"Phase Transformation in Materials"

09.11.2023

Eun Soo Park

Office: 33-313
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by an appointment

Contents for previous class

Chapter 1

Thermondynamics and Phase Diagrams

- Equilibrium_ $d G=0$

Phase Transformation

$$
\Delta G=G_{2}-G_{1}<0
$$

Lowest possible value of \mathbf{G}
No desire to change ad infinitum

- Single component system

Gibbs Free Energy as a Function of Temp. and Pressure

$$
\left(\frac{\partial G}{\partial T}\right)_{P}=-S, \quad\left(\frac{\partial G}{\partial P}\right)_{T}=V \quad\left(\frac{d P}{d T}\right)_{e q}=\frac{\Delta H}{T_{e q} \Delta V}
$$

Clausius-Clapeyron Relation
Driving force for solidification $\Delta G=\frac{L \Delta T}{T_{m}}$

- Classification of phase transition

First order transition: CDD/Second order transition: CCD

The First-Order Transitions

Latent heat
Energy barrier
Discontinuous entropy, heat capacity

- First Order Phase Transition at T_{T} :
- G is continuous at T_{T}
- First derivatives of $\mathrm{G}(\mathrm{V}, \mathrm{S}, \mathrm{H})$ are discontinuous at T_{T}

$$
V=\left(\frac{\partial G}{\partial P}\right)_{T} \quad S=-\left(\frac{\partial G}{\partial T}\right)_{P} \quad H=G-T\left(\frac{\partial G}{\partial T}\right)_{P}
$$

- Second derivatives of $\mathrm{G}\left(\alpha, \beta, \mathrm{C}_{\mathrm{p}}\right)$ are discontinuous at T_{T}

$$
C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P, N}
$$

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \quad \alpha=\frac{1}{\mathrm{~V}}\left(\frac{\partial V}{\partial T}\right)_{P} \quad \beta=\frac{-1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

- Examples: Vaporization, Condensation, Fusion, Crystallization, Sublimation.

- Second Order Phase Transition at T_{T} :
- G is continuous at T_{T}
- First derivatives of $\mathrm{G}(\mathrm{V}, \mathrm{S}, \mathrm{H})$ are continuous at T_{T}

$$
V=\left(\frac{\partial G}{\partial P}\right)_{T} \quad S=-\left(\frac{\partial G}{\partial T}\right)_{P} \quad H=G-T\left(\frac{\partial G}{\partial T}\right)_{P}
$$

- Second derivatives of $\mathrm{G}\left(\alpha, \beta, \mathrm{C}_{\mathrm{p}}\right)$ are discontinuous at T_{T}

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \quad \alpha=\frac{1}{\mathrm{~V}}\left(\frac{\partial V}{\partial T}\right)_{P} \quad \beta=\frac{-1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

- Examples: Order-Disorder Transitions in Metal Alloys, Onset of Ferromagnetism, Ferroelectricity, Superconductivity.

Second-order transition

Melting and Crystallization are Thermodynamic Transitions

Solidification: Liquid \longrightarrow Solid
<Thermodynamic>

- Interfacial energy $\Rightarrow \Delta T_{N}$

Liquid

Solid
vapor

Cyclic cooling curves of $\mathrm{Zr}_{41.2} \mathrm{Ti}_{13.8} \mathrm{Cu}_{12.5} \mathrm{Ni}_{10} \mathrm{Be}_{22.5}$

Contents for today's class

- Binary System mixture/ solution / compound Hume-Rothery Rules for Alloys
- Gibbs Free Energy in Binary System Ideal solution and Regular solution
- Chemical potential and Activity

Multi-component system:

Q1: What are binary systems?
 "Mixture vs. Solution vs. Compound"

* Single component system One element (Al, Fe), One type of molecule ($\mathbf{H}_{2} \mathbf{O}$) : Equilibrium depends on pressure and temperature.
* Binary system (two components) \rightarrow A, B
: Equilibrium depends on not only pressure and temperature but also composition.
- Mixture $; \mathbf{A}-\mathrm{A}, \quad \mathrm{B}-\mathrm{B} \boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$ the physical combination of two or more substances on which the identities and boundaries are retained.

쌀 썻기

Select egg

달걀 고르기

- Solution ; A-A-A ; \rightarrow atomic scale mixture/ Random distribution A-B-A Solid solution : substitutional or interstitial

- Compound ; A - B - A - B ; $\boldsymbol{\rightarrow}$ fixed A, B positions/ Ordered state

$\mathbf{M g C N i} 3$

Q2: What is "Alloying"?

Ordered Compounds or Solid Solutions

"Alloying": atoms mixed on a lattice Ordered Compounds and Solid Solutions

Ordered Substitutional and Interstitials Compounds

Substitutional element replaces host atoms in an orderly arrangement

e.g., $\mathrm{Ni}_{3} \mathrm{Al}$ (hi-T yield strength), $\mathrm{Al}_{3}(\mathrm{Li}, \mathrm{Zr})$ (strengthening)

Interstitial element goes into holes in an orderly arrangement

e.g., small impurities, clays ionic crystals, ceramics.

Intermetallic Compounds

Composition (at\% Pb)

Antifluorite Structure:

- FCC unit cell with anions occupying FCC sites
- Cations occupying 8 octahedral interstitial sites

Intermetallic compounds form lines - not areas - because stoichiometry (i.e. composition) is exact.

- Solution ; A - A - A ; $\boldsymbol{\rightarrow}$ atomic scale mixing, Random distribution

```
| |
A - B - A
```

Two Possibilities for Solid Solutions: B atoms in A atoms

Substitutional
'new element replaces host atoms'

A Brass, a substitutional alloy

Interstitials 'new element goes in holes’

Q3: "Solution vs. Intermetallic compound"?

Alloying: atoms mixed on a lattice \longrightarrow solid solution and ordered compound

Solid Solution vs. Intermetallic Compound

ruthenium 루테늄《백금류의 금속 원소;기호 Ru, 번호 44》

Solid Solution vs. Intermetallic Compounds

Assumption: a simple physical model for "binary solid solutions"
: in order to introduce some of the basic concepts of the thermodynamics of alloys

Particles of New Phase in Solid-Solution Alloys

- Solid solution of B in A plus particles of a new phase (usually for a larger amount of B)

5) Microstructure control : (2) Secondary phase control

c. Mechanism of Precipitation

Atomic diffusion
(2)

(3)

Q4: How can we classify "Solubility"?

