
1

Introduction to Algorithms

Kyuseok Shim

Electrical and Computer Engineering
Seoul National University

Administrative Information

 Lecturer: Kyuseok Shim
 Office: 302-531

 E.Mail: shim@kdd.snu.ac.kr

 Home page: http://kdd.snu.ac.kr/~shim

 TA
 서장혁 jhseo@kdd.snu.ac.kr

 구한준 hjkoo@kdd.snu.ac.kr

 Office: 302-516-2

 Office hour: Contact via E-mail

 Course Home Page
 eTL Homepage

 강의 슬라이드 download

2

mailto:shim@kdd.snu.ac.kr
http://kdd.snu.ac.kr/~shim
mailto:jhseo@kdd.snu.ac.kr
mailto:hjkoo@kdd.snu.ac.kr

Administrative Information
 Programming Languages for Programming Assignments

 C++

 Prerequisites

 Recommended: 전기공학부 프로그래밍 방법론과 자료구조

 How to Succeed in this course:

 Practice solving many problems both with pencils and computers

 Make sure to allocate at least one day per week to this course.

 Ask many questions in class – Don’t get lost! If you think you get
lost, try to catch up with the help of TAs.

3

Textbook

 Title: Introduction to Algorithms (third edition)

 Authors: Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest,
Clifford Stein

 Publisher: MIT Press, Cambridge, MA

Core Software Curriculum

알고리듬

데이타베이스
개론

컴파일러의 기초 운영체제의 기초

기타 컴퓨터공학부 과목

프로그래밍 방법론

자료구조

6

Chapter 2
Getting Started

Outline

 This chapter familiarize you with the framework we
shall use throughout the lecture to think about the
design and analysis of algorithms.

 We begin by examining the insertion sort algorithm
to solve the sorting problem, we then argue that it
correctly sorts, and we analyze its running time.

 We next introduce the divide-and-conquer approach
to the design of algorithms, use it to develop an
algorithm called merge sort, and analyze the merge
sort’s running time.

7

Sorting Problem

 Input:
 A sequence of n numbers <a1, a2,…,an>

 Output:
 A reordering <a’1, a’2,…,a’n> of the input sequence such that a’1 ≤ a’2 ≤ …

≤ a’n

 There are many sorting algorithms

 Insertion sort

 Merge sort

 Quick sort

8

Insertion Sort

 It uses an incremental approach!

 For a sequence of n numbers A[1..n], it consists of n−1 passes.

 For pass j = 2 through n
 Use the fact that the elements in A[1. . j − 1] are already known to

be in sorted order.

 Ensures that the elements in A[1. . j] are in sorted order.

9

Insertion Sort

INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1]

4 i = j - 1

5 while i>0 and A[i]>key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key

10

Insertion Sort

11

1

3

2

2

3

8

4

6

5

1

6

7

7

4

8

5

index

value

sorted

j = 2

Insertion Sort

12

1

2

2

3

3

8

4

6

5

1

6

7

7

4

8

5

index

value

sorted

j = 3

Insertion Sort

13

1

2

2

3

3

8

4

6

5

1

6

7

7

4

8

5

index

value

sorted

j = 4

Insertion Sort

14

1

2

2

3

3

6

4

8

5

1

6

7

7

4

8

5

index

value

sorted

j = 5

Insertion Sort

15

1

2

2

3

3

6

4

8

5

1

6

7

7

4

8

5

index

value

sorted

j = 5

Insertion Sort

16

1

1

2

2

3

3

4

6

5

8

6

7

7

4

8

5

index

value

sorted

j = 6

Insertion Sort

17

1

1

2

2

3

3

4

6

5

7

6

8

7

4

8

5

index

value

sorted

j = 7

Insertion Sort

18

1

1

2

2

3

3

4

4

5

6

6

7

7

8

8

5

index

value

sorted

j = 8

Insertion Sort

19

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

index

value

sorted

j = 8

Loop Invariants and the
Correctness Proof
 We use loop invariants to help us understand why an algorithm is

correct.

 We must show three things about a loop. invariant:

 Initialization: It is true prior to the first iteration of the loop.

 Maintenance: If it is true before an iteration of the loop, it remains
true before the next iteration.

 Termination: When the loop terminates, the invariant gives us a
useful property that helps show that the algorithm is correct.

20

Insertion Sort
 Loop invariant

 At the start of each iteration of the for-loop of lines 1-8, the subarray
𝐴[1… 𝑗 − 1] consists of the elements originally in 𝐴[1… 𝑗 − 1] but in
ascending order.

 Initialization:
 When j = 2, 𝐴[1… 𝑗 − 1] consists of just the single element 𝐴[1] which is

the original one in 𝐴[1]. Moreover, the subarray is sorted. Thus, loop
invariant holds prior to the first iteration of the loop.

21

Insertion Sort
 Loop invariant

 At the start of each iteration of the for-loop of lines 1-8, the subarray
𝐴[1… 𝑗 − 1] consists of the elements originally in 𝐴[1… 𝑗 − 1] but in
ascending order.

 Maintenance:
 The body of outer for-loop works by moving 𝐴[𝑗 − 1], 𝐴[𝑗 − 2], 𝐴[𝑗 − 3],

and so on by one position to the right until the proper position for 𝐴[𝑗] is
found (lines4-7), at which point the value of 𝐴[𝑗] is inserted (line 8)

 The subarray 𝐴[1… 𝑗] then consists of the elements originally in 𝐴 1… 𝑗 , but
in sorted order

 Incrementing 𝑗 for the next iteration of the for loop then preserves the loop
invariant

22

Insertion Sort
 Loop invariant

 At the start of each iteration of the for-loop of lines 1-8, the subarray
𝐴[1… 𝑗 − 1] consists of the elements originally in 𝐴[1… 𝑗 − 1] but in
ascending order.

