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Administrative Information
 Programming Languages for Programming Assignments

 C++

 Prerequisites

 Recommended: 전기공학부 프로그래밍 방법론과 자료구조

 How to Succeed in this course:

 Practice solving many problems both with pencils and computers

 Make sure to allocate at least one day per week to this course. 

 Ask many questions in class – Don’t get lost!  If you think you get 
lost, try to catch up with the help of TAs.
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Chapter 2 
Getting Started



Outline

 This chapter familiarize you with the framework we 
shall use throughout the lecture to think about the 
design and analysis of algorithms. 

 We begin by examining the insertion sort algorithm 
to solve the sorting problem, we then argue that it 
correctly sorts, and we analyze its running time. 

 We next introduce the divide-and-conquer approach 
to the design of algorithms, use it to develop an 
algorithm called merge sort, and analyze the merge 
sort’s running time.
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Sorting Problem

 Input: 
 A sequence of n numbers <a1, a2,…,an>

 Output: 
 A reordering <a’1, a’2,…,a’n> of the input sequence such that a’1 ≤ a’2 ≤ … 

≤ a’n

 There are many sorting algorithms

 Insertion sort

 Merge sort

 Quick sort
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Insertion Sort

 It uses an incremental approach!

 For a sequence of n numbers A[1..n], it consists of n−1 passes.

 For pass j = 2 through n
 Use the fact that the elements in A[1. . j − 1] are already known to 

be in sorted order.

 Ensures that the elements in A[1. . j] are in sorted order.
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Insertion Sort

INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1]

4 i = j - 1

5 while i>0 and A[i]>key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key

10



Insertion Sort
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Insertion Sort
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Insertion Sort
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Insertion Sort
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Insertion Sort
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Insertion Sort

19

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

index

value

sorted

j = 8



Loop Invariants and the 
Correctness Proof
 We use loop invariants to help us understand why an algorithm is 

correct.

 We must show three things about a loop. invariant:

 Initialization: It is true prior to the first iteration of the loop.

 Maintenance: If it is true before an iteration of the loop, it remains 
true before the next iteration.

 Termination: When the loop terminates, the invariant gives us a 
useful property that helps show that the algorithm is correct.
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Insertion Sort
 Loop invariant 

 At the start of each iteration of the for-loop of lines 1-8, the subarray 
𝐴[1… 𝑗 − 1] consists of the elements originally in 𝐴[1… 𝑗 − 1] but in 
ascending order.

 Initialization:
 When j = 2, 𝐴[1… 𝑗 − 1] consists of just the single element 𝐴[1] which is 

the original one in 𝐴[1]. Moreover, the subarray is sorted. Thus, loop 
invariant holds prior to the first iteration of the loop.
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Insertion Sort
 Loop invariant 

 At the start of each iteration of the for-loop of lines 1-8, the subarray 
𝐴[1… 𝑗 − 1] consists of the elements originally in 𝐴[1… 𝑗 − 1] but in 
ascending order.

 Maintenance:
 The body of outer for-loop works by moving 𝐴[𝑗 − 1], 𝐴[𝑗 − 2], 𝐴[𝑗 − 3], 

and so on by one position to the right until the proper position for 𝐴[𝑗] is 
found (lines4-7), at which point the value of 𝐴[𝑗] is inserted (line 8)

 The subarray 𝐴[1… 𝑗] then consists of the elements originally in 𝐴 1… 𝑗 , but
in sorted order

 Incrementing 𝑗 for the next iteration of the for loop then preserves the loop 
invariant
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Insertion Sort
 Loop invariant 

 At the start of each iteration of the for-loop of lines 1-8, the subarray 
𝐴[1… 𝑗 − 1] consists of the elements originally in 𝐴[1… 𝑗 − 1] but in 
ascending order.

 Termination:
 When  the for loop terminates, we have 𝑗 = 𝑛+1
 Substituting 𝑛+1 for j in the wording of loop invariant, we have that 

𝐴[1…𝑛] consists of the elements originally in 𝐴[1…𝑛], but in ascending 
order. Hence, the entire array is sorted, which means that the algorithm is 
correct.
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Divide and Conquer

 We solve a problem recursively by applying three steps at each 
level of the recursion:

 Divide the problem into a number of subproblems that are smaller 
instances of the same problem.

 Conquer the subproblem by solving them recursively.

 If the problem sizes are small enough (i.e. we have gotten down to the 
base case), solve the subproblem in a straightforward manner

 Combine the solutions to the subproblems into the solution for the 
original problem.
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Merge Sort

 Merge Sort algorithm closely follows the divide-and-conquer paradigm. 
Intuitively, it operates as follows.