Solubility

- Unlimited Solubility
- Hume Rothery' Conditions
- Similar Size
- Same Crystal Structure
- Same Valance
- Similar Electronegativity
- Implies single phase
- Limited Solubility
- Implies multiple phases
- No Solubility
- oil and water region

Cu-Ni Alloys

[Cu] / \% k. β.

complete solid solution

Cu-Ag Alloys

limited solid solution

* Complete immiscibility of two metals does not exist.
: The solubility of one metal in another may be so low (e.g. Cu in $\mathrm{Ge}<10^{-7}$ at\%.) that it is difficult to detect experimentally, but there will always be a measure of solubility.

(a)

(b)

(c)

Fig. 53. Evolution of the limiting form of a binary eutectic phase diagram.

Fig. 54. Impossible form of a binary eutectic phase diagram.

Weight Percent Magnesium

Weight Percent Tin

Q5: Can we roughly estimate

what atoms will form solid solutions?

"Hume-Rothery Rules"

Hume-Rothery Rules for Alloys (atoms mixing on a lattice)

Will mixing 2 (or more) different types of atoms lead to a solid-solution phase?

Empirical observations have identified 4 major contributors through :
Atomic Size Factor, Crystal Structure, Electronegativity, Valences

Hume-Rothery Rules for Mixing

Empirical rules for substitutional solid-solution formation were identified from experiment that are not exact, but give an expectation of formation. Briefly,

1) Atomic Size Factor The 15\% Rule

If "size difference" of elements are greater than $\pm 15 \%$, the lattice distortions (i.e. local lattice strain) are too big and solid-solution will not be favored.

$$
D R \%=\frac{r_{\text {solute }}-r_{\text {solvent }}}{r_{\text {solvent }}} \times 100 \%< \pm 15 \% \text { will not disallow formation. }
$$

2) Crystal Structure Like elemental crystal structures are better For appreciable solubility, the crystal structure for metals must be the same.
3) Electronegativity DE ~ 0 favors solid-solution.

The more electropositive one element and the more electronegative the other, then "intermetallic compounds" (order alloys) are more likely.
4) Valences

Higher in lower alright. Lower in higher, it's a fight.
A metal will dissolve another metal of higher valency more than one of lower valency.

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

- Cu-Ni Alloys

Rule 1: $\mathrm{r}_{\mathrm{Cu}}=0.128 \mathrm{~nm}$ and $\mathrm{r}_{\mathrm{Ni}}=0.125 \mathrm{~nm}$.
$\mathrm{DR} \%=\frac{r_{\text {solute }}-r_{\text {solvent }}}{r_{\text {solvent }}} \times 100 \% \quad=2.3 \% \quad$ favorable $\sqrt{ }$
Rule 2: Ni and Cu have the FCC crystal structure.
favorable $\sqrt{ }$
Rule 3: $E_{C u}=1.90$ and $E_{N i}=1.80$. Thus, $D E \%=-5.2 \%$
Rule 4: Valency of Ni and Cu are both +2.

Expect Ni and Cu forms S.S. over wide composition range.
At high T, it does (helpful processing info), but actually phase separates at low \mathbf{T} due to energetics (quantum mechanics).

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

- Cu-Ag Alloys

Rule 1: $\mathrm{r}_{\mathrm{Cu}}=0.128 \mathrm{~nm}$ and $\mathrm{r}_{\mathrm{Ag}}=0.144 \mathrm{~nm}$.
$\mathrm{DR} \%=\frac{r_{\text {solute }}-r_{\text {solvent }}}{r_{\text {solvent }}} x 100 \% \quad=9.4 \% \quad$ favorable $\sqrt{ }$
Rule 2: Ag and Cu have the FCC crystal structure.
Rule 3: $E_{C u}=1.90$ and $E_{N i}=1.80$. Thus, $D E \%=-5.2 \%$
Rule 4: Valency of Cu is $\boldsymbol{+ 2}$ and Ag is +1. NOT favorable $\sqrt{ }$ favorable $\sqrt{ }$
favorable

Expect Ag and Cu have limited solubility.
In fact, the Cu-Ag phase diagram (T vs. c) shows that a solubility of only $18 \% \mathrm{Ag}$ can be achieved at high T in the Cu-rich alloys.

Cu-Ni Alloys

complete solid solution

Cu -Ag Alloys

limited solid solution

High entropy alloy (HEA)

Conventional alloy system Ex) 304 steel - Fe 74 Cr 18 Ni 8
(1) Thermodynamic : high entropy effect
(3) Structure : severe lattice distortion effect

High entropy alloy system
Ex) Al20Co20Cr20Fe20Ni20

Yong Zhang et al., Adv. Eng. Mat. P534-538, 2008

Q6: How to calculate

"Gibbs Free Energy of Binary Solutions"?

$$
G_{2}=G_{1}+\Delta G_{m i x} \quad J / \mathrm{mol}
$$

Binary Solutions: binary solid solution/ a fixed pressure of 1 atm

2) Gibbs Free Energy of Binary Solutions

* Composition in mole fraction $X_{A}, X_{B} X_{A}+X_{B}=1$

Step 1. bring together X_{A} mole of pure A and X_{B} mole of pure B
Step 2. allow the A and B atoms to mix together to make a homogeneous solid solution.

After mixing

> 1 mol solid solution

Total free energy $=$

$$
G_{2}=G_{1}+\Delta G_{\text {mix }}
$$

Fig. 1.7

1.3 Binary Solutions

Gibbs Free Energy of The System

In Step 1

- The molar free energies of pure A and pure B

$$
\begin{aligned}
& \text { pure } \mathbf{A} ; G_{A}(T, P) \\
& \text { pure } \mathbf{B} ; G_{B}(T, P) \\
& ; \mathbf{X}_{\mathbf{A}}, \mathbf{X}_{\mathbf{B}}(\text { mole fraction }) \quad \boldsymbol{G}_{\boldsymbol{I}}=\boldsymbol{X}_{\boldsymbol{A}} \boldsymbol{G}_{\boldsymbol{A}}+\boldsymbol{X}_{\boldsymbol{B}} \boldsymbol{G}_{\boldsymbol{B}} \quad \mathrm{J} / \mathbf{m o l}
\end{aligned}
$$

1.3 Binary Solutions

Gibbs Free Energy of The System

In Step 2

$$
G_{2}=G_{1}+\Delta G_{m i x} \quad \mathrm{~J} / \mathrm{mol}
$$

Since $\quad G_{1}=H_{1}-T S_{1}$ and $G_{2}=H_{2}-T S_{2}$
And putting $\quad \Delta H_{m i x}=H_{2}-H_{1} \quad \Delta S_{m i x}=S_{2}-S_{1}$

$$
\Delta G_{m i x}=\Delta H_{m i x}-T \Delta S_{m i x}
$$

$\Delta H_{m i x}$: Heat of Solution i.e. heat absorbed or evolved during step 2
Fig. 1.3
$\Delta S_{m i x}$: difference in entropy between the mixed and unmixed state.