 Termination:
 When the for loop terminates, we have 𝑗 = 𝑛+1
 Substituting 𝑛+1 for j in the wording of loop invariant, we have that

𝐴[1…𝑛] consists of the elements originally in 𝐴[1…𝑛], but in ascending
order. Hence, the entire array is sorted, which means that the algorithm is
correct.

23

Divide and Conquer

 We solve a problem recursively by applying three steps at each
level of the recursion:

 Divide the problem into a number of subproblems that are smaller
instances of the same problem.

 Conquer the subproblem by solving them recursively.

 If the problem sizes are small enough (i.e. we have gotten down to the
base case), solve the subproblem in a straightforward manner

 Combine the solutions to the subproblems into the solution for the
original problem.

24

Merge Sort

 Merge Sort algorithm closely follows the divide-and-conquer paradigm.
Intuitively, it operates as follows.

 Divide: Divide the n-element sequence to be sorted into two subsequences
of n=2 elements each.

 Conquer: Sort the two subsequences recursively using merge sort.

 Combine: Merge the two sorted subsequences to produce the sorted
answer.

 The recursion “bottoms out” when the sequence to be sorted has
length 1, in which case there is no work to be done, since every
sequence of length 1 is already in sorted order

25

Merge Procedure

 The key operation of merge sort algorithm.

 The procedure assumes that that the subarrays A[p..q] and
A[q+1..r] are in sorted order.

 It merges them to form a single sorted subarray that replaces
the current subarray A[p..r].

 We merge by calling an auxiliary procedure MERGE(A, p, q, r)
where A is an array and p, q, and r are indices into the array
such that p ≤ q < r.

26

Merge Procedure
MERGE(A, p, q, r)

1 n1 = q – p + 1

2 n2 = r – q

3 let L[1 ... n1+1] and R[1 ... n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p+i-1]

6 for j = 1 to n2

7 R[j] = A[q+j]

8 L[n1+1] = ∞

9 R[n2+1] = ∞

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k] = R[j]

17 j = j + 1 27

8 9 10 11 12 13 14 15

A … 2 4 5 1 2 3 …

p q r

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

28

8 9 10 11 12 13 14 15

A … 2 4 5 1 2 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

29

8 9 10 11 12 13 14 15

A … 1 4 5 1 2 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

30

8 9 10 11 12 13 14 15

A … 1 2 5 1 2 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

31

8 9 10 11 12 13 14 15

A … 1 2 2 1 2 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

32

8 9 10 11 12 13 14 15

A … 1 2 2 3 2 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

33

8 9 10 11 12 13 14 15

A … 1 2 2 3 4 3 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Operations of Merge(A, 9, 11, 14)

34

8 9 10 11 12 13 14 15

A … 1 2 2 3 4 5 …

k

1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

Merge Procedure
MERGE(A, p, q, r)

1 n1 = q – p + 1

2 n2 = r – q

3 let L[1 ... n1+1] and R[1 ... n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p+i-1]

6 for j = 1 to n2

7 R[j] = A[q+j]

8 L[n1+1] = ∞

9 R[n2+1] = ∞

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k] = R[j]

17 j = j + 1 35

Correctness of
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have
not been copied back into 𝐴.

36

Correctness of
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have
not been copied back into 𝐴.

 Initialization:
 Prior to the first iteration of the loop, we have 𝑘=𝑝, so that the subarray

𝐴[𝑝…𝑘−1] is empty.

 The empty subarray contains the (𝑘-𝑝=0) smallest elements in 𝐿 and 𝑅.

 Since 𝑖=𝑗=1, both 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays
that have not been copied back into 𝐴.

37

Correctness of
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have
not been copied back into 𝐴.

 Maintenance:
 When 𝐿[𝑖]≤𝑅[𝑗],

 𝐿[𝑖] is the smallest element not yet copied back into 𝐴

 Because 𝐴[𝑝…𝑘−1] contains the 𝑘−𝑝 smallest elements, after line 14 copies 𝐿[𝑖]
into 𝐴[𝑘], the subarray 𝐴[𝑝…𝑘] will contain the 𝑘−𝑝+1 smallest elements.

 Incrementing 𝑘 and 𝑖 (in line 15) reestablishes the loop invariant for the next
iteration.

 When 𝐿[𝑖]>𝑅[𝑗],

 the lines 16-17 perform the appropriate action to maintain the loop
invariant.

38

Correctness of
Merge Procedure

 Loop Invariant:

 At the start of each iteration for the for-loop of lines 12-17, the subarray
𝐴[𝑝…𝑘 − 1] contains the (𝑘 − 𝑝) smallest elements of 𝐿[1…𝑛1 + 1] and
𝑅[1…𝑛2 + 1], in ascending order.

 Moreover, 𝐿[𝑖] and 𝑅[𝑗] are the smallest elements of their arrays that have
not been copied back into 𝐴.

 Termination:
 At termination, 𝑘 = 𝑟 + 1.
 By the loop invariant, the subarray 𝐴[𝑝…𝑘 − 1], which is 𝐴[𝑝…𝑟], contains

the (𝑘 − 𝑝) = (𝑟 − 𝑝 + 1) smallest elements of 𝐿[1…𝑛1 + 1] and 𝑅[1…𝑛2 +
1], in sorted order.

 The arrays 𝐿 and 𝑅 together contain 𝑛1 + 𝑛2 + 2 = 𝑟 − 𝑝 + 3 elements.
 All but the two largest have been copied back into 𝐴, and these two largest

elements are the sentinels.

39

Merge Sort

 Merge Sort algorithm operates as follows

 Divide: The divide step just computes the middle of the subarray, which
takes Θ(1) time

 Conquer: We recursively solve two subproblems, each of size n/2, which
contributes 2T(n/2) to the running time.

 Combine: We have already noted that the MERGE procedure on an n-
element subarray takes Θ(n) time

 Thus, the recurrence for the worst-case running time T(n) of merge
sort is

 𝑇(1)=1
𝑇(𝑛)=2𝑇(𝑛/2)+𝑛

40

Merge Sort

MERGE-SORT(A,p,r)
1 if p < r

2 q = (p+r)/2

3 MERGE-SORT (A,p,q)

4 MERGE-SORT (A,q+1,r)

5 MERGE(A,p,q,r)

 Merge() is the procedure to merge two sorted lists.