 Divide: Divide the n-element sequence to be sorted into two subsequences 
of n=2 elements each.

 Conquer: Sort the two subsequences recursively using merge sort.

 Combine: Merge the two sorted subsequences to produce the sorted 
answer.

 The recursion “bottoms out” when the sequence to be sorted has 
length 1, in which case there is no work to be done, since every 
sequence of length 1 is already in sorted order
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Merge Procedure

 The key operation of merge sort algorithm.

 The procedure assumes that that the subarrays A[p..q] and 
A[q+1..r]  are in sorted order. 

 It merges them to form a single sorted subarray that replaces 
the current subarray A[p..r].

 We merge by calling an auxiliary procedure MERGE(A, p, q, r) 
where A is an array and p, q, and r are indices into the array 
such that p ≤ q < r.
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Merge Procedure
MERGE(A, p, q, r)

1 n1 = q – p + 1

2 n2 = r – q

3 let L[1 ... n1+1] and R[1 ... n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p+i-1]

6 for j = 1 to n2

7 R[j] = A[q+j]

8 L[n1+1] = ∞

9 R[n2+1] = ∞

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k] = R[j]

17 j = j + 1 27
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Operations of Merge(A, 9, 11, 14)
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Operations of Merge(A, 9, 11, 14)
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Operations of Merge(A, 9, 11, 14)
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Operations of Merge(A, 9, 11, 14)

31

8 9 10 11 12 13 14 15

A … 1 2 2 1 2 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j



Operations of Merge(A, 9, 11, 14)
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Operations of Merge(A, 9, 11, 14)
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Operations of Merge(A, 9, 11, 14)
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Merge Procedure
MERGE(A, p, q, r)

1 n1 = q – p + 1

2 n2 = r – q

3 let L[1 ... n1+1] and R[1 ... n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p+i-1]

6 for j = 1 to n2

7 R[j] = A[q+j]

8 L[n1+1] = ∞

9 R[n2+1] = ∞

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k] = R[j]

17 j = j + 1 35



Correctness of 
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and 
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have 
not been copied back into 𝐴.
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Correctness of 
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and 
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have 
not been copied back into 𝐴.

 Initialization: 
 Prior to the first iteration of the loop, we have 𝑘=𝑝, so that the subarray 

𝐴[𝑝…𝑘−1] is empty.

 The empty subarray contains the (𝑘-𝑝=0) smallest elements in 𝐿 and 𝑅.

 Since 𝑖=𝑗=1, both 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays 
that have not been copied back into 𝐴.
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Correctness of 
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and 
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have 
not been copied back into 𝐴.

 Maintenance: 
 When 𝐿[𝑖]≤𝑅[𝑗],

 𝐿[𝑖] is the smallest element not yet copied back into 𝐴

 Because 𝐴[𝑝…𝑘−1] contains the 𝑘−𝑝 smallest elements, after line 14 copies 𝐿[𝑖] 
into 𝐴[𝑘], the subarray 𝐴[𝑝…𝑘] will contain the 𝑘−𝑝+1 smallest elements.

 Incrementing 𝑘 and 𝑖 (in line 15) reestablishes the loop invariant for the next 
iteration.

 When 𝐿[𝑖]>𝑅[𝑗], 

 the lines 16-17 perform the appropriate action to maintain the loop 
invariant.
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Correctness of 
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray 
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and 
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have 
not been copied back into 𝐴.

 Termination: 
 At termination, 𝑘 = 𝑟 + 1.
 By the loop invariant, the subarray 𝐴[𝑝…𝑘 − 1], which is 𝐴[𝑝…𝑟], contains 

the (𝑘 − 𝑝) = (𝑟 − 𝑝 + 1) smallest elements of 𝐿[1…𝑛1 + 1] and 𝑅[1…𝑛2 +
1], in sorted order.

 The arrays 𝐿 and 𝑅 together contain 𝑛1 + 𝑛2 + 2 = 𝑟 − 𝑝 + 3 elements.
 All but the two largest have been copied back into 𝐴, and these two largest 

elements are the sentinels.
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Merge Sort

 Merge Sort algorithm operates as follows

 Divide: The divide step just computes the middle of the subarray, which 
takes Θ(1) time 

 Conquer: We recursively solve two subproblems, each of size n/2, which 
contributes 2T(n/2) to the running time.