Gibbs Free Energy of Binary Solutions

Q7: How can you estimate

" $\Delta \mathrm{G}_{\text {mix }}$ of ideal solid solution"?

$$
\Delta G_{m i x}=-T \Delta S_{m i x} \Rightarrow \Delta G^{\text {mix }}=R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

1.3 Binary Solutions

Mixing free energy, $\Delta G_{\text {mix }}$

- Ideal solution

Assumption 1; $\Delta \mathrm{H}_{\text {mix }}=0$:
; $\mathbf{A} \& B=$ complete solid solution
(A,B ; same crystal structure)
; no volume change

$$
\Delta G_{m i x}=\Delta H_{m i x}-T \Delta S_{m i x}
$$

$$
\Delta G_{m i x}=-T \Delta S_{m i x} \mathrm{~J} / m o l
$$

Entropy can be computed from randomness
by Boltzmann equation, i.e.,
$S=k \ln w \quad w:$ degree of randomness, k : Boltzman constant
\rightarrow thermal; vibration (no volume change)
\rightarrow Configuration; number of distinguishable ways of arranging the atoms

$$
S=S_{t h}+S_{\text {config }}
$$

1.3 Binary Solutions

Excess mixing Entropy

If there is no volume change or heat change,
$w_{\text {config }}=1 \rightarrow$ before_solution_(pureA_pureB)
$w_{\text {config }}=\frac{\left(N_{A}+N_{B}\right)!}{N_{A}!N_{B}!} \rightarrow$ after_solution_ $\left(N_{A}, N_{B}\right) \downarrow$

Number of distinguishable way of atomic arrangement
$\Delta S^{m i x}=S^{\text {after }}-S^{\text {before }}=k \ln \frac{\left(N_{A}+N_{B}\right)!}{N_{A}!N_{B}!}-k \ln 1$
Since we are dealing with $1 \mathbf{~ m o l}$ of solution,

$$
\rightarrow N_{A}=X_{A} N_{0}, \quad N_{B}=X_{B} N_{0}, N_{A}+N_{B}=N_{0}
$$

using Stirling's approximation $\ln N!\approx N \ln N-N$ and $\quad R=k N_{0}$ (the universal gas constant)
$=k\left[\left(N_{o} \ln N_{o}-N_{o}\right)-\left(X_{A} N_{0} \ln X_{A} N_{0}-X_{A} N_{0}\right)-\left(X_{B} N_{0} \ln X_{B} N_{o}-X_{B} N_{o}\right)\right]$
$=-R\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)$

1.3 Binary Solutions

Excess mixing Entropy

$$
\begin{gathered}
\Delta S^{\text {mix }}=-R\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right) \\
\Delta G_{m i x}=-T \Delta S_{\text {mix }} \quad \Rightarrow \Delta G^{\text {mix }}=R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
\end{gathered}
$$

Fig. 1.9 Free energy of mixing for an ideal solution

Gibbs Free Energy of Binary Solutions

Q8: How can you estimate

"Molar Free energy for ideal solid solution"?

$$
G_{2}=G_{1}+\Delta G_{m i x} \Rightarrow G=X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

1.3 Binary Solutions

1) Ideal solution

Since $\Delta H_{m i x}=\mathbf{0}$ for ideal solution,

$$
\begin{aligned}
& G_{2}=G_{1}+\Delta G_{m i x} \\
& \\
& \Rightarrow G=G=X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
\end{aligned}
$$

Compare $G_{\text {solution }}$ between high and low Temp.

Fig. 1.10 The molar free energy (free energy per mole of solution) for an ideal solid solution. A combination of Figs. 1.8 and 1.9.

Gibbs Free Energy of Binary Solutions

Q9: How the free energy of a given phase will change when atoms are added or removed?

"Chemical potential"

1.3 Binary Solutions

1) Ideal solution

$G=\boldsymbol{H}-\mathbf{T S}=\boldsymbol{E}+\mathbf{P V}-\mathbf{T S}$
 Chemical potential

The increase of the total free energy of the system by the increase of very small quantity of $A, \mathrm{dn}_{\mathrm{A}}$, will be proportional to μ_{A}.
$\Rightarrow \mathrm{dn}_{\mathrm{A}} \sim$ small enough
($\because \mu_{\mathrm{A}}$ depends on the composition of phase)

$$
\mathrm{dG}^{\prime}=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}
$$

$$
\left(\mathbf{T}, \mathbf{P}, \mathbf{n}_{\mathrm{B}}: \text { constant }\right)
$$

μ_{A} : partial molar free energy of A or chemical potential of A

$$
\mu_{A}=\left(\frac{\partial \mathbf{G}^{\prime}}{\partial \mathrm{n}_{A}}\right)_{T, P, n_{B}} \quad \mu_{\mathrm{B}}=\left(\frac{\partial \mathbf{G}^{\prime}}{\partial \mathrm{n}_{\mathrm{B}}}\right)_{T, P, n_{A}}
$$

For A-B binary solution,

$$
\mathrm{dG}^{\prime}=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}}
$$

For variable T and P

$$
\mathrm{dG}^{\prime}=-\mathrm{SdT}+\mathrm{VdP}+\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}}
$$

1.3 Binary Solutions

1) Ideal solution

$G=\boldsymbol{H}-\mathbf{T S}=\boldsymbol{E}+\mathbf{P V}-\mathbf{T S}$
 Chemical potential

The increase of the total free energy of the system by the increase of very small quantity of $A, \mathrm{dn}_{\mathrm{A}}$, will be proportional to μ_{A}.
$\Rightarrow \mathrm{dn}_{\mathrm{A}} \sim$ small enough
($\because \mu_{\mathrm{A}}$ depends on the composition of phase)

$$
\mathrm{dG}^{\prime}=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}
$$

$$
\left(\mathbf{T}, \mathbf{P}, \mathbf{n}_{\mathrm{B}}: \text { constant }\right)
$$

μ_{A} : partial molar free energy of A or chemical potential of A

$$
\mu_{A}=\left(\frac{\partial \mathbf{G}^{\prime}}{\partial \mathrm{n}_{A}}\right)_{T, P, n_{B}} \quad \mu_{\mathrm{B}}=\left(\frac{\partial \mathbf{G}^{\prime}}{\partial \mathrm{n}_{\mathrm{B}}}\right)_{T, P, n_{A}}
$$

For A-B binary solution,

$$
\mathrm{dG}^{\prime}=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}}
$$

For variable T and P

$$
\mathrm{dG}^{\prime}=-\mathrm{SdT}+\mathrm{VdP}+\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}}
$$

Gibbs Free Energy of Binary Solutions

Q10: "Correlation between chemical potential and free energy"?