41

Solving Recurrences

42

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

Solving Recurrences

43

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

𝑛3
+

𝑛

22
+ 2𝑛

Solving Recurrences

44

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

𝑛3
+

𝑛

22
+ 2𝑛

= 23𝑇
𝑛

23
+ 3𝑛

Solving Recurrences

45

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

𝑛3
+

𝑛

22
+ 2𝑛

= 23𝑇
𝑛

23
+ 3𝑛

…

= 2𝑘𝑇
𝑛

2𝑘
+ 𝑘𝑛 When

𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n

Solving Recurrences

46

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

𝑛3
+

𝑛

22
+ 2𝑛

= 23𝑇
𝑛

23
+ 3𝑛

…

= 2𝑘𝑇
𝑛

2𝑘
+ 𝑘𝑛

= 𝑛𝑇(1) + 𝑛 lg 𝑛

When
𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n

Solving Recurrences

47

When
𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

𝑛3
+

𝑛

22
+ 2𝑛

= 23𝑇
𝑛

23
+ 3𝑛

…

= 2𝑘𝑇
𝑛

2𝑘
+ 𝑘𝑛

= 𝑛𝑇(1) + 𝑛 lg 𝑛

= 𝑛 + 𝑛 lg 𝑛

Operations of Merge Sort

48

85 24 63 45 17 31 96 50

Initial sequence

Operations of Merge Sort

49

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

Operations of Merge Sort

50

85 24 63 45 17 31 96 50

85 24 63 45

85 24 63 45

17 31 96 50

Operations of Merge Sort

51

85 24

85 24 63 45 17 31 96 50

85 24 63 45

85 24 63 45

17 31 96 50

Operations of Merge Sort

52

24 85

85 24

63 45

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

Operations of Merge Sort

53

63 45

85 24 63 45 17 31 96 50

85 24 63 45

24 85 63 45

17 31 96 50

Operations of Merge Sort

54

63 45

85 24 63 45 17 31 96 50

85 24 63 45

24 85 45 63

17 31 96 50

Operations of Merge Sort

55

85 24 63 45 17 31 96 50

85 24 63 45

24 85 45 63

17 31 96 50

Operations of Merge Sort

56

85 24 63 45 17 31 96 50

24 45 63 85

24 85 45 63

17 31 96 50

Operations of Merge Sort

57

85 24 63 45 17 31 96 50

24 45 63 85 17 31 96 50

Operations of Merge Sort

58

85 24 63 45 17 31 96 50

24 45 63 85

17 31 96 50

17 31 96 50

Operations of Merge Sort

59

85 24 63 45 17 31 96 50

24 45 63 85

17 31

17 31

17 31 96 50

96 50

Operations of Merge Sort

60

85 24 63 45 17 31 96 50

24 45 63 85

17 31

17 31

17 31 96 50

96 50

Operations of Merge Sort

61

85 24 63 45 17 31 96 50

24 45 63 85

96 50

17 31 96 50

17 31 96 50

Operations of Merge Sort

62

85 24 63 45 17 31 96 50

24 45 63 85

17 31 50 96

96 50

17 31 96 50

Operations of Merge Sort

63

85 24 63 45 17 31 96 50

24 45 63 85

17 31 50 96

17 31 96 50

Operations of Merge Sort

64

85 24 63 45 17 31 96 50

24 45 63 85 17 31 50 96

17 31 50 96

Operations of Merge Sort

65

85 24 63 45 17 31 96 50

24 45 63 85 17 31 50 96

Operations of Merge Sort

66

17 24 31 45 50 63 85 96

24 45 63 85 17 31 50 96

Operations of Merge Sort

67

17 24 31 45 50 63 85 96

Sorted sequence

Operations of Merge Sort

68

17 24 31 45 50 63 85 96

24 45 63 85

24 85

85 24

45 63

63 45

17 31 50 96

17 31

17 31

50 96

96 50

Any Question?

69

1

Introduction to Algorithms
(Chapter3-4)

Kyuseok Shim

Electrical and Computer Engineering
Seoul National University

Chapter 3:
Growth of Functions

2

3

Algorithm Analysis

 How much better is one curve than another one
(answer: typically a lot, for large inputs)

 How do we decide which curve a particular algorithm
lies on (answer: sometimes it's easy, sometimes it's
hard).

 How to use this information to design better
algorithms (answer: definitely).

 Can we predict how an algorithm will perform for
large input sets, based on its performance for
moderate input sets (answer: definitely).

Algorithm Analysis

 Running time of an algorithm almost always depends on the
amount of input: More input means more time. Thus the
running time, 𝑇, is a function of the amount of input, 𝑛, or
𝑇(𝑛) = 𝑓(𝑛).

 The exact value of the function depends on
 the speed of the host machine

 the quality of the compiler and optimizer

 the quality of the program that implements the algorithm

 the basic fundamentals of the algorithm

 Typically, the last item is the most important.

Θ-notation

 For a given function g(n), we define

 Θ(g(n)) = { f(n): there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 }.

 A function f(n) belongs to the set Θ(g(n)) if there is positive
constants c1 and c2 such that it can be “sandwiched” between
c1g(n) and c2g(n), for sufficiently large n.

 Because Θ(g(n)) is a set, we could write “f(n) Θ(g(n))” to
indicate that f(n) is a member of Θ(g(n)).

 Instead, we write “f(n) = Θ(g(n))” to express the same notion.

Θ-notation

 For all values of n at and to the right of n0, the value of f(n) lies
at or above c1g(n) and at or below c2g(n).

 In other words, for all n ≥ n0, the function f(n) is equal to g(n)
to within a constant factor.

 We say that g(n) is an asymptotically tight bound for f(n).