 Combine: We have already noted that the MERGE procedure on an n-
element subarray takes Θ(n) time 

 Thus, the recurrence for the worst-case running time T(n) of merge 
sort is

 𝑇(1)=1
𝑇(𝑛)=2𝑇(𝑛/2)+𝑛

40



Merge Sort

MERGE-SORT(A,p,r)
1 if p < r

2 q = (p+r)/2

3 MERGE-SORT (A,p,q)

4 MERGE-SORT (A,q+1,r)

5 MERGE(A,p,q,r)

 Merge() is the procedure to merge two sorted lists.
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Solving Recurrences
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Solving Recurrences
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Solving Recurrences
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Solving Recurrences
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Solving Recurrences
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Solving Recurrences
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Operations of Merge Sort 
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Any Question?
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Chapter 3: 
Growth of Functions
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Algorithm Analysis

 How much better is one curve than another one 
(answer: typically a lot, for large inputs)

 How do we decide which curve a particular algorithm 
lies on (answer: sometimes it's easy, sometimes it's 
hard).

 How to use this information to design better 
algorithms (answer: definitely).

 Can we predict how an algorithm will perform for 
large input sets, based on its performance for 
moderate input sets (answer: definitely).



Algorithm Analysis

 Running time of an algorithm almost always depends on the 
amount of input: More input means more time. Thus the 
running time, 𝑇, is a function of the amount of input, 𝑛, or 
𝑇(𝑛) = 𝑓(𝑛).

 The exact value of the function depends on
 the speed of the host machine

 the quality of the compiler and optimizer

 the quality of the program that implements the algorithm

 the basic fundamentals of the algorithm

 Typically, the last item is the most important.



Θ-notation

 For a given function g(n), we define 

 Θ(g(n)) = { f(n): there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 }.

 A function f(n) belongs to the set Θ(g(n)) if there is positive 
constants c1 and c2 such that it can be “sandwiched” between 
c1g(n) and c2g(n), for sufficiently large n.

 Because Θ(g(n)) is a set, we could write “f(n)  Θ(g(n))” to 
indicate that f(n) is a member of Θ(g(n)).

 Instead, we write “f(n) = Θ(g(n))” to express the same notion.



Θ-notation

 For all values of n at and to the right of n0, the value of f(n) lies 
at or above c1g(n) and at or below c2g(n). 

 In other words, for all n ≥ n0, the function f(n) is equal to g(n) 
to within a constant factor.

 We say that g(n) is an asymptotically tight bound for f(n).

 The definition of Θ(g(n)) requires that every member f(n) 
Θ(g(n)) be asymptotically nonnegative, that is, that f(n) be 
nonnegative whenever n is sufficiently large.

 Consequently, the function g(n) itself must be asymptotically 
nonnegative, or else the set Θ(g(n)) is empty.

 We shall therefore assume that every function used within Θ-
notation is asymptotically nonnegative.



Θ-notation
 We can throw away lower-order terms and ignore the leading 

coefficient of the highest-order term

 To justify 
1

2
n2-3n = Θ(n2), we must determine positive constants c1, c2, 

and n0 such that

 c1n
2 ≤ 

1

2
n2-3n≤c2n

2  for all n ≥ n0.

 Dividing by n2 yields

 c1 ≤ 
1

2
-
3

𝑛
≤ c2.

 The right-hand inequality hold for any value of n≥1 by choosing any 
constant c2≥

1

2
.

 Likewise, the left-hand inequality hold for any value of n≥7 by 
choosing any constant c1≤

1

14.

 Thus, by choosing c1=
1

14
, c2≥ 

1

2
, and n0 ≥ 7 , we can verify that            

1

2
n2-3n= Θ(n2).



Θ-notation

 f(n)=Θ(g(n)) iff there exist positive constants 
c1, c2 and n0 such that 

 c1g(n)≤f(n)≤c2g(n) for all n, n≥n0

 g(n) is both an upper and lower bound 

 Examples

 f(n) = 3n+2=Θ(n) 

 f(n) = 10n2+4n+2=Θ(n2) 

 f(n) = 6× 2n+n2=Θ(2n) 

8



O-notation

 Gives an upper bound on a function, to within a constant factor.

 O(g(n)) is pronounced “big-oh of g of n” or often just “oh of g of n”.

 For a given function g(n), we define

 O(g(n)) = { f(n): there exist positive constants c and n0 such that 0 
≤ f(n) ≤ cg(n) for all n ≥ n0 }.

 f(n) = O(g(n)) indicates that a function f(n) is on or below cg(n).

 Since Θ-notation is a stronger notion than O-notation, f(n) = Θ(g(n)) 
implies f(n) = O(g(n)) (i.e., we have Θ(g(n)) ∈ O(g(n))).

 We sometimes find O-notation informally describing asymptotically 
tight bounds (i.e., what we have defined using Θ-notation).