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant)

$$
\begin{array}{rl}
\mathrm{G}=\mu_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \quad \mathrm{Jmol}^{-1} \\
\mathrm{dG}=\mu_{\mathrm{A}} \mathrm{dX} \mathrm{~A}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dX} & \mathrm{G}=\left(\mu_{\mathrm{B}}-\frac{\mathrm{dG}}{\mathrm{dX}}\right) \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \\
\frac{\mathrm{dG}}{\mathrm{dX}}=\mu_{\mathrm{B}}-\mu_{\mathrm{A}} & =\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{A}}-\frac{\mathrm{dG}}{\mathrm{dX}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \\
\mu_{\mathrm{A}}=\mu_{\mathrm{B}}-\frac{\mathrm{dG}}{\mathrm{dX}} & =\mu_{\mathrm{B}}-\frac{\mathrm{dG}}{\mathrm{dX}} \mathrm{X}_{\mathrm{A}} \\
& =\mu_{\mathrm{B}}-\frac{\mathrm{dG}}{\mathrm{dX}}\left(1-\mathrm{X}_{\mathrm{B}}\right) \\
& \mu_{\mathrm{B}}=\mathrm{G}+\frac{\mathrm{dG}}{\mathrm{dX}} \mathrm{X}_{\mathrm{B}}
\end{array}
$$

Correlation between chemical potential and free energy

For 1 mole of the solution
(T, P: constant)

1) Ideal solution

$$
\mathrm{G}=\mu_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \quad \mathrm{Jmol}^{-1}
$$

$$
\begin{aligned}
\mu_{B} & =G+\frac{d G}{d X_{B}}\left(1-X_{B}\right) \\
\mu_{\mathrm{B}} & =\mathrm{G}+\frac{\mathrm{dG}}{\mathrm{dX}} \mathrm{X}_{\mathrm{A}} \\
& =\overline{C A}+\overline{D C} \\
\mu_{\mathrm{A}} & =\mu_{\mathrm{B}}-\frac{\mathrm{dG}}{\mathrm{dX}} \\
& =\mu_{B}-\left(X_{A}+X_{B}\right) \frac{d G}{d X_{B}} \\
& =\overline{D A}-\overline{D C}-\overline{C B} 51
\end{aligned}
$$

1) Ideal solution

Correlation between chemical potential and free energy
 For 1 mole of the solution (T, P: constant)

$$
G=\mu_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \quad \mathrm{Jmol}^{-1}
$$

Fig. 1.11 The relationship between the free energy curve for a solution and the chemical potentials of the components.

1.3 Binary Solutions

1) Ideal solution

$$
\begin{aligned}
G & =X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right) \\
& =\left(G_{A}+R T \ln X_{A}\right) X_{A}+\left(G_{B}+R T \ln X_{B}\right) X_{B}=\mu_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}
\end{aligned}
$$

Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$
G_{I}=X_{A} G_{A}+X_{B} G_{B} \mathrm{~J} / \mathrm{mol} \quad G_{2}=G_{I}+\Delta G_{\text {mix }} \mathrm{J} / \mathrm{mol}
$$

Ideal solution $\left(\Delta \mathrm{H}_{\text {mix }}=0\right) \quad \Delta G^{\text {mix }}=R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)$

$$
G=X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

Regular solution $\Delta H_{\text {mix }}=P_{A B} \varepsilon$ where $\varepsilon=\varepsilon_{A B}-\frac{1}{2}\left(\varepsilon_{A A}+\varepsilon_{B B}\right)$

$$
G=X_{A} G_{A}+X_{B} G_{B}+\Omega X_{A} X_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

- Chemical potential and Activity

$$
\begin{array}{ll}
\mu_{\mathrm{A}}=\left(\frac{\partial \mathrm{G}^{\prime}}{\partial n_{A}}\right)_{T, \mathrm{P}, n_{\mathrm{E}}} \quad \mu_{\mathrm{A}}=\mathrm{G}_{\mathrm{A}}+\mathrm{RTIn} \mathrm{In}_{\mathrm{A}} & \ln \left(\frac{a_{A}}{X_{A}}\right)=\frac{\Omega}{R T}\left(1-X_{A}\right)^{2} \\
\frac{a_{A}}{X_{A}}=\gamma_{A}=\text { activity coefficient }
\end{array}
$$

"Phase Transformation in Materials"

09.13.2023

Eun Soo Park

Office: 33-313
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by an appointment

Contents for previous class

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$
G_{I}=X_{A} G_{A}+X_{B} G_{B} \mathrm{~J} / \mathrm{mol} \quad G_{2}=G_{I}+\Delta G_{m i x} \mathrm{~J} / \mathrm{mol}
$$

Ideal solution $\left(\Delta \mathrm{H}_{\text {mix }}=0\right) \quad \Delta G^{\text {mix }}=R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)$

$$
G=X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

Regular solution $\Delta H_{\text {mix }}=P_{A B} \varepsilon$ where $\varepsilon=\varepsilon_{A B}-\frac{1}{2}\left(\varepsilon_{A A}+\varepsilon_{B B}\right)$

$$
G=X_{A} G_{A}+X_{B} G_{B}+\Omega X_{A} X_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

- Chemical potential and Activity

$$
\begin{array}{ll}
\mu_{\mathrm{A}}=\left(\frac{\partial \mathrm{G}^{\prime}}{\partial \mathrm{n}_{\mathrm{A}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n}_{\mathrm{B}}} & \frac{\mu_{\mathrm{A}}=\mathrm{G}_{\mathrm{A}}+\mathrm{RT} \operatorname{lna} \mathrm{~A}_{\mathrm{A}}}{} \begin{array}{l}
\ln \left(\frac{a_{A}}{X_{A}}\right)=\frac{\Omega}{R T}\left(1-X_{A}\right)^{2} \\
\mathrm{dn}_{\mathrm{A}} \sim \text { small enough }\left(\because \mu_{\mathrm{A}}\right. \text { depends on the composition of phase) }
\end{array} \\
\frac{a_{A}}{X_{A}}=\gamma_{A}=\text { activity coefficient }
\end{array}
$$