 The definition of Θ(g(n)) requires that every member f(n)
Θ(g(n)) be asymptotically nonnegative, that is, that f(n) be
nonnegative whenever n is sufficiently large.

 Consequently, the function g(n) itself must be asymptotically
nonnegative, or else the set Θ(g(n)) is empty.

 We shall therefore assume that every function used within Θ-
notation is asymptotically nonnegative.

Θ-notation
 We can throw away lower-order terms and ignore the leading

coefficient of the highest-order term

 To justify
1

2
n2-3n = Θ(n2), we must determine positive constants c1, c2,

and n0 such that

 c1n
2 ≤

1

2
n2-3n≤c2n

2 for all n ≥ n0.

 Dividing by n2 yields

 c1 ≤
1

2
-
3

𝑛
≤ c2.

 The right-hand inequality hold for any value of n≥1 by choosing any
constant c2≥

1

2
.

 Likewise, the left-hand inequality hold for any value of n≥7 by
choosing any constant c1≤

1

14.

 Thus, by choosing c1=
1

14
, c2≥

1

2
, and n0 ≥ 7 , we can verify that

1

2
n2-3n= Θ(n2).

Θ-notation

 f(n)=Θ(g(n)) iff there exist positive constants
c1, c2 and n0 such that

 c1g(n)≤f(n)≤c2g(n) for all n, n≥n0

 g(n) is both an upper and lower bound

 Examples

 f(n) = 3n+2=Θ(n)

 f(n) = 10n2+4n+2=Θ(n2)

 f(n) = 6× 2n+n2=Θ(2n)

8

O-notation

 Gives an upper bound on a function, to within a constant factor.

 O(g(n)) is pronounced “big-oh of g of n” or often just “oh of g of n”.

 For a given function g(n), we define

 O(g(n)) = { f(n): there exist positive constants c and n0 such that 0
≤ f(n) ≤ cg(n) for all n ≥ n0 }.

 f(n) = O(g(n)) indicates that a function f(n) is on or below cg(n).

 Since Θ-notation is a stronger notion than O-notation, f(n) = Θ(g(n))
implies f(n) = O(g(n)) (i.e., we have Θ(g(n)) ∈ O(g(n))).

 We sometimes find O-notation informally describing asymptotically
tight bounds (i.e., what we have defined using Θ-notation).

O-notation

 f(n)=O(g(n)) iff there exist positive
constants c and n0 such that

 f(n)≤cg(n) for all n, n≥n0

 Examples

 f(n) = 3n+3= O(n) as 3n+3≤4n for n≥3

 f(n) = 3n+3= O(n2) as 3n+3≤3n2 for n≥2

10

O-notation
 Using O-notation, we can often describe the running time of an algorithm

merely by inspecting the algorithm’s overall structure.

 For example, the doubly nested loop structure of the insertion sort algorithm
from Chapter 2 immediately yields an O(n2) upper bound on the worst-case
running time:

 the cost of each iteration of the inner loop is bounded from above by O(1) (constant)

 the indices i and j are both at most n

 the inner loop is executed at most once for each of the n2 pairs of values for i and j

 Since O-notation describes an upper bound, when we use it to bound the worst
case running time of an algorithm, we have a bound on the running time of the
algorithm on every input.

 Thus, the O(n2) bound on worst-case running time of insertion sort also applies
to its running time on every input.

 The Θ(n2) bound on the worst-case running time of insertion sort, however,
does not imply a Θ(n2) bound on the running time of insertion sort on every
input.

 For example, we saw in Chapter 2 that when the input is already sorted,
insertion sort runs in Θ(n) time.

Ω-notation

 Gives an upper bound on a function, to within a constant factor

 Ω(g(n)) is pronounced “big-omega of g of n” or often just “omega of g
of n”

 For a given function g(n), we define

 Ω(g(n)) = { f(n): there exist positive constants c and n0 such that 0
≤ cg(n) ≤ f(n) for all n ≥ n0 }

 f(n) =Ω(g(n)) indicates that a function f(n) is on or above cg(n)

 Since Θ-notation is a stronger notion than O-notation, f(n) = Θ(g(n))
implies f(n) =Ω(g(n)) (i.e., we have Θ(g(n)) ∈ Ω(g(n)))

 We sometimes find Ω-notation informally describing asymptotically
tight bounds (i.e., what we have defined using Θ-notation)

 f(n)=Ω(g(n)) iff there exist positive
constants c and n0 such that

 f(n)≥cg(n) for all n, n≥n0

 g(n) is a lower bound

 Examples

 f(n) = 3n+2=Ω(n)

 f(n) = 10n2+4n+2=Ω(n2)

13

Ω-notation

Asymptotic Notations

 Theorem 3.1

 For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and only if

f(n) = O(g(n)) and f(n) = Ω(g(n))

 Thus, an2 + bn + c = Θ(n2) for any constants a, b, and c, where a > 0,
immediately implies

an2 + bn + c = O(n2) and an2 + bn + c = Ω(n2)

Asymptotic Notations

 When asymptotic notation appears in a formula, we interpret it
as standing for some anonymous function that we do not care
to name
 For example, the formula 2n2 + 3n + 1 = 2n2 + Θ(n) means that

2n2 + 3n + 1 = 2n2 + f(n), where f(n) is some function in the set
Θ(n)

 In this case, we let f(n)= 3n + 1, which indeed is in Θ(n)

 Using asymptotic notation in this manner can help eliminate
inessential detail and clutter in an equation
 For example, we can express the worst-case running time of an

algorithm as the recurrence T (n) = 2T(n/2) + Θ(n)

 If we are interested only in the asymptotic behavior of T(n),
there is no point in specifying all the lower-order terms exactly

Properties of Big-Oh

 If 𝑇1(𝑛) = 𝑂(𝑓(𝑛)) and 𝑇2(𝑛) = 𝑂(𝑔(𝑛)), then

 𝑇1 𝑛 + 𝑇2 𝑛 = max(𝑂(𝑓(𝑛)), 𝑂(𝑔(𝑛))

 Lower-order terms are ignored

 𝑇1(𝑛) ∗ 𝑇2(𝑛) = 𝑂(𝑓(𝑛) ∗ 𝑔(𝑛))

 𝑂(𝑐 ∗ 𝑓(𝑛)) = 𝑂(𝑓(𝑛)) for some constant 𝑐

 Constants are ignored!

