

"Phase Transformation in Materials"

09.11.2023 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment **Contents for previous class**

Chapter 1

Thermondynamics and Phase Diagrams

- Equilibrium

$$dG = 0$$

Phase Transformation

$$\Delta G = G_2 - G_1 < 0$$

Lowest possible value of G

No desire to change ad infinitum

- Single component system

Gibbs Free Energy as a Function of Temp. and Pressure

$$\left(\frac{\partial G}{\partial T}\right)_P = -S , \quad \left(\frac{\partial G}{\partial P}\right)_T = V$$

$$\left(\frac{dP}{dT}\right)_{eq} = \frac{\Delta H}{T_{eq}\Delta}$$

Clausius-Clapeyron Relation

Driving force for solidification

$$\Delta G = \frac{L\Delta T}{T_m}$$

- Classification of phase transition

First order transition: CDD/Second order transition: CCD ²

The First-Order Transitions

- First Order Phase Transition at T_T:
 - G is continuous at T_T
 - First derivatives of G (V, S, H) are discontinuous at T_T

$$V = \left(\frac{\partial G}{\partial P}\right)_T \qquad S = -\left(\frac{\partial G}{\partial T}\right)_P \qquad H = G - T\left(\frac{\partial G}{\partial T}\right)_P$$

- Second derivatives of G (α , β , C_p) are <u>discontinuous</u> at T_T

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

 Examples: Vaporization, Condensation, Fusion, Crystallization, Sublimation.

The Second Order Transition

No Latent heat Continuous entropy

- Second Order Phase Transition at T_T:
 - G is <u>continuous</u> at T_T

- First derivatives of G (V, S, H) are continuous at T_T

$$V = \left(\frac{\partial G}{\partial P}\right)_T \qquad S = \left(\frac{\partial G}{\partial T}\right)_P \qquad H = G - T \left(\frac{\partial G}{\partial T}\right)_P$$

- Second derivatives of G (α , β , C_p) are <u>discontinuous</u> at T_T

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

 Examples: Order-Disorder Transitions in Metal Alloys, Onset of Ferromagnetism, Ferroelectricity, Superconductivity.

Melting and Crystallization are Thermodynamic Transitions

Cyclic cooling curves of $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$

Contents for today's class

- Binary System mixture/ solution / compound Hume-Rothery Rules for Alloys

- Gibbs Free Energy in Binary System Ideal solution and Regular solution

- Chemical potential and Activity

Multi-component system:

Q1: What are binary systems? "Mixture vs. Solution vs. Compound"

* **Single component system** One element (Al, Fe), One type of molecule (H_2O)

- : Equilibrium depends on pressure and temperature.
- * Binary system (two components) → A, B
 - : Equilibrium depends on not only pressure and temperature but also composition.
 - Mixture ; A A, B B ; → the physical combination of two or
 A B
 B and boundaries are retained.

사금 채취

Winnowing

키질

Alluvial mining

- Solution ; A - A - A ; \rightarrow atomic scale mixture/ Random distribution $\begin{vmatrix} & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & &$

A Brass, a substitutional alloy

- B Carbon steel, an interstitial alloy
- Compound ; A B A B ; \rightarrow fixed A, B positions/ Ordered state

Q2: What is "Alloying"?

Ordered Compounds or Solid Solutions

<u>"Alloying": atoms mixed on a lattice</u> Ordered Compounds and Solid Solutions

Ordered Substitutional and Interstitials Compounds

Substitutional element replaces host atoms in an orderly arrangement

e.g., Ni₃Al (hi-T yield strength), Al₃(Li,Zr) (strengthening) Interstitial element goes into holes in an orderly arrangement

e.g., small impurities, clays ionic crystals, ceramics.

Intermetallic Compounds

Antifluorite Structure:

- FCC unit cell with anions occupying FCC sites
- Cations occupying 8 octahedral interstitial sites

Intermetallic compounds form lines - not areas - because stoichiometry (i.e. composition) is exact.