1.3 Binary Solutions

1) Ideal solution

$G=\boldsymbol{H}-\mathbf{T S}=\boldsymbol{E}+\mathbf{P V}-\mathbf{T S}$
 Chemical potential

The increase of the total free energy of the system by the increase of very small quantity of $A, \mathrm{dn}_{\mathrm{A}}$, will be proportional to μ_{A}.
$\Rightarrow \mathrm{dn}_{\mathrm{A}} \sim$ small enough
($\because \mu_{\mathrm{A}}$ depends on the composition of phase)

$$
\mathrm{dG}^{\prime}=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}} \quad\left(\mathbf{T}, \mathbf{P}, \mathrm{n}_{\mathrm{B}}: \text { constant }\right)
$$

μ_{A} : partial molar free energy of A or chemical potential of A

$$
\mu_{A}=\left(\frac{\partial \mathbf{G}^{\prime}}{\partial \mathrm{n}_{A}}\right)_{T, P, n_{B}} \quad \mu_{\mathrm{B}}=\left(\frac{\partial \mathbf{G}^{\prime}}{\partial \mathrm{n}_{\mathrm{B}}}\right)_{T, P, n_{A}}
$$

For A-B binary solution,

$$
\mathrm{dG}^{\prime}=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}}
$$

For variable T and P

$$
\mathrm{dG}^{\prime}=-\mathrm{SdT}+\mathrm{VdP}+\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}}
$$

1.3 Binary Solutions

1) Ideal solution

$$
\begin{aligned}
G & =X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right) \\
& =\left(G_{A}+R T \ln X_{A}\right) X_{A}+\left(G_{B}+R T \ln X_{B}\right) X_{B}=\mu_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}
\end{aligned}
$$

Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class II
 - Ideal Solution/ Regular Solution/ Real solution

Q1: What is "Regular Solution"?

Regular Solutions

Ideal solution: $\Delta \mathrm{H}_{\text {mix }}=0 \quad \square$ This type of behavior is exceptional in practice and usually mixing is endothermic or exothermic.
Quasi-chemical model assumes that heat of mixing, $\Delta \mathrm{H}_{\text {mix }}$ is only due to the bond energies between adjacent atoms.
Assumption: the volumes of pure A and B are equal and do not change during mixing so that the interatomic distance and bond energies are independent of composition. Structure model of a binary solution

Fig. 1.13 The different types of interatomic bond in a solid solution.

Gibbs Free Energy of Regular Solutions

Q2: How can you estimate

 " $\Delta \mathrm{H}_{\text {mix }}$ of regular solution"?$$
\Delta \mathbf{H}_{\text {mix }}=\boldsymbol{\Omega} \mathbf{X}_{\mathbf{A}} \mathbf{X}_{\mathrm{B}} \text { where } \boldsymbol{\Omega}=\mathbf{N}_{\mathrm{a}} \mathbf{z \varepsilon}
$$

1.3 Binary Solutions

Regular Solutions

Bond energy
Number of bond
A-A
B-B
A-B

$$
\begin{aligned}
& \varepsilon_{A A} \\
& \varepsilon_{B B} \\
& \varepsilon_{A B}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{AA}} \\
& \mathrm{P}_{\mathrm{BB}} \\
& \mathrm{P}_{\mathrm{AB}}
\end{aligned}
$$

Internal energy of the solution

$$
\mathrm{E}=\mathrm{P}_{\mathrm{AA}} \varepsilon_{\mathrm{AA}}+\mathrm{P}_{\mathrm{BB}} \varepsilon_{\mathrm{BB}}+\mathrm{P}_{\mathrm{AB}} \varepsilon_{\mathrm{AB}}
$$

Before mixing

Fig. 1.7

$$
\Delta \mathrm{H}_{\mathrm{mix}}=\mathrm{P}_{\mathrm{AB}} \varepsilon \quad \text { where } \varepsilon=\varepsilon_{\mathrm{AB}}-\frac{1}{2}\left(\varepsilon_{\mathrm{AA}}+\varepsilon_{\mathrm{BB}}\right)
$$

1.3 Binary Solutions

Regular Solutions

Completely random arrangement

$$
\varepsilon=0 \quad \Rightarrow \quad \varepsilon_{A B}=\frac{1}{2}\left(\varepsilon_{A A}+\varepsilon_{B B}\right)
$$

$\Delta \mathrm{H}_{\text {mix }}=0 \quad$ ideal solution
$\Delta S^{\text {mix }}=-R\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)$
$\mathrm{P}_{\mathrm{AB}}=\mathrm{N}_{\mathrm{a}} \mathrm{zX} \mathrm{X}_{\mathrm{A}} \mathrm{X}_{\mathrm{B}}$ bonds per mole
N_{a} : Avogadro's number
z : number of bonds per atom

$$
\begin{array}{cl}
\varepsilon<0 \rightarrow P_{A B} \uparrow & \text { (2) } \varepsilon>0 \rightarrow P_{A B} \downarrow \tag{1}\\
\text { (3) } \varepsilon \approx 0 \quad \Rightarrow \Delta \mathrm{H}_{\text {mix }}=\mathrm{P}_{\mathrm{AB}} \varepsilon
\end{array}
$$

$\Delta \mathbf{H}_{\text {mix }}=\boldsymbol{\Omega} \mathbf{X}_{\mathrm{A}} \mathbf{X}_{\mathrm{B}}$ where $\boldsymbol{\Omega}=\mathbf{N}_{\mathrm{a}} \mathbf{z} \boldsymbol{\varepsilon}$

If $\Omega>0$,

Gibbs Free Energy of Regular Solutions

Q3: How can you estimate

"Molar Free energy for regular solution"?

$$
\begin{aligned}
& \boldsymbol{G}_{2}=\boldsymbol{G}_{\boldsymbol{I}}+\Delta \boldsymbol{G}_{\boldsymbol{m i x}} \\
& G=X_{A} G_{A}+X_{B} G_{B}+\Omega X_{A} X_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
\end{aligned}
$$

Regular Solutions

Reference state
Pure metal $G_{A}^{0}=G_{B}^{0}=0$

$$
\Delta G_{m i x}=\Delta H_{m i x}-T \Delta S_{m i x}
$$

(a) $\Omega<\mathrm{O}$, high T

(b) $\Omega<\mathrm{O}$, low T

Gibbs Free Energy of Binary Solutions

Q4: "Correlation between chemical potential and free energy"?