O-notation

 f(n)=O(g(n)) iff there exist positive 
constants c and n0 such that 

 f(n)≤cg(n) for all n, n≥n0

 Examples

 f(n) = 3n+3= O(n) as 3n+3≤4n for n≥3 

 f(n) = 3n+3= O(n2) as 3n+3≤3n2 for n≥2 

10



O-notation
 Using O-notation, we can often describe the running time of an algorithm 

merely by inspecting the algorithm’s overall structure.

 For example, the doubly nested loop structure of the insertion sort algorithm 
from Chapter 2 immediately yields an O(n2) upper bound on the worst-case 
running time: 

 the cost of each iteration of the inner loop is bounded from above by O(1) (constant) 

 the indices i and j are both at most n

 the inner loop is executed at most once for each of the n2 pairs of values for i and j

 Since O-notation describes an upper bound, when we use it to bound the worst 
case running time of an algorithm, we have a bound on the running time of the 
algorithm on every input.

 Thus, the O(n2) bound on worst-case running time of insertion sort also applies 
to its running time on every input.

 The Θ(n2) bound on the worst-case running time of insertion sort, however, 
does not imply a Θ(n2) bound on the running time of insertion sort on every 
input. 

 For example, we saw in Chapter 2 that when the input is already sorted, 
insertion sort runs in Θ(n) time.



Ω-notation

 Gives an upper bound on a function, to within a constant factor

 Ω(g(n)) is pronounced “big-omega of g of n” or often just “omega of g 
of n”

 For a given function g(n), we define

 Ω(g(n)) = { f(n): there exist positive constants c and n0 such that 0 
≤ cg(n) ≤  f(n) for all n ≥ n0 }

 f(n) =Ω(g(n)) indicates that a function f(n) is on or above cg(n)

 Since Θ-notation is a stronger notion than O-notation, f(n) = Θ(g(n)) 
implies f(n) =Ω(g(n)) (i.e., we have Θ(g(n)) ∈ Ω(g(n)))

 We sometimes find Ω-notation informally describing asymptotically 
tight bounds (i.e., what we have defined using Θ-notation)



 f(n)=Ω(g(n)) iff there exist positive 
constants c and n0 such that 

 f(n)≥cg(n) for all n, n≥n0

 g(n) is a lower bound 

 Examples

 f(n) = 3n+2=Ω(n) 

 f(n) = 10n2+4n+2=Ω(n2) 

13

Ω-notation



Asymptotic Notations

 Theorem 3.1

 For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and only if 

f(n) = O(g(n)) and f(n) = Ω(g(n))

 Thus, an2 + bn + c = Θ(n2) for any constants a, b, and c, where a > 0, 
immediately implies

an2 + bn + c = O(n2) and an2 + bn + c = Ω(n2)



Asymptotic Notations

 When asymptotic notation appears in a formula, we interpret it 
as standing for some anonymous function that we do not care 
to name
 For example, the formula 2n2 + 3n + 1 = 2n2 + Θ(n) means that 

2n2 + 3n + 1 = 2n2 + f(n), where f(n) is some function in the set 
Θ(n) 

 In this case, we let f(n)= 3n + 1, which indeed is in Θ(n)

 Using asymptotic notation in this manner can help eliminate 
inessential detail and clutter in an equation 
 For example, we can express the worst-case running time of an 

algorithm as the recurrence T (n) = 2T(n/2) + Θ(n)

 If we are interested only in the asymptotic behavior of T(n), 
there is no point in specifying all the lower-order terms exactly



Properties of Big-Oh

 If 𝑇1(𝑛) = 𝑂(𝑓(𝑛)) and 𝑇2(𝑛) = 𝑂(𝑔(𝑛)), then 

 𝑇1 𝑛 + 𝑇2 𝑛 = max(𝑂(𝑓(𝑛)), 𝑂(𝑔(𝑛))

 Lower-order terms are ignored

 𝑇1(𝑛) ∗ 𝑇2(𝑛) = 𝑂(𝑓(𝑛) ∗ 𝑔(𝑛))

 𝑂(𝑐 ∗ 𝑓(𝑛)) = 𝑂(𝑓(𝑛)) for some constant 𝑐

 Constants are ignored!

 In reality, constants and lower-order terms may matter, 
especially when the input size is small.



Big-Oh

 Cubic: dominant term is some constant times 𝑛3. We say 𝑂 𝑛3 .

 Quadratic: dominant term is some constant times 𝑛2. We say 
𝑂(𝑛2).

 𝑂(𝑛 𝑙𝑜𝑔𝑛): dominant term is some constant times 𝑛 𝑙𝑜𝑔𝑛.

 Linear: dominant term is some constant times 𝑛. We say 𝑂(𝑛).

 Example: 350𝑛2 + 𝑛 + 𝑛3 is cubic.