Solution ; A – A – A ; → atomic scale mixing, Random distribution
 A – B – A

Two Possibilities for Solid Solutions: B atoms in A atoms

Substitutional 'new element replaces host atoms'

Copper Zinc

A Brass, a substitutional alloy

Carbon Iron

Interstitials

'new element goes in holes'

B Carbon steel, an interstitial alloy

Q3: "Solution vs. Intermetallic compound"?

Solid Solution vs. Intermetallic Compound

Solid Solution vs. Intermetallic Compounds

Pt_{0.5}Ru_{0.5} – Pt structure (fcc)

PbPt – NiAS structure

Assumption: a simple physical model for "binary solid solutions"

: in order to introduce some of the basic concepts of the thermodynamics of alloys

Particles of New Phase in Solid-Solution Alloys

• Solid solution of B in A plus particles of a new phase (usually for a larger amount of B)

- Second phase particle --different composition
- --often different structure.

Solid Solution phase: B atoms in A

5) Microstructure control : 2 Secondary phase control

c. Mechanism of Precipitation

Q4: How can we classify "Solubility"?

Solubility

- Unlimited Solubility
 - Hume Rothery' Conditions
 - Similar Size
 - Same Crystal Structure
 - Same Valance
 - Similar Electronegativity
 - Implies single phase
- Limited Solubility

 Implies <u>multiple phases</u>
- No Solubility
 - oil and water region

Cu-Ni Alloys

Cu-Ag Alloys

complete solid solution

limited solid solution

* Complete immiscibility of two metals does not exist.

: The solubility of one metal in another may be so low (e.g. Cu in Ge <10⁻⁷ at%.) that it is difficult to detect experimentally, but there will always be a measure of solubility.

Fig. 53. Evolution of the limiting form of a binary eutectic phase diagram.

Fig. 54. Impossible form of a binary eutectic phase diagram.

Q5: Can we roughly estimate what atoms will form solid solutions? "Hume-Rothery Rules"

Hume-Rothery Rules for Alloys (atoms mixing on a lattice)

Will mixing 2 (or more) different types of atoms lead to a solid-solution phase?

Empirical observations have identified 4 major contributors through :

Atomic Size Factor, Crystal Structure, Electronegativity, Valences

Hume-Rothery Rules for Mixing

Empirical rules for <u>substitutional solid-solution formation</u> were identified from experiment that are not exact, but give an expectation of formation. Briefly,

1) Atomic Size Factor The 15% Rule

If "size difference" of elements are greater than $\pm 15\%$, the lattice distortions (i.e. local lattice strain) are too big and solid-solution will not be favored.

DR%=
$$\frac{r_{\text{solute}} - r_{\text{solvent}}}{r_{\text{solvent}}} x100\% < \pm 15\%$$
 will not disallow formation.

2) Crystal Structure Like elemental crystal structures are better For appreciable solubility, the crystal structure for metals must be the same.

3) Electronegativity DE ~ 0 favors solid-solution.

The more electropositive one element and the more electronegative the other, then "intermetallic compounds" (order alloys) are more likely.

4) Valences Higher in lower alright. Lower in higher, it's a fight. A metal will dissolve another metal of higher valency more than one of lower valency.

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

• Cu-Ni Alloys

Rule 1: $r_{Cu} = 0.128$ nm and $r_{Ni} = 0.125$ nm.DR%= $\frac{r_{solute} - r_{solvent}}{r_{solvent}} x100\% = 2.3\%$ favorable $\sqrt{r_{solvent}}$ Rule 2: Ni and Cu have the FCC crystal structure.favorable $\sqrt{r_{solvent}}$

Rule 3: E_{Cu} = 1.90 and E_{Ni} = 1.80. Thus, DE% = -5.2% favorable $\sqrt{}$

Rule 4: Valency of Ni and Cu are both +2. favorable $\sqrt{}$

Expect Ni and Cu forms S.S. over wide composition range.