 In reality, constants and lower-order terms may matter,
especially when the input size is small.

Big-Oh

 Cubic: dominant term is some constant times 𝑛3. We say 𝑂 𝑛3 .

 Quadratic: dominant term is some constant times 𝑛2. We say
𝑂(𝑛2).

 𝑂(𝑛 𝑙𝑜𝑔𝑛): dominant term is some constant times 𝑛 𝑙𝑜𝑔𝑛.

 Linear: dominant term is some constant times 𝑛. We say 𝑂(𝑛).

 Example: 350𝑛2 + 𝑛 + 𝑛3 is cubic.

 Big-Oh ignores leading constants.

18

Practical Complexities

 For large n, only programs of small
complexity are feasible

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

f

n

2
n

n
2

nlogn

n

logn

Dominant Term Matters

 Suppose we estimate 350𝑛2 + 𝑛 + 𝑛3 with 𝑛3.

 For𝑛 = 10000:
 Actual value is 1,003,500,010,000

 Estimate is 1,000,000,000,000

 Error in estimate is 0.35%, which is negligible.

 For large 𝑛, dominant term is usually indicative of algorithm's

behavior.

 For small 𝑛, dominant term is not necessarily indicative of

behavior, BUT, typically programs on small inputs run so fast we
don't care anyway.

Running Time Calculation

 Summations for Loops
for i = 1 to n do { for i = 1 to n do {

. . . . for j = 1 to n do {

.

} }

(a) } (b)

If the loop of (a) takes () times,

If the loop of (b) takes () times,

 constant sum

 the linear sum

 ,

f i T n

g i j T n

n

n n

c

c
c

f i

g i j

i

n

i

n

j

n

i

n

i

n

i
n

i

n

i

c

()

, ()

()

()

(,)

1

1 1

1

1

1

1

1

1

2

1
1

1

20

 Sequential and If-Then-Else Blocks

for i = 1 to n do {
A[i] = 0;

}
for i = 1 to n do {

for j = 1 to n do {
A[i]++;

}
}

if (cond)

S1

else

S2

T n max T n T ns s() ((), (()) 1 2

T n n n n() () () () 2 2

Running Time Calculation

21

Divide and Conquer

 We solve a problem recursively by applying three
steps at each level of the recursion.

 Divide the problem into a number of subproblems that are
smaller instances of the same problem

 Conquer the subproblem by solving them recursively

 If the problem sizes are small enough (i.e. we have gotten
down to the base case), solve the subproblem in a
straightforward manner

 Combine the solutions to the subproblems into the solution
for the original problem

Recurrences

 A recurrence is an equation or inequality that describes a
function in terms of its value on smaller inputs.

 Recurrences give us a natural way to characterize the running
times of divide-and-conquer algorithms.

 Thus, they go hand in hand with the divide-and-conquer
paradigm.

Recurrences

 The worst-case running time T(n) of the MERGE-SORT
procedure is

Recurrences

 The worst-case running time T(n) of the MERGE-SORT
procedure is

 𝑇 1 = 1

 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 if n > 1

Recurrences

 The worst-case running time T(n) of the MERGE-SORT
procedure is

 𝑇 1 = 1

 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 if n > 1

 If a recursive algorithm divide subproblems into unequal sizes,
such as a 2/3-to-1/3 split and combine steps takes linear time,
such an algorithm give rise to the recurrence

Recurrences

 The worst-case running time T(n) of the MERGE-SORT
procedure is

 𝑇 1 = 1

 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 if n > 1

 If a recursive algorithm divide subproblems into unequal sizes,
such as a 2/3-to-1/3 split and combine steps takes linear time,
such an algorithm give rise to the recurrence

 𝑇 𝑛 = 𝑇
2𝑛

3
+ 𝑇

𝑛

3
+ Θ(𝑛)

Recurrences

 If a recursive version of linear search linear search algorithm
creates just one problem containing only one element fewer
than the original problem, each recursive call would take
constant time plus the time for the recursive calls it makes.

 Such an algorithm yields the recurrence

 𝑇 𝑛 = 𝑇(𝑛 − 1) + Θ(1)

The methods for Solving
Recurrences

 Brute-force method

 Substitution method

 Recursion tree method

 Master method

Inequality Recurrences

 𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ Θ(𝑛)

 Because such a recurrence states only an upper
bound on T(n), we couch its solution using O-
notation rather than Θ-notation

 𝑇 𝑛 ≥2𝑇
𝑛

2
+ Θ(𝑛)

 Because the recurrence gives only a lower bound
on T(n), we use Ω-notation in its solution

Technicalities in Recurrences

 In practice, we neglect certain technical details

 If we call MERGE-SORT on n elements, when n is odd, we

end up with subproblems of size
𝑛

2
and

𝑛

2
.

 Technically, the recurrence describing the worst-case
running time of MERGE-SORT is

 𝑇 1 = 1

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑛 for n > 1

 For convenience, we omit floors, ceilings and statements
of the boundary conditions of recurrences and assume
that T(n) is constant for small n.