 Big-Oh ignores leading constants.
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Practical Complexities 

 For large n, only programs of small 
complexity are feasible 
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Dominant Term Matters

 Suppose we estimate 350𝑛2 + 𝑛 + 𝑛3 with 𝑛3.

 For𝑛 = 10000:
 Actual value is 1,003,500,010,000

 Estimate is 1,000,000,000,000

 Error in estimate is 0.35%, which is negligible.

 For large 𝑛, dominant term is usually indicative of algorithm's 

behavior.

 For small 𝑛, dominant term is not necessarily indicative of 

behavior, BUT, typically programs on small inputs run so fast we 
don't care anyway.



Running Time Calculation

 Summations for Loops
for  i = 1 to n do { for  i = 1 to n do {

. . . . for j = 1 to n do {

. . . . . . . . . .

} }

(a) } (b)

If the loop of (a) takes ( ) times,   

If the loop of (b) takes ( ) times,   
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       the linear sum 
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 Sequential and If-Then-Else Blocks

for i = 1 to n do {
A[i] = 0;

}
for i = 1 to n do {

for  j = 1 to n do {
A[i]++;

}
}

if (cond)

S1

else

S2

T n max T n T ns s( ) ( ( ), ( ( )) 1 2 

T n n n n( ) ( ) ( ) ( )    2 2

Running Time Calculation
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Divide and Conquer

 We solve a problem recursively by applying three 
steps at each level of the recursion.

 Divide the problem into a number of subproblems that are 
smaller instances of the same problem

 Conquer the subproblem by solving them recursively

 If the problem sizes are small enough (i.e. we have gotten 
down to the base case), solve the subproblem in a 
straightforward manner

 Combine the solutions to the subproblems into the solution 
for the original problem



Recurrences

 A recurrence is an equation or inequality that describes a 
function in terms of its value on smaller inputs.

 Recurrences give us a natural way to characterize the running 
times of divide-and-conquer algorithms.

 Thus, they go hand in hand with the divide-and-conquer 
paradigm.



Recurrences

 The worst-case running time T(n) of the MERGE-SORT 
procedure is 
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 The worst-case running time T(n) of the MERGE-SORT 
procedure is 
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𝑛

2
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 If a recursive algorithm divide subproblems into unequal sizes, 
such as a 2/3-to-1/3 split and combine steps takes linear time, 
such an algorithm give rise to the recurrence



Recurrences

 The worst-case running time T(n) of the MERGE-SORT 
procedure is 

 𝑇 1 = 1

 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 if n > 1

 If a recursive algorithm divide subproblems into unequal sizes, 
such as a 2/3-to-1/3 split and combine steps takes linear time, 
such an algorithm give rise to the recurrence

 𝑇 𝑛 = 𝑇
2𝑛

3
+ 𝑇

𝑛

3
+ Θ(𝑛)



Recurrences

 If a recursive version of linear search linear search algorithm 
creates just one problem containing only one element fewer 
than the original problem, each recursive call would take 
constant time plus the time for the recursive calls it makes.

 Such an algorithm yields the recurrence 

 𝑇 𝑛 = 𝑇(𝑛 − 1) + Θ(1)



The methods for Solving 
Recurrences

 Brute-force method

 Substitution method

 Recursion tree method

 Master method



Inequality Recurrences

 𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ Θ(𝑛)

 Because such a recurrence states only an upper 
bound on T(n), we couch its solution using O-
notation rather than Θ-notation

 𝑇 𝑛 ≥2𝑇
𝑛

2
+ Θ(𝑛)

 Because the recurrence gives only a lower bound 
on T(n), we use Ω-notation in its solution



Technicalities in Recurrences

 In practice, we neglect certain technical details

 If we call MERGE-SORT on n elements, when n is odd, we 

end up with subproblems of size 
𝑛

2
and 

𝑛

2
.

 Technically, the recurrence describing the worst-case 
running time of MERGE-SORT is

 𝑇 1 = 1

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑛 for n > 1

 For convenience, we omit floors, ceilings and statements 
of the boundary conditions of recurrences and assume 
that T(n) is constant for small n.



Brute-force Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

23
+

𝑛

22
+ 2𝑛

= 23𝑇
𝑛

23
+ 3𝑛

…

= 2𝑘𝑇
𝑛

2𝑘
+ 𝑘𝑛

= 𝑛 + 𝑛 lg 𝑛
When 

𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n



Another Brute-force Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1
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Another Brute-force Method
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Another Brute-force Method

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

𝑇 𝑛
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……
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2
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Divide by n



Substitution Method

 Comprises two steps:

 Guess the form of the solution

 Use mathematical induction to find the constants and show that the 
solution works

 We can use the substitution method to establish either upper 
or lower bounds on a recurrence.