At high T, it does (helpful processing info), but actually phase separates at low T due to energetics (quantum mechanics).

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

• Cu-Ag Alloys

Rule 1: $r_{Cu} = 0.128$ nm and $r_{Ag} = 0.144$ nm.DR%= $\frac{r_{solute} - r_{solvent}}{r_{solvent}} x100\% = 9.4\%$ favorable $\sqrt{}$ Rule 2: Ag and Cu have the FCC crystal structure.favorable $\sqrt{}$ Rule 3: $E_{Cu} = 1.90$ and $E_{Ni} = 1.80$. Thus, DE% = -5.2%favorable $\sqrt{}$ Rule 4: Valency of Cu is +2 and Ag is +1.NOTfavorable

Expect Ag and Cu have limited solubility.

In fact, the Cu-Ag phase diagram (T vs. c) shows that a solubility of only 18% Ag can be achieved at high T in the Cu-rich alloys.

Cu-Ni Alloys

Cu-Ag Alloys

complete solid solution

limited solid solution

High entropy alloy (HEA)

Yong Zhang et al., Adv. Eng. Mat. P534-538, 2008

Severe lattice distortion → Sluggish diffusion & Thermal stability

Q6: How to calculate

"Gibbs Free Energy of Binary Solutions"?

$$G_2 = G_1 + \Delta G_{mix}$$
 J/mol

Binary Solutions: binary solid solution/ a fixed pressure of 1 atm 2) Gibbs Free Energy of Binary Solutions

* Composition in mole fraction $X_A, X_B X_A + X_B = 1$

Step 1. bring together X_A mole of pure A and X_B mole of pure B

Step 2. allow the A and B atoms to mix together to make a homogeneous solid solution.

Gibbs Free Energy of The System

In Step 1

- The molar free energies of pure A and pure B

Gibbs Free Energy of The System

 ΔH_{mix} : *Heat of Solution* i.e. heat absorbed or evolved during step 2 Fig. 1.3 ΔS_{mix} : *difference in entropy* between the mixed and unmixed state.

$$\rightarrow$$
 How can you estimate ΔH_{mix} and ΔS_{mix} ?

Gibbs Free Energy of Binary Solutions

Q7: How can you estimate "ΔG_{mix} of ideal solid solution"?

$$\Delta G_{mix} = -T\Delta S_{mix}$$

$$\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$$

Mixing free energy, ΔG_{mix}

- Ideal solution

Assumption 1; $\Delta H_{mix} = 0$:

 $S = k \ln w$

; A & B = complete solid solution

(A,B; same crystal structure)

; no volume change

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

$$\bullet \qquad \Delta G_{mix} = -T \Delta S_{mix} J/mol$$

Entropy can be computed from randomness

by Boltzmann equation, i.e.,

w : degree of randomness, k: Boltzman constant

- \rightarrow thermal; vibration (no volume change)
- → Configuration; number of distinguishable ways of arranging the atoms

$$S = S_{th} + S_{config}$$

Ideal solution

Excess mixing Entropy

If there is no volume change or heat change,

$$w_{config} = 1 \longrightarrow before_solution_(pureA_pureB)$$
$$w_{config} = \frac{(N_A + N_B)!}{N_A!N_B!} \rightarrow after_solution_(N_A, N_B) \longleftarrow$$

Number of distinguishable way of atomic arrangement

$$\Delta S^{mix} = S^{after} - S^{before} = k \ln \frac{(N_A + N_B)!}{N_A! N_B!} - k \ln 1$$

Since we are dealing with 1 mol of solution,

$$\rightarrow N_{A} = X_{A}N_{0} , \ N_{B} = X_{B}N_{0}, N_{A} + N_{B} = N_{0}$$

using Stirling's approximation $\ln N! \approx N \ln N - N$

and $R = kN_0$ (the universal gas constant)