Brute-force Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 = 2 2𝑇

𝑛

22
+

𝑛

2
+ 𝑛

= 22 𝑇
𝑛

22
+ 2𝑛 = 22 2𝑇

𝑛

23
+

𝑛

22
+ 2𝑛

= 23𝑇
𝑛

23
+ 3𝑛

…

= 2𝑘𝑇
𝑛

2𝑘
+ 𝑘𝑛

= 𝑛 + 𝑛 lg 𝑛
When

𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n

Another Brute-force Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

𝑇 𝑛

𝑛
=

𝑇 Τ𝑛 2

Τ𝑛 2
+ 1

𝑇 Τ𝑛 2

Τ𝑛 2
=

𝑇 Τ𝑛 4

Τ𝑛 4
+ 1

𝑇 Τ𝑛 4

Τ𝑛 4
=

𝑇 Τ𝑛 8

Τ𝑛 8
+ 1

……

𝑇 2

2
=

𝑇 1

1
+ 1

Another Brute-force Method

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

𝑇 𝑛

𝑛
=

𝑇 Τ𝑛 2

Τ𝑛 2
+ 1

𝑇 Τ𝑛 2

Τ𝑛 2
=

𝑇 Τ𝑛 4

Τ𝑛 4
+ 1

𝑇 Τ𝑛 4

Τ𝑛 4
=

𝑇 Τ𝑛 8

Τ𝑛 8
+ 1

……

𝑇 2

2
=

𝑇 1

1
+ 1

Another Brute-force Method

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

𝑇 𝑛

𝑛
=

𝑇 Τ𝑛 2

Τ𝑛 2
+ 1

𝑇 Τ𝑛 2

Τ𝑛 2
=

𝑇 Τ𝑛 4

Τ𝑛 4
+ 1

𝑇 Τ𝑛 4

Τ𝑛 4
=

𝑇 Τ𝑛 8

Τ𝑛 8
+ 1

……

𝑇 2

2
=

𝑇 1

1
+ 1

Another Brute-force Method

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

𝑇 𝑛

𝑛
=

𝑇 Τ𝑛 2

Τ𝑛 2
+ 1

𝑇 Τ𝑛 2

Τ𝑛 2
=

𝑇 Τ𝑛 4

Τ𝑛 4
+ 1

𝑇 Τ𝑛 4

Τ𝑛 4
=

𝑇 Τ𝑛 8

Τ𝑛 8
+ 1

……

𝑇 2

2
=

𝑇 1

1
+ 1

Another Brute-force Method

𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

𝑇 𝑛

𝑛
=

𝑇 Τ𝑛 2

Τ𝑛 2
+ 1

𝑇 Τ𝑛 2

Τ𝑛 2
=

𝑇 Τ𝑛 4

Τ𝑛 4
+ 1

𝑇 𝑛

𝑛
=

𝑇 1

1
+ lg 𝑛

𝑇 Τ𝑛 4

Τ𝑛 4
=

𝑇 Τ𝑛 8

Τ𝑛 8
+ 1 Thus, 𝑇 𝑛 = 𝑛 + 𝑛 log𝑛 = Ɵ 𝑛 lg𝑛

……

𝑇 2

2
=

𝑇 1

1
+ 1

Divide by n

Substitution Method

 Comprises two steps:

 Guess the form of the solution

 Use mathematical induction to find the constants and show that the
solution works

 We can use the substitution method to establish either upper
or lower bounds on a recurrence.

Substitution Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

 We guess that the solution is T(n) = O(n lg n).

 The substitution method requires us to prove that 𝑇 𝑛 ≤ 𝑐 𝑛 lg 𝑛 for an appropriate choice of the constant
c > 0.

 Base case: Examine later

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐 𝑚 lg 𝑚 holds for all positive for 𝑚 < 𝑛

Substitution Method
𝑇 1 = 1

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 for n > 1

 We guess that the solution is T(n) = O(n lg n).

 The substitution method requires us to prove that 𝑇 𝑛 ≤ 𝑐 𝑛 lg 𝑛 for an appropriate choice of the constant
c > 0.

 Base case: Examine later

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐 𝑚 lg 𝑚 holds for all positive for 𝑚 < 𝑛

 Induction step:

𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛

≤ 2𝑐
𝑛

2
lg(

𝑛

2
) + 𝑛

= 𝑐 𝑛 lg(
𝑛

2
) + 𝑛

= 𝑐 𝑛 lg 𝑛 – 𝑐 𝑛 lg2 + 𝑛

= 𝑐 𝑛 lg 𝑛 – 𝑐 𝑛 + 𝑛
≤ 𝑐 𝑛 𝑙𝑔𝑛 (for c ≥ 1)

lg
𝛽

𝛼
= lg 𝛽 − lg 𝛼

Substitution Method
 Base case revisited

 𝑇 1 ≤ 𝑐 1 lg1 = 0 wrong!!

 The base case of our induction proof fails to hold

 What should we do?
 We can overcome this obstacle in proving an inductive hypothesis for a specific boundary condition

with only a little more effort.

 We are interested in asymptotic behavior.

 Remove the difficult boundary condition from induction proof.

 We do so by first observing that for n > 3, the recurrence does not depend directly on T(1).

 Thus, we can replace T(1) by T(2) and T(3) as the base cases in the induction proof.

 From the recurrence, we have T(2) ≤ c 2 lg 2 and T(3) ≤ c 3 lg 3.

 Any choice of 𝑐 ≥ 2 suffices for the base cases of n=2 and n=3.

 𝑇(𝑛) ≤ 𝑐 𝑛 log 𝑛 for 𝑐 ≥ 2 and n ≥ 2

Making a Good Guess

 If a recurrence is similar to one you have seen before, guessing
a similar solution is reasonable

 T(n) = 2T(n/2+17) + n

 When n is large, the difference between n/2 and n/2+17 is not that
large

 Consequently, guess T(n) = O(n lg n) and prove by substitution
method

Making a Good Guess

 Prove loose upper and lower bounds on the recurrence and then
reduce the range of uncertainty

 We might start with T(n) = Ω(𝑛)

 We can prove T(n) = O(n2)

 Then, we can gradually lower the upper bound and raise the lower
bound until we converge on the correct, asymptotically tight
solution of T(n) = Θ(n lg n)

Substitution Method
 Sometimes, your correct guess still may fail to work out in the induction.

 The problem is frequently turns out to be that the inductive assumption is not strong enough to prove the
detailed bound.

 If you revise the guess by subtracting a lower-order term when you hit such a snag, it may become okay.

