  
𝑦∗

𝑧∗
≤ 1 +

𝜖

2𝑛

𝑛
, to show that 

𝑦∗

𝑧∗
≤ 1 + 𝜖, we prove that 1 +

𝜖

2𝑛

𝑛
≤ 1 + 𝜖.

◼ The function (1+ 𝜖/2n)n increases with n as it approaches its limit of 𝑒𝜖/2 since 

◼ 1 +
𝜖

2𝑛

𝑛
monotonically increases (

𝑑

𝑑𝑛
1 +

𝜖

2𝑛

𝑛
> 0)

◼ lim
𝑛→∞

1 +
𝜖

2𝑛

𝑛
= 𝑒𝜖/2 (By equation (3.14)).

◼ Now, we have 1 +
𝜖

2𝑛

𝑛
≤ 𝑒𝜖/2

≤ 1 +
𝜖

2
+

𝜖

2

2
(by inequality 3.13)

≤ 1 + 𝜖.

◼ Thus, y*/z* ≤ 1 + 𝜖 .

1 + 𝑥 ≤ 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2



Proof of Time Complexity

◼ We will show that a bound of |𝐿𝑖| is polynomial in the size of input and 
1

𝜖
.

◼ After trimming, successive element 𝑧 and 𝑧′ must have the relationship 
𝑧′

𝑧
> 1 +

𝜖

2𝑛
.

◼ Therefore, 𝐿𝑖 contains 0, possibly the value 1, and up to additional log1+𝜖/2𝑛 𝑡 values 

because

◼ 𝐿𝑖 < |{0,1,1 +
𝜖

2𝑛
, 1 +

𝜖

2𝑛

2
, … , 1 +

𝜖

2𝑛

𝑘
}| where 𝑘 is the smallest integer s.t. 𝑡 < 1 +

𝜖

2𝑛

𝑘+1
.

◼ Thus, log1+𝜖/2𝑛 𝑡 < 𝑘 + 1.

◼ That is, log1+𝜖/2𝑛 𝑡 ≤ 𝑘.



Proof of Time Complexity

◼ From the previous observation, |𝐿𝑖| is at most

log
1+

𝜖

2𝑛
𝑡 + 2 =

ln t

ln(1+
𝜖

2𝑛
)
+ 2

≤
ln 𝑡
𝜖
2𝑛

1+
𝜖
2𝑛

+ 2 (By inequality 3.17)

=
2𝑛 1+

𝜖

2𝑛
ln 𝑡

𝜖
+ 2

=
2𝑛+𝜖 ln(𝑡)

𝜖
+ 2

<
1

𝜖
3𝑛 ∗ ln 𝑡 + 2.

𝒙

𝟏 + 𝒙
≤ ln(𝟏 + 𝒙) ≤ 𝑥

1 −
1

𝑡
≤ ln 𝑡 for 𝑡 > 0

⇒ 𝑡 ← 1 + 𝑥 then

∴
𝑥

1 + 𝑥
≤ ln(1 + 𝑥)

𝟎 < 𝝐 < 𝟏 < 𝒏



Proof of Time Complexity

◼ With |𝐿𝑖| = 𝑂(
1

𝜀
⋅ 𝑛 ⋅ ln 𝑡), the bound is polynomial in the size of the 

input ln 𝑡 ,
1

𝜀
and n.

◼ Since the running time of APPROX-SUBSET-SUM is polynomial in |Li|, 
we can conclude that APPROX-SUBSET-SUM is a fully polynomial-time 
approximation scheme.



Any Question?
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