Substitution Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

 We guess that the solution is T(n) = O(n lg n).

 The substitution method requires us to prove that 𝑇 𝑛 ≤ 𝑐 𝑛 lg 𝑛 for an appropriate choice of the constant 
c > 0.

 Base case: Examine later

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐 𝑚 lg 𝑚 holds for all positive for 𝑚 < 𝑛



Substitution Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

 We guess that the solution is T(n) = O(n lg n).

 The substitution method requires us to prove that 𝑇 𝑛 ≤ 𝑐 𝑛 lg 𝑛 for an appropriate choice of the constant 
c > 0.

 Base case: Examine later

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐 𝑚 lg 𝑚 holds for all positive for 𝑚 < 𝑛

 Induction step: 

𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛

≤ 2𝑐
𝑛

2
lg(

𝑛

2
) + 𝑛

= 𝑐 𝑛 lg(
𝑛

2
) + 𝑛

= 𝑐 𝑛 lg 𝑛 – 𝑐 𝑛 lg2 + 𝑛

= 𝑐 𝑛 lg 𝑛 – 𝑐 𝑛 + 𝑛
≤ 𝑐 𝑛 𝑙𝑔𝑛 (for c ≥ 1) 

lg
𝛽

𝛼
= lg 𝛽 − lg 𝛼



Substitution Method
 Base case revisited

 𝑇 1 ≤ 𝑐 1 lg1 = 0 wrong!!

 The base case of our induction proof fails to hold

 What should we do?
 We can overcome this obstacle in proving an inductive hypothesis for a specific boundary condition 

with only a little more effort.

 We are interested in asymptotic behavior.

 Remove the difficult boundary condition from induction proof.

 We do so by first observing that for n > 3, the recurrence does not depend directly on T(1).

 Thus, we can replace T(1) by T(2) and T(3) as the base cases in the induction proof.

 From the recurrence, we have T(2) ≤ c 2 lg 2 and T(3) ≤ c 3 lg 3.

 Any choice of 𝑐 ≥ 2 suffices for the base cases of n=2 and n=3.

 𝑇(𝑛) ≤ 𝑐 𝑛 log 𝑛 for 𝑐 ≥ 2 and n ≥ 2



Making a Good Guess

 If a recurrence is similar to one you have seen before, guessing 
a similar solution is reasonable

 T(n) = 2T(n/2+17) + n

 When n is large, the difference between n/2 and n/2+17 is not that 
large

 Consequently, guess T(n) = O(n lg n) and prove by substitution 
method 



Making a Good Guess

 Prove loose upper and lower bounds on the recurrence and then 
reduce the range of uncertainty

 We might start with T(n) = Ω(𝑛)

 We can prove T(n) = O(n2)

 Then, we can gradually lower the upper bound and raise the lower 
bound until we converge on the correct, asymptotically tight 
solution of T(n) = Θ(n lg n)



Substitution Method
 Sometimes, your correct guess still may fail to work out in the induction.

 The problem is frequently turns out to be that the inductive assumption is not strong enough to prove the 
detailed bound.

 If you revise the guess by subtracting a lower-order term when you hit such a snag, it may become okay.

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 1, show 𝑇(𝑛) ≤ 𝑐 𝑛

 Base case: 𝑇(1) = 1 ≤ 𝑐

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐𝑚 for 𝑚 < 𝑛

 Induction step:
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Substitution Method
 Sometimes, your correct guess still may fail to work out in the induction.

 The problem is frequently turns out to be that the inductive assumption is not strong enough to prove the 
detailed bound.

 If you revise the guess by subtracting a lower-order term when you hit such a snag, it may become okay.

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 1, show 𝑇(𝑛) ≤ 𝑐 𝑛

 Base case: 𝑇(1) = 1 ≤ 𝑐

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐𝑚 for 𝑚 < 𝑛

 Induction step:

 𝑇 𝑛 = 2 𝑇 Τ𝑛 2 + 1 ≤ 𝑐𝑛 + 1 which does not imply 𝑇 𝑛 ≤ 𝑐𝑛 for any choice of c

 Our guess is nearly right and we are off only by the constant 1, a lower-order term

 Make a stronger induction hypothesis by subtracting a lower-order term from our previous guess: 𝑇(𝑛) ≤ 𝑐𝑛– 𝑏