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 1, show 𝑇(𝑛) ≤ 𝑐 𝑛

 Base case: 𝑇(1) = 1 ≤ 𝑐

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐𝑚 for 𝑚 < 𝑛

 Induction step:

Substitution Method
 Sometimes, your correct guess still may fail to work out in the induction.

 The problem is frequently turns out to be that the inductive assumption is not strong enough to prove the
detailed bound.

 If you revise the guess by subtracting a lower-order term when you hit such a snag, it may become okay.

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 1, show 𝑇(𝑛) ≤ 𝑐 𝑛

 Base case: 𝑇(1) = 1 ≤ 𝑐

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐𝑚 for 𝑚 < 𝑛

 Induction step:

 𝑇 𝑛 = 2 𝑇 Τ𝑛 2 + 1 ≤ 𝑐𝑛 + 1 which does not imply 𝑇 𝑛 ≤ 𝑐𝑛 for any choice of c

Substitution Method
 Sometimes, your correct guess still may fail to work out in the induction.

 The problem is frequently turns out to be that the inductive assumption is not strong enough to prove the
detailed bound.

 If you revise the guess by subtracting a lower-order term when you hit such a snag, it may become okay.

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 1, show 𝑇(𝑛) ≤ 𝑐 𝑛

 Base case: 𝑇(1) = 1 ≤ 𝑐

 Induction hypothesis: 𝑇(𝑚) ≤ 𝑐𝑚 for 𝑚 < 𝑛

 Induction step:

 𝑇 𝑛 = 2 𝑇 Τ𝑛 2 + 1 ≤ 𝑐𝑛 + 1 which does not imply 𝑇 𝑛 ≤ 𝑐𝑛 for any choice of c

 Our guess is nearly right and we are off only by the constant 1, a lower-order term

 Make a stronger induction hypothesis by subtracting a lower-order term from our previous guess: 𝑇(𝑛) ≤ 𝑐𝑛– 𝑏

 𝑇 𝑛 ≤ 𝑐𝑛– 2𝑏 + 1 ≤ 𝑐𝑛– 𝑏 as long as 𝑏 ≥ 1

Substitution Method
 Avoiding Pitfalls

 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛 and prove 𝑇(𝑛) ≤ 𝑐 𝑛

 𝑇(𝑛) ≤ 2𝑐(𝑛/2) + 𝑛 = 𝑐𝑛 + 𝑛

 Thus, 𝑇(𝑛) ≤ 𝑐𝑛

Substitution Method
 Avoiding Pitfalls

 𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑛 and prove 𝑇(𝑛) ≤ 𝑐 𝑛

 𝑇(𝑛) ≤ 2𝑐(𝑛/2) + 𝑛 = 𝑐𝑛 + 𝑛

 Thus, 𝑇(𝑛) ≤ 𝑐𝑛

 Wrong!! We should prove the exact form of the induction hypothesis, that is
𝑇(𝑛) ≤ 𝑐𝑛

Substitution Method
 Changing variables

 𝑇(𝑛) = 2𝑇 𝑛 Τ1 2 + lg 𝑛

 Rename 𝑚 = lg 𝑛 yields 𝑇(2𝑚) = 2𝑇 2 Τ𝑚 2 +𝑚.

 Then, by renaming 𝑆(𝑚) = 𝑇 2𝑚 , we get

𝑆(𝑚) = 2𝑆(𝑚/2) + 𝑚.

 Thus, we obtain 𝑆(𝑚) = 𝑂(𝑚 log 𝑚).

 By chainging back from S(m) to T(n), we obtain

𝑇(𝑛) = 𝑇(2𝑚) = 𝑆(𝑚) = 𝑂(𝑚 log 𝑚) = 𝑂(lg 𝑛 lg (lg 𝑛)).

Recursion-tree Method

𝑇(𝑛) = 3𝑇(𝑛/4) + 𝑐𝑛2

𝑐𝑛2

𝑇 Τ𝑛 4 𝑇 Τ𝑛 4 𝑇 Τ𝑛 4

Recursion-tree Method

𝑇(𝑛) = 3𝑇(𝑛/4) + 𝑐𝑛2

𝑐𝑛2

𝑐 Τ𝑛 4 2

𝑇(Τ𝑛 16) 𝑇(Τ𝑛 16)𝑇(Τ𝑛 16)

𝑐 Τ𝑛 4 2

𝑇(Τ𝑛 16) 𝑇(Τ𝑛 16)𝑇(Τ𝑛 16)

𝑐 Τ𝑛 4 2

𝑇(Τ𝑛 16) 𝑇(Τ𝑛 16)𝑇(Τ𝑛 16)

𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 …………………………………………………………………………………………………𝑇 1 𝑇(1)

𝑇 𝑛 = ൗΤ3 16 𝑙𝑜𝑔4 𝑛 − 1 Τ3 16 − 1 𝑐𝑛2 + 𝛩 𝑛𝑙𝑜𝑔4 3 = 𝑂 𝑛2

𝑐𝑛2

3

16
𝑐𝑛 2

3

16

2

𝑐𝑛 2

𝑛log4 3

Recursion-tree Method
 Remember

𝑎 + 𝑎𝑟 + 𝑎𝑟2+⋯+ 𝑎𝑟𝑛−1 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1

𝑎 + 𝑎𝑟 + 𝑎𝑟2+⋯+ 𝑟𝑛−1 +⋯ =
𝑎

𝑟 − 1

 𝑇 𝑛 = 𝑐𝑛2 +
3

16
𝑐𝑛2 +

3

16

2
𝑐𝑛2 +⋯+

3

16

log4 𝑛−1
𝑐𝑛2 + 𝜃 𝑛log4 3

= σ𝑖=0
log4 𝑛−1 3

16

𝑖
𝑐𝑛2 + 𝜃 𝑛log4 3 =

3

16

log4 𝑛
−1

3

16
−1

𝑐𝑛2 + 𝜃 𝑛log4 3

 𝑇 𝑛 = σ𝑖=0
log4 𝑛−1 3

16

𝑖
𝑐𝑛2 + 𝜃 𝑛log4 3 < σ𝑖=0

∞ 3

16

𝑖
𝑐𝑛2 + 𝜃 𝑛log4 3

=
1

1−(
3

16
)
𝑐𝑛2 + 𝜃 𝑛log4 3 =

16

13
𝑐𝑛2 + 𝜃 𝑛log4 3 = 𝑂(𝑛2)

Master Method

 It is a cookbook method for solving recurrences of the form
𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛) where a ≥ 1 and b > 1 are constants
and f(n) is an asymptotically positive function.