2) regular solution

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant)

Regular solution

$$
\begin{aligned}
& \mu_{A}=G_{A}+\Omega\left(1-X_{A}\right)^{2}+R T \ln X_{A} \\
& \mu_{B}=G_{B}+\Omega\left(1-X_{B}\right)^{2}+R T \ln X_{B}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\mathrm{A}}=\mathrm{G}_{\mathrm{A}}+\mathrm{RT} \ln \mathrm{X}_{\mathrm{A}} \\
& \mu_{\mathrm{B}}=\mathrm{G}_{\mathrm{B}}+\mathrm{RT} \ln \mathrm{X}_{\mathrm{B}}
\end{aligned}
$$

今

$$
\begin{aligned}
& \boldsymbol{G}=\boldsymbol{E}+\boldsymbol{P} \boldsymbol{V}-\boldsymbol{T S} \quad \mathrm{G}=\mu_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \quad \mathrm{Jmol}^{-1} \\
& \boldsymbol{G}=\boldsymbol{H}-\boldsymbol{T S} \quad G=X_{A} G_{A}+X_{B} G_{B}+\Omega X_{A} X_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right) \\
& \longrightarrow \quad X_{A} X_{B}=X_{A} X_{B}\left(X_{A}+X_{B}\right)=X_{A}^{2} X_{B}+X_{B}^{2} X_{A} \\
& =X_{A}\left(G_{A}+\Omega\left(1-X_{A}\right)^{2}+R T \ln X_{A}\right)+X_{B}\left(G_{B}+\Omega\left(1-X_{B}\right)^{2}+R T \ln X_{B}\right)
\end{aligned}
$$

Gibbs Free Energy of Binary Solutions

Q5: What is "activity"?

Activity, a : effective concentration for mass action

ideal solution

regular solution

$$
\begin{aligned}
\boldsymbol{\mu}_{\mathbf{A}}=\mathbf{G}_{\mathbf{A}}+\mathbf{R T l n a} & \boldsymbol{\mu}_{\mathbf{B}}=\mathbf{G}_{\mathbf{B}}+\mathbf{R T l n a} \\
\hline \mu_{A}=G_{A}+\Omega\left(1-X_{A}\right)^{2}+R T \ln X_{A} & \mu_{B}=G_{B} \\
\left(\frac{a_{A}}{X_{A}}\right)=\frac{\Omega}{R T}\left(1-X_{A}\right)^{2} & \ln \left(\frac{a_{B}}{X_{B}}\right)=\frac{\Omega}{R T}\left(1-X_{B}\right)^{2}+R T \ln X_{B} \\
\frac{a_{A}}{X_{A}}=\gamma_{A}=\text { activity coefficient } & \gamma_{\mathrm{B}}=\frac{\mathrm{a}_{\mathrm{B}}}{\mathrm{X}_{\mathrm{B}}}
\end{aligned}
$$

Activity-composition curves for solutions

(a)

Ideal solution

$$
\begin{gathered}
A \rightarrow-B=\frac{1}{2}(A \longrightarrow-A+B \longrightarrow B) \\
\text { e.g. Bi-Sn at } 335^{\circ} \mathrm{C} \\
a_{A}=a_{\text {Sn }}
\end{gathered}
$$

(b)

Actual solution
$A \rightarrow B>\frac{1}{2}(A \longrightarrow A+B \longrightarrow B)$
e.g. $\mathrm{Au}-\mathrm{Sn}$ ot $600^{\circ} \mathrm{C}$

$$
a_{h}=a_{s_{n}}
$$

Actual solution
$A \rightarrow B<\frac{1}{2}(A \rightarrow A+B \Longrightarrow B)$
e.g. $\mathrm{Cd}-\mathrm{Pb}$ at $500^{\circ} \mathrm{C}$
$a_{A}=a_{c o}$

- For a dilute solution of B in $A\left(X_{B} \rightarrow 0\right)$

$$
\begin{array}{ll}
\gamma_{\mathrm{B}}=\frac{a_{\mathrm{B}}}{\mathrm{X}_{\mathrm{B}}} \cong \text { constant } & \text { (Hegree of non-ideality } \\
\gamma_{\mathrm{A}}=\frac{a_{\mathrm{A}}}{X_{A}} \cong 1 & \text { (Rault's Law) }
\end{array}
$$

Variation of activity with composition (a) a_{B}, (b) a_{A}

(a)

Line 1: (a) $a_{B}=X_{B}$, (b) $a_{A}=X_{A}$ Line 2: (a) $a_{B}<X_{B}$, (b) $a_{A}<X_{A}$ Line 3 : (a) $a_{B}>X_{B}$, (b) $a_{A}>X_{A}$

(b)

Fig. 1.7
ideal solution...Rault's law
$\Delta \mathrm{H}_{\text {mix }}<0<\ln \left(\frac{a_{A}}{X_{A}}\right)=\frac{\Omega}{R T}\left(1-X_{A}\right)^{2}$
$\Delta \mathrm{H}_{\text {mix }}>0$

Gibbs Free Energy of Binary Solutions

Q6: "Chemical equilibrium of multi-phases"?

Fig. 10. Transfer of $\mathrm{d} n_{\mathrm{A}}$ moles of component A from the β to the α phase.

Activity of a component is just another means of describing the state of the component in a solution.
degree of non-ideality? $\rightarrow \frac{a_{A}}{X_{A}} \quad \frac{a_{A}}{X_{A}}=\gamma_{A}, \quad a_{A}=\gamma_{A} X_{A}$

γ_{A} : activity coefficient

Activity or chemical potential of a component is important when several condensed phases are in equilibrium.

Chemical Equilibrium $(\mu, a) \rightarrow$ multiphase and multicomponent

$$
\begin{gathered}
\left(\mu_{i}^{\alpha}=\mu_{i}^{\beta}=\mu_{i}^{\gamma}=\ldots\right),\left(a_{i}^{\alpha}=a_{i}^{\beta}=a_{i}^{\gamma}=\ldots\right) \\
\left(\mu_{A}^{\alpha}=\mu_{A}^{\beta}=\mu_{A}^{\gamma}=\ldots\right),\left(a_{A}^{\alpha}=a_{A}^{\beta}=a_{A}^{\gamma}=\ldots\right) \\
\left(\mu_{B}^{\alpha}=\mu_{B}^{\beta}=\mu_{B}^{\gamma}=\ldots\right),\left(a_{B}^{\alpha}=a_{B}^{\beta}=a_{B}^{\gamma}=\ldots\right)
\end{gathered}
$$