 $= k[(N_o \ln N_o - N_o) - (X_A N_o \ln X_A N_o - X_A N_o) - (X_B N_o \ln X_B N_o - X_B N_o)]$ = $-R(X_A \ln X_A + X_B \ln X_B)$ 41

Ideal solution

Excess mixing Entropy

Fig. 1.9 Free energy of mixing for an ideal solution

Gibbs Free Energy of Binary Solutions

Q8: How can you estimate

"Molar Free energy for ideal solid solution"?

$$G_2 = G_1 + \Delta G_{mix}$$
 \implies $G = X_A G_A + X_B G_B + RT(X_A ln X_A + X_B ln X_B)$

1) Ideal solution

Low T

High T

1

Since $\Delta H_{mix} = 0$ for ideal solution,

$$G_2 = G_1 + \Delta G_{mix}$$

$$G = X_A G_A + X_B G_B + RT(X_A ln X_A + X_B ln X_B)$$

Compare G_{solution} between high and low Temp.

Fig. 1.10 The molar free energy (free energy per mole of solution) for an ideal solid solution. A combination of Figs. 1.8 and 1.9.

Gibbs Free Energy of Binary Solutions

Q9: How the free energy of a given phase will change when atoms are added or removed?

"Chemical potential"

1) Ideal solution

G = H - TS = E + PV - TS**Chemical potential**

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A, will be proportional to μ_A .

 \rightarrow dn_A~ small enough ($\because \mu_A$ depends on the composition of phase)

 $dG' = \mu_A dn_A$ (**T**, **P**, **n**_B: constant)

 μ_A : partial molar free energy of A or chemical potential of A

$$\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T, P, n_{B}} \quad \mu_{B} = \left(\frac{\partial G'}{\partial n_{B}}\right)_{T, P, n_{A}}$$

 $dG' = \mu_{A}dn_{A} + \mu_{B}dn_{B}$ For A-B binary solution,

For variable T and P

$$dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B$$

1) Ideal solution

G = H - TS = E + PV - TS**Chemical potential**

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A, will be proportional to μ_A .

 \rightarrow dn_A~ small enough ($\because \mu_A$ depends on the composition of phase)

 $dG' = \mu_A dn_A$ (**T**, **P**, **n**_B: constant)

 μ_A : partial molar free energy of A or chemical potential of A

$$\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T, P, n_{B}} \quad \mu_{B} = \left(\frac{\partial G'}{\partial n_{B}}\right)_{T, P, n_{A}}$$

 $dG' = \mu_{A}dn_{A} + \mu_{B}dn_{B}$ For A-B binary solution,

For variable T and P

$$dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B$$

Gibbs Free Energy of Binary Solutions

Q10: "Correlation between chemical potential and free energy"?

1) Ideal solution

Correlation between chemical potential and free energy For 1 mole of the solution (T, P: constant)

$$G = \mu_A X_A + \mu_B X_B \quad Jmol^{-1}$$

$$dG = \mu_A dX_A + \mu_B dX_B \qquad G = \left(\mu_B - \frac{dG}{dX_B}\right) X_A + \mu_B X_B$$

$$\frac{dG}{dX_B} = \mu_B - \mu_A \qquad = \mu_B X_A - \frac{dG}{dX_B} X_A + \mu_B X_B$$

$$= \mu_B - \frac{dG}{dX_B} X_A$$

$$= \mu_B - \frac{dG}{dX_B} (1 - X_B)$$

$$\mu_B = G + \frac{dG}{dX_B} X_A$$

Correlation between chemical potential and free energy

For 1 mole of the solution(T, P: constant)1) Ideal solution

1) Ideal solution

Correlation between chemical potential and free energy For 1 mole of the solution (T, P: constant)

$$\mathbf{G} = \boldsymbol{\mu}_{\mathsf{A}} \mathbf{X}_{\mathsf{A}} + \boldsymbol{\mu}_{\mathsf{B}} \mathbf{X}_{\mathsf{B}} \quad \mathbf{Jmol}^{-1}$$

Fig. 1.11 The relationship between the free energy curve for a solution and the chemical potentials of the components.