 In each of three case, we compare the function f(n) with the

function 𝑛log𝑏 𝑎.

 The larger of two functions determine the solution to the
recurrence

 (1) If 𝑛log𝑏 𝑎 is the larger, 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎)

 (2) If the two functions are the same size,

𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 lg 𝑛)

 (3) If f(n) is the larger, 𝑇(𝑛) = Θ(𝑓(𝑛))

Master Method

 Theorem 4.1 (Master theorem)

 Let 𝑎 ≥ 1 and 𝑏 > 1 be constants

 Let 𝑓(𝑛) be a function

 Let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

 (1) If 𝑓(𝑛) = 𝑂(𝑛(log𝑏 𝑎)−𝜀) for some constant ε > 0, then 𝑇(𝑛) =

Θ(𝑛log𝑏 𝑎)

 (2) If 𝑓(𝑛) = Θ(𝑛log𝑏 𝑎), then 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 𝑙𝑜𝑔 𝑛)

 (3) If 𝑓(𝑛) = Ω(𝑛(log𝑏 𝑎)+𝜀) for some constant ε > 0, and if
𝑎 𝑓 Τ𝑛 𝑏 ≤ 𝑐 𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently large
𝑛, then 𝑇(𝑛) = Θ(𝑓(𝑛))

Master Method

 Consider 𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛.

 Since a = 9, b = 3,

 f(n) = n

 𝑛log𝑏 𝑎 = 𝑛 log3 9= Θ(𝑛2)

 Because f(n) = 𝑂(𝑛log3 9 −𝜀) with ε = 1, we can apply case (1) of

the master theorem

 Thus, 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎) = Θ(𝑛2)

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

(1) If 𝑓(𝑛) = 𝑂(𝑛(log𝑏 𝑎)−𝜀) for some constant ε > 0, then 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎)

Master Method

 Consider 𝑇 𝑛 = 𝑇
2𝑛

3
+ 1.

 Since a = 1, b = 3/2,

 f(n) = 1

 𝑛log𝑏 𝑎 = 𝑛log3/2 1= 𝑛0=1

 Because f(n) = 𝑂(𝑛 log𝑏 𝑎) = Θ(1), we can apply case (2) of the
master theorem

 Thus, 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 lg 𝑛) = Θ(lg 𝑛)

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

If 𝑓(𝑛) = Θ(𝑛log𝑏 𝑎), then 𝑇(𝑛) = Θ(𝑛log𝑏 𝑎 𝑙𝑜𝑔 𝑛)

Master Method

 Consider 𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛 lg 𝑛.

 Since a = 3, b = 4,

 f(n) = n lg n

 𝑛log𝑏 𝑎 = 𝑛log4 3= 𝑂(𝑛0
.793)

 Because f(n) =Ω(𝑛 log4 3+𝜀) with ε ≈ 0.2, we can apply case (3) of
the master theorem

 Thus, 𝑇 𝑛 = Θ 𝑓 𝑛 = Θ(𝑛 lg 𝑛)

𝑇 𝑛 = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛)

(3) If 𝑓(𝑛) = Ω(𝑛(log𝑏 𝑎)+𝜀) for some constant ε > 0,
and if 𝑎 𝑓 Τ𝑛 𝑏 ≤ 𝑐 𝑓(𝑛) for some constant 𝑐 < 1
and all sufficiently large 𝑛, then 𝑇(𝑛) = Θ(𝑓(𝑛))

Chapter 4:
Divide and Conquer

58

Binary Search

Static Searching
 Given an integer X and an array A, return the position of X in A or an

indication that it is not present.

 If X occurs more than once, return any occurrence.

 If the array is not sorted, use a sequential search
 Unsuccessful search: 𝑂(𝑁); every item is examined

 Successful search:

 Worst case: 𝑂(𝑁); every item is examined

 Average case: 𝑂(𝑁); half the items are examined

 Can we do better if we know the array is sorted?

60

Binary Search

 Look in the middle

 Case 1: If X is less than the item in the middle, look in the subarray to the left of
the middle.

 Case 2: If X is greater than the item in the middle, look in the subarray to the
right of the middle.

 Case 3: If X is equal to the item in the middle, we have a match.

61

Binary Search Algorithm

BINARY-SEARCH(A, low, high, X)
1. if low > high
2. return NOT_FOUND
3. if low == high
4. if A[low] == X
5. return low
6. else
7. return NOT_FOUND
8. else
9. mid = (low + high) / 2
10. if A[mid] == X
11. return mid
12. if A[mid] > X
13. return BINARY-SEARCH(A, low, mid-1, X)
14. else
15. return BINARY-SEARCH(A, mid+1, high, X)

Worst Case Time Complexity

𝑇 1 = 1

𝑇 𝑛 = 𝑇
𝑛

2
+ 1 for n > 1

Let 𝑛 = 2𝑘. Then,

𝑇 𝑛 = 𝑇
𝑛

2
+ 1

= 𝑇
𝑛

22
+ 2

= 𝑇
𝑛

23
+ 3

…

= 𝑇
𝑛

2𝑘
+ 𝑘

= 𝛩 (lg 𝑛)
When

𝑛

2𝑘
= 1,

we have n = 2𝑘 and k = lg n

	WEEK-1-1-CH2.pdf
	WEEK-1-2-CH3.pdf