 𝑇 𝑛 ≤ 𝑐𝑛– 2𝑏 + 1 ≤ 𝑐𝑛– 𝑏 as long as 𝑏 ≥ 1



Substitution Method
 Avoiding Pitfalls

 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛 and prove 𝑇(𝑛) ≤ 𝑐 𝑛

 𝑇(𝑛) ≤ 2𝑐(𝑛/2) + 𝑛 = 𝑐𝑛 + 𝑛

 Thus, 𝑇(𝑛) ≤ 𝑐𝑛



Substitution Method
 Avoiding Pitfalls

 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛 and prove 𝑇(𝑛) ≤ 𝑐 𝑛

 𝑇(𝑛) ≤ 2𝑐(𝑛/2) + 𝑛 = 𝑐𝑛 + 𝑛

 Thus, 𝑇(𝑛) ≤ 𝑐𝑛

 Wrong!! We should prove the exact form of the induction hypothesis, that is 
𝑇(𝑛) ≤ 𝑐𝑛



Substitution Method
 Changing variables

 𝑇(𝑛) = 2𝑇 𝑛 Τ1 2 + lg 𝑛

 Rename 𝑚 = lg 𝑛 yields 𝑇(2𝑚) = 2𝑇 2 Τ𝑚 2 +𝑚.

 Then, by renaming 𝑆(𝑚) = 𝑇 2𝑚 , we get 

𝑆(𝑚) = 2𝑆(𝑚/2) + 𝑚.

 Thus, we obtain 𝑆(𝑚) = 𝑂(𝑚 log 𝑚).

 By chainging back from S(m) to T(n), we obtain 

𝑇(𝑛) = 𝑇(2𝑚) = 𝑆(𝑚) = 𝑂(𝑚 log 𝑚) = 𝑂(lg 𝑛 lg (lg 𝑛)).



Recursion-tree Method

𝑇(𝑛) = 3𝑇(𝑛/4) + 𝑐𝑛2

𝑐𝑛2

𝑇 Τ𝑛 4 𝑇 Τ𝑛 4 𝑇 Τ𝑛 4



Recursion-tree Method

𝑇(𝑛) = 3𝑇(𝑛/4) + 𝑐𝑛2

𝑐𝑛2

𝑐 Τ𝑛 4 2

𝑇( Τ𝑛 16) 𝑇( Τ𝑛 16)𝑇( Τ𝑛 16)

𝑐 Τ𝑛 4 2

𝑇( Τ𝑛 16) 𝑇( Τ𝑛 16)𝑇( Τ𝑛 16)

𝑐 Τ𝑛 4 2

𝑇( Τ𝑛 16) 𝑇( Τ𝑛 16)𝑇( Τ𝑛 16)

𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 …………………………………………………………………………………………………𝑇 1 𝑇(1)

𝑇 𝑛 = ൗΤ3 16 𝑙𝑜𝑔4 𝑛 − 1 Τ3 16 − 1 𝑐𝑛2 + 𝛩 𝑛𝑙𝑜𝑔4 3 = 𝑂 𝑛2

𝑐𝑛2

3

16
𝑐𝑛 2

3

16

2

𝑐𝑛 2

𝑛log4 3



Recursion-tree Method
 Remember

𝑎 + 𝑎𝑟 + 𝑎𝑟2+⋯+ 𝑎𝑟𝑛−1 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1

𝑎 + 𝑎𝑟 + 𝑎𝑟2+⋯+ 𝑟𝑛−1 +⋯ =
𝑎

𝑟 − 1

 𝑇 𝑛 = 𝑐𝑛2 +
3

16
𝑐𝑛2 +

3

16

2
𝑐𝑛2 +⋯+

3

16

log4 𝑛−1
𝑐𝑛2 + 𝜃 𝑛log4 3

= σ𝑖=0
log4 𝑛−1 3

16

𝑖
𝑐𝑛2 + 𝜃 𝑛log4 3 =

3

16

log4 𝑛
−1

3

16
−1

𝑐𝑛2 + 𝜃 𝑛log4 3

 𝑇 𝑛 = σ𝑖=0
log4 𝑛−1 3

16

𝑖
𝑐𝑛2 + 𝜃 𝑛log4 3 < σ𝑖=0

∞ 3

16

𝑖
𝑐𝑛2 + 𝜃 𝑛log4 3

=
1

1−(
3

16
)
𝑐𝑛2 + 𝜃 𝑛log4 3 =

16

13
𝑐𝑛2 + 𝜃 𝑛log4 3 = 𝑂(𝑛2)



Master Method

 It is a cookbook method for solving recurrences of the form 
𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛) where a ≥ 1 and b > 1 are constants 
and f(n) is an asymptotically positive function.

 In each of three case, we compare the function f(n) with the 

function 𝑛log𝑏 𝑎.