1) Ideal solution

Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B \quad J/mol$$
 $G_2 = G_1 + \Delta G_{mix} \quad J/mol$

**Ideal solution (
$$\Delta H_{mix} = 0$$
)** $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_{\scriptscriptstyle A}G_{\scriptscriptstyle A} + X_{\scriptscriptstyle B}G_{\scriptscriptstyle B} + RT(X_{\scriptscriptstyle A}\ln X_{\scriptscriptstyle A} + X_{\scriptscriptstyle B}\ln X_{\scriptscriptstyle B})$$

Regular solution

$$G = X_A G_A + X_B G_B + \Omega X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$$

- Chemical potential and Activity

 $\mu_{A} = \left(\frac{\partial \mathbf{G'}}{\partial n_{A}}\right)_{T, P, n_{B}}$

 dn_A ~ small enough ($: \mu_A$ depends on the composition of phase)

$$\mu_{A} = G_{A} + RT \ln a_{A} \quad \ln \left(\frac{a_{A}}{X_{A}}\right) = \frac{\Omega}{RT} (1 - X_{A})^{2}$$

 $\Delta H_{mix} = P_{AB} \varepsilon$ where $\varepsilon = \varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB})$

 $\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$

"Phase Transformation in Materials"

09.13.2023 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B \quad J/mol$$
 $G_2 = G_1 + \Delta G_{mix} \quad J/mol$

**Ideal solution (
$$\Delta H_{mix} = 0$$
)** $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_{\scriptscriptstyle A}G_{\scriptscriptstyle A} + X_{\scriptscriptstyle B}G_{\scriptscriptstyle B} + RT(X_{\scriptscriptstyle A}\ln X_{\scriptscriptstyle A} + X_{\scriptscriptstyle B}\ln X_{\scriptscriptstyle B})$$

Regular solution

$$G = X_A G_A + X_B G_B + \Omega X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$$

- Chemical potential and Activity

 $\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T, P, n_{B}}$

 $dn_A \sim small enough$ (: μ_A depends on the composition of phase)

$$\mu_{A} = G_{A} + RT \ln a_{A} \quad \ln \left(\frac{a_{A}}{X_{A}}\right) = \frac{\Omega}{RT} (1 - X_{A})^{2}$$

 $\Delta H_{mix} = P_{AB} \varepsilon$ where $\varepsilon = \varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB})$

 $\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$

1) Ideal solution

G = H - TS = E + PV - TS**Chemical potential**

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A, will be proportional to μ_A .

 \rightarrow dn_A~ small enough (: μ_A depends on the composition of phase)

 $dG' = \mu_A dn_A$ (T, P, n_B: constant)

 μ_A : partial molar free energy of A or chemical potential of A

$$\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T, P, n_{B}} \quad \mu_{B} = \left(\frac{\partial G'}{\partial n_{B}}\right)_{T, P, n_{A}}$$

 $dG' = \mu_{A}dn_{A} + \mu_{B}dn_{B}$ For A-B binary solution,

For variable T and P

 $dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B$

1) Ideal solution

Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class II

- Ideal Solution/ Regular Solution/ Real solution

$$\Delta \boldsymbol{G}_{mix} = \Delta \boldsymbol{H}_{mix} - \boldsymbol{T} \Delta \boldsymbol{S}_{mix}$$

Q1: What is "Regular Solution"?

 $\Delta \boldsymbol{G}_{mix} = \Delta \boldsymbol{H}_{mix} - \boldsymbol{T} \Delta \boldsymbol{S}_{mix}$

Regular Solutions

Ideal solution : $\Delta H_{mix} = 0 \implies$ This type of behavior is exceptional in practice and usually mixing is endothermic or exothermic.