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$
G_{I}=X_{A} G_{A}+X_{B} G_{B} \mathrm{~J} / \mathrm{mol} \quad G_{2}=G_{I}+\Delta G_{\text {mix }} \mathrm{J} / \mathrm{mol}
$$

Ideal solution $\left(\Delta \mathrm{H}_{\text {mix }}=0\right) \quad \Delta G^{\text {mix }}=R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)$

$$
G=X_{A} G_{A}+X_{B} G_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

Regular solution $\Delta \mathrm{H}_{\text {mix }}=\mathrm{P}_{\mathrm{AB}} \varepsilon$ where $\varepsilon=\varepsilon_{\mathrm{AB}}-\frac{1}{2}\left(\varepsilon_{\mathrm{AA}}+\varepsilon_{\mathrm{BB}}\right)$

$$
G=X_{A} G_{A}+X_{B} G_{B}+\Omega X_{A} X_{B}+R T\left(X_{A} \ln X_{A}+X_{B} \ln X_{B}\right)
$$

- Chemical potential and Activity

$$
\begin{aligned}
& \text { - } \mu_{\mathrm{A}}=\mathrm{G}_{\mathrm{A}}+\mathrm{RT} \ln \mathrm{a}_{\mathrm{A}} \ln \left(\frac{a_{A}}{X_{A}}\right)=\frac{\Omega}{R T}\left(1-X_{A}\right)^{2} \\
& \mu \text { 는 조성에 의해 결정되기 때문에 } \mathrm{dn}_{\mathrm{A}} \text { 가 매우 작아서 조성변화 없어야 } \\
& \frac{a_{A}}{X_{A}}=\gamma_{A}=\text { activity coefficient }
\end{aligned}
$$

Contents for today's class II
 - Ideal Solution/ Regular Solution/ Real solution

Q7: What is "Real Solution"?

sufficient disorder + lowest internal E

1.3 Binary Solutions
 $\Delta G_{\text {mix }}=\Delta H_{\text {mix }}-T \Delta S_{\text {mix }}$

Real solution: sufficient disorder + lowest internal E

Ideal or Regular solution: over simplification of reality

Config. Entropy $S=k \ln w+$ mixing enthalpy $\Delta \mathrm{H}_{\text {mix }}=\Omega \mathrm{X}_{\mathrm{A}} \mathrm{X}_{\mathrm{B}}$ where $\Omega=\mathrm{N}_{\mathrm{a}} z \varepsilon$

Fig. 1.18

(a) $\varepsilon<0, \Delta \mathrm{H}_{\text {mix }}<0$

Ordered alloys
$P_{A B} \uparrow \longrightarrow$ Internal E \downarrow

(b) $\varepsilon>0, \Delta \mathrm{H}_{\text {mix }}>0$

$$
P_{A A}, P_{B B} \uparrow
$$

* The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

High temp. \longrightarrow Entropy effect $\uparrow \longrightarrow$ Solution stability \uparrow

1.3 Binary Solutions

Real solution: sufficient disorder + lowest internal E
2) In systems where there is a size difference between the atom e.g. interstitial solid solutions,
$\Rightarrow \Delta \mathrm{E}=\Delta \mathrm{H}_{\text {mix }}+$ elastic strain
\Rightarrow quasi- chemical model \sim underestimate $\Delta \mathrm{E}$ due to no consideration of elastic strain field

\Rightarrow New mathematical models are needed to describe these solutions.

Q8: Ordered phase I:

"Short range order (SRO)" in solution
1.3 Binary Solutions

Ordered phase $\varepsilon<0, \Delta \mathrm{H}_{\text {mix }}<0 \quad \mathrm{P}_{\mathrm{AB}} \uparrow$

SRO (Short Range Ordering) or LRO (Long Range Ordering)

- $\Omega<0 \Rightarrow$ contain short-range order (SRO)
$\Delta \Omega=N_{a} z \varepsilon \quad$ SRO parameter $=s_{-}$degree of ordering

$$
s=\frac{P_{A B}-P_{A B}(\text { random })}{P_{A B}(\max)-P_{A B}(\text { random })}
$$

$P_{A B}$ (max)

(a) $P_{A B}$ (random)

(b) $P_{A B}$ with SRO

Fig. 1.19 (a) Random $A-B$ solution with a total of 100 atoms and $X_{A}=X_{B}=0.5, P_{A B} \sim 100, S=0$. (b) Same alloy with short-range order $\mathrm{P}_{\mathrm{AB}}=132, \mathrm{P}_{\mathrm{AB}}(\max) \sim 200, \mathrm{~S}=(132-100) /(200-100)=0.32$.

Q9: Ordered phase II: "Long range order (LRO)"

(1)superlattice, (2)intermediate phase, (3)intermetallic compound)

* Solid solution \rightarrow ordered phase
\rightarrow random mixing
\rightarrow entropy \uparrow negative enthalpy \downarrow

$$
\Delta H_{m i x}^{S}<0
$$

Large composition range $\rightarrow \mathbf{G} \downarrow$

* Compound : AB, $\mathrm{A}_{2} \mathrm{~B} .$.
\rightarrow entropy \downarrow
\rightarrow covalent, ionic contribution.
\rightarrow enthalpy more negative \downarrow

$$
\Delta H_{\text {on }}^{S} \ll 0
$$

Small composition range
$\Rightarrow G \downarrow$

diate phases: (a) for an intermetallic com-
(b) for an intermediate phase with a wide

Fig. 1.23 Free energy curves for intermed pound with a very narrow stability range, (stability range.

* The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

High temp. \longrightarrow Entropy effect $\uparrow \longrightarrow$ Solution stability \uparrow

Q9-a: Superlattice

1.3 Binary Solutions

Ordered phase $\quad \varepsilon<0, \Delta \mathrm{H}_{\text {mix }}<0$

* In solutions with compositions that are close to a simple ratio of A:B atoms another type of order can be found.
* This is known as long-range order (LRO) CuAu, $\mathrm{Cu}_{3} \mathrm{Au}$ and many other intermetallics show LRO.

(The atom sites are no longer equivalent but can be labelled as A -sites and B -sites.) * A superlattice forms in materials with LRO

(a)

(b)

Low temp.
Disordered Structure CuAu superlattice
Fig. 1.20 High temp.