 The larger of two functions determine the solution to the 
recurrence

 (1) If 𝑛log𝑏 𝑎 is the larger, 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎)

 (2) If the two functions are the same size, 

𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 lg 𝑛)

 (3) If f(n) is the larger, 𝑇(𝑛) = Θ(𝑓(𝑛))



Master Method

 Theorem 4.1 (Master theorem)  

 Let 𝑎 ≥ 1 and 𝑏 > 1 be constants

 Let 𝑓(𝑛) be a function

 Let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

 (1) If 𝑓(𝑛) = 𝑂(𝑛(log𝑏 𝑎)−𝜀) for some constant ε > 0, then 𝑇(𝑛) =

Θ(𝑛log𝑏 𝑎)

 (2) If 𝑓(𝑛) = Θ(𝑛log𝑏 𝑎), then 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 𝑙𝑜𝑔 𝑛)

 (3) If 𝑓(𝑛) = Ω(𝑛(log𝑏 𝑎)+𝜀) for some constant ε > 0, and if 
𝑎 𝑓 Τ𝑛 𝑏 ≤ 𝑐 𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently large 
𝑛, then 𝑇(𝑛) = Θ(𝑓(𝑛))



Master Method

 Consider 𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛.

 Since a = 9, b = 3, 

 f(n) = n 

 𝑛log𝑏 𝑎 = 𝑛 log3 9= Θ(𝑛2)

 Because f(n) = 𝑂(𝑛log3 9 −𝜀) with ε = 1, we can apply case (1) of 

the master theorem

 Thus, 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎) = Θ(𝑛2)

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

(1) If 𝑓(𝑛) = 𝑂(𝑛(log𝑏 𝑎)−𝜀) for some constant ε > 0, then 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎)



Master Method

 Consider 𝑇 𝑛 = 𝑇
2𝑛

3
+ 1.

 Since a = 1, b = 3/2, 

 f(n) = 1

 𝑛log𝑏 𝑎 = 𝑛log3/2 1= 𝑛0=1

 Because f(n) = 𝑂(𝑛 log𝑏 𝑎) = Θ(1), we can apply case (2) of the 
master theorem

 Thus, 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 lg 𝑛) = Θ(lg 𝑛)

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

If 𝑓(𝑛) = Θ(𝑛log𝑏 𝑎), then 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 𝑙𝑜𝑔 𝑛)



Master Method

 Consider 𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛 lg 𝑛.

 Since a = 3, b = 4, 

 f(n) = n lg n 

 𝑛log𝑏 𝑎 = 𝑛log4 3= 𝑂(𝑛0
.793)

 Because f(n) =Ω(𝑛 log4 3+𝜀) with ε ≈ 0.2, we can apply case (3) of 
the master theorem

 Thus, 𝑇 𝑛 = Θ 𝑓 𝑛 = Θ(𝑛 lg 𝑛)

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

(3) If 𝑓(𝑛) = Ω(𝑛(log𝑏 𝑎)+𝜀) for some constant ε > 0, 
and if 𝑎 𝑓 Τ𝑛 𝑏 ≤ 𝑐 𝑓(𝑛) for some constant 𝑐 < 1
and all sufficiently large 𝑛, then 𝑇(𝑛) = Θ(𝑓(𝑛))



Chapter 4: 
Divide and Conquer
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Binary Search



Static Searching
 Given an integer X and an array A, return the position of X in A or an 

indication that it is not present.

 If X occurs more than once, return any occurrence.

 If the array is not sorted, use a sequential search
 Unsuccessful search: 𝑂(𝑁); every item is examined

 Successful search:

 Worst case: 𝑂(𝑁); every item is examined

 Average case: 𝑂(𝑁); half the items are examined

 Can we do better if we know the array is sorted?
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Binary Search

 Look in the middle

 Case 1: If X is less than the item in the middle, look in the subarray to the left of 
the middle.

 Case 2: If X is greater than the item in the middle, look in the subarray to the 
right of the middle.

 Case 3: If X is equal to the item in the middle, we have a match.
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Binary Search Algorithm

BINARY-SEARCH(A, low, high, X)
1. if low > high 
2. return NOT_FOUND
3. if low == high 
4. if A[low] == X 
5. return low
6. else
7. return NOT_FOUND
8. else
9. mid = ( low + high ) / 2
10. if A[mid] == X 
11. return mid
12. if A[mid] > X
13. return BINARY-SEARCH(A, low, mid-1, X)
14. else
15. return BINARY-SEARCH(A, mid+1, high, X) 



Worst Case Time Complexity

𝑇 1 = 1

𝑇 𝑛 = 𝑇
𝑛

2
+ 1 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 𝑇
𝑛

2
+ 1

= 𝑇
𝑛

22
+ 2

= 𝑇
𝑛

23
+ 3

…

= 𝑇
𝑛

2𝑘
+ 𝑘

= 𝛩 (lg 𝑛)
When 

𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n
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