Superlattice formation: order-disorder transformation

$-\varepsilon<0, \Delta H_{\text {mix }}<0$

- between dissimilar atoms than between similar atoms
- Large electrochemical factor: tendency for the solute atoms to avoid each other and to associate with the solvent atoms
- Size factor just within the favorable limit: lead to atomic rearrangement so as to relieve the lattice distortion imposed by the solute atoms

β brass superlattice viewed as two inter-penetrating cubic lattices
1.3 Binary Solutions
(a) L_{0} :

CuZn/FeCo/NiAI/CoAI/ FeAl/AgMg/AuCd/NiZn

(a) $\mathrm{Cu} \bigcirc \mathrm{Zn}$

Five common ordered lattices
(b) $\mathrm{L1}_{2}$:
(c) $\mathrm{L} 1_{0}$:
$\mathrm{Cu}_{3} \mathrm{Au} / \mathrm{Ni}_{3} \mathrm{Mn} / \mathrm{Ni}_{3} \mathrm{Fe} / \mathrm{Ni}_{3} \mathrm{Al} /$ $\mathrm{Pt}_{3} \mathrm{Fe} / \mathrm{Au}_{3} \mathrm{Cd} / \mathrm{Co}_{3} \mathrm{~V} / \mathrm{TiZn}_{3}$

(b) $\mathrm{Cu} \bigcirc \mathrm{Au}$

(c) $\mathrm{Cu} \bigcirc \mathrm{Ou}$

(d) $\mathrm{Al} \bigcirc \mathrm{Fe}$
(d) DO_{3} :
$\mathrm{Fe}_{3} \mathrm{Al} / \mathrm{Cu}_{3} \mathrm{Sb} / \mathrm{Mg}_{3} \mathrm{Li} / \mathrm{Fe}_{3} \mathrm{Al} /$ $\mathrm{Fe}_{3} \mathrm{Si} / \mathrm{Fe}_{3} \mathrm{Be} / \mathrm{Cu}_{3} \mathrm{Al}$

(e) $\mathrm{Cd} \bigcirc \mathrm{Mg}$
(e) DO_{19} :
$\mathrm{Mg}_{3} \mathrm{Cd} / \mathrm{Cd}_{3} \mathrm{Mg} / \mathrm{Ti}_{3} \mathrm{Al} / \mathrm{Ni}_{3} \mathrm{Sn}^{2} / \mathrm{Ag}_{3} \mathrm{In} /$ $\mathrm{Co}_{3} \mathrm{Mo} / \mathrm{Co}_{3} \mathrm{~W} / \mathrm{Fe}_{3} \mathrm{Sn} / \mathrm{Ni}_{3} \mathrm{In} / \mathrm{Ti}_{3} \mathrm{Sn}$

$\Delta G_{\text {mix }}=\Delta H_{\text {mix }}-T \Delta S_{\text {mix }} \quad$ Ordered phase $\quad \varepsilon<0, \Delta H_{\text {mix }}<0$

Fig. 1.21. Part of the $\mathrm{Cu}-\mathrm{Au}$ phase diagram showing the regions where the $\mathrm{Cu}_{3} \mathrm{Au}$ and CuAu superlattices are stable.

- The entropy of mixing of structure with LRO is extremely small and the degree of order decrease with increasing temperature until above some critical temperature there is no LRO at all.
- This temperature is a maximum when the composition is the ideal required for the superlattice.
- The critical temperature for loss of LRO increases with increasing Ω or $\Delta H_{\text {mix }}$ and in many systems the ordered phase is stable up to the melting point.

Ordered Phase

Q9-b: Order-disorder transition

Order-disorder phase transformation

- Not classical phase change $=\underline{\sim}$ not depend on diffusion process
- change of temperature allowed a continuous re-arrangement of atoms without changing the phase $=$ " 2 nd order transition"
- boundary: ordered lattice \& disordered lattice/phase rule could not applied there are cases in which an ordered phase of one composition exists in equilibrium with a disordered phase of a different composition.
- Simple composition of the type $A B$ or $A B_{3}$ can the transformation (i.e. at the temperature maximum) be considered diffusionless.

Intermediate Phase
$\varepsilon<0, \Delta H_{\text {mix }}<0 / \Delta H_{\text {mix }} \sim-21 \mathrm{~kJ} / \mathrm{mol}$

- α and η are terminal solid solutions
- $\beta, \beta^{\prime}, \gamma, \delta$ and ε are intermediate solid solutions.
Q9-c:

Intermediate phase vs Intermetallic compound

Fig. 1.23

Intermediate Phase

* Many intermetallic compounds have stoichiometric composition $A_{m} B_{n}$ and a characteristic free energy curve as shown in Fig (a).
* In other structure, fluctuations in composition can be tolerated by some atoms occupying 'wrong'. position or by atom sites being left vacant, and in these cases the curvature of the G curve is much less, Fig (b).

Intermediate Phase

$$
\varepsilon<0, \Delta H_{\text {mix }}<0
$$

Intermediate Phase

$$
\varepsilon<0, \Delta H_{\text {mix }}<0 / \Delta H_{\text {mix }} \sim-38 \mathrm{~kJ} / \mathrm{mol}
$$

Intermediate Phase

$$
\varepsilon \ll 0, \Delta H_{\text {mix }} \ll 0 / \Delta H_{\text {mix }} \sim-142 \mathrm{~kJ} / \mathrm{mol}
$$

1.3 Binary Solutions

Intermediate Phase

_"different crystal structure as either of the pure component"
3 main factors determining the structure of Intermediate phase ?

1) Relative atomic size

- Laves phase (size difference: $1.1 \sim 1.6$ ex: MgCu_{2}) fill space most efficiently \sim stable
- Interstitial compound: MX, $\mathbf{M}_{2} X, M_{2}, M_{6} X$ $M=$ Cubic or HCP ex: $\mathrm{Zr}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}$, etc, $\mathrm{X}=\mathrm{H}, \mathrm{B}, \mathrm{C}$, and N

2) Relative valency electron

- electron phases ex_ $\alpha \& \beta$ brass \# of valency electrons per unit cell
\rightarrow depending on compositional change

3) Electronegativity

$\mathbf{M g C u}_{2}$ (A Laves phase)

- very different electronegativites \rightarrow ionic bond_normal valency compounds ex $\mathrm{Mg}_{2} \mathrm{Sn}$

$\Delta H_{m i x}^{S}>0$ Solid solution \rightarrow solid state $\quad \Delta H_{m i x}^{S} \gg 0:$ liquid state phase separation

 phase separation (two solid solutions) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots(u p$ to two liquid solutions)

$\Delta H_{m i x}^{S}<0:$ Solid solution \rightarrow ordered phase
$\Delta H_{m i x}^{S} \ll 0$ Compound : $\mathrm{AB}, \mathrm{A}_{2} \mathrm{~B} \ldots$