<u>Quasi-chemical model</u> assumes that heat of mixing, ΔH_{mix} , is only due to the bond energies between adjacent atoms.

Assumption: the volumes of pure A and B are equal and do not change during mixing so that the interatomic distance and bond energies are independent of composition. Structure model of a binary solution

Fig. 1.13 The different types of interatomic bond in a solid solution.

Gibbs Free Energy of Regular Solutions

Q2: How can you estimate " ΔH_{mix} of regular solution"? $\Delta H_{mix} = \Omega X_A X_B$ where $\Omega = N_a z \epsilon$

Regular Solutions

Regular Solutions

Gibbs Free Energy of Regular Solutions

Q3: How can you estimate

"Molar Free energy for regular solution"?

		mix
$G = X_A G_A + X_B G_B + \Omega X_A$	$_{A}X_{B} + RT(X_{A}\ln X)$	$_{A} + X_{B} \ln X_{B}$)

Regular Solutions

Gibbs Free Energy of Binary Solutions

Q4: "Correlation between chemical potential and free energy"?

2) regular solution

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant)

 $G = E + PV - TS \qquad G = \mu_A X_A + \mu_B X_B \quad Jmol^{-1}$

 $G = H-TS \qquad G = X_{A}G_{A} + X_{B}G_{B} + \Omega X_{A}X_{B} + RT (X_{A} \ln X_{A} + X_{B} \ln X_{B})$ $\longrightarrow X_{A}X_{B} = X_{A}X_{B}(X_{A} + X_{B}) = X_{A}^{2}X_{B} + X_{B}^{2}X_{A}$ $= X_{A}(G_{A} + \Omega(1 - X_{A})^{2} + RT \ln X_{A}) + X_{B}(G_{B} + \Omega(1 - X_{B})^{2} + RT \ln X_{B})$

Regular solution

μ

n

$$\mu_{A} = G_{A} + \Omega (1 - X_{A})^{2} + RT \ln X_{A}$$

$$\mu_{B} = G_{B} + \Omega (1 - X_{B})^{2} + RT \ln X_{B}$$

$$= G_{A} + RT \ln X_{A}$$

$$= G_{B} + RT \ln X_{B}$$
Ideal solution

$$ideal solution$$

Gibbs Free Energy of Binary Solutions

Q5: What is "activity"?

Activity, a : effective concentration for mass action

Activity-composition curves for solutions

• For a dilute solution of B in A ($X_B \rightarrow 0$)

 $\gamma_{B} = \frac{\mathbf{a}_{B}}{X_{B}} \cong \text{constant} \quad (\text{Henry's Law})$ $\gamma_{A} = \frac{\mathbf{a}_{A}}{X_{A}} \cong 1 \qquad (\text{Rault's Law})$ 17

Variation of activity with composition (a) a_B , (b) a_A

Line 1 : (a) $a_B = X_B$, (b) $a_A = X_A$ Line 2 : (a) $a_B < X_B$, (b) $a_A < X_A$ Line 3 : (a) $a_B > X_B$, (b) $a_A > X_A$

ideal solution...Rault's law $\Delta H_{mix} < 0 \quad \bigstar \quad \ln\left(\frac{a_A}{X_A}\right) = \frac{\Omega}{RT}(1 - X_A)^2$ $\Delta H_{mix} > 0 \qquad 19$

Gibbs Free Energy of Binary Solutions

Q6: "Chemical equilibrium of multi-phases"?

Fig. 10. Transfer of dn_A moles of component A from the β to the α phase.

Activity of a component is just another means of describing the state of the component in a solution.

Activity or chemical potential of a component is important when several condensed phases are in equilibrium.

Chemical Equilibrium (μ , a) \rightarrow multiphase and multicomponent ($\mu_i^{\alpha} = \mu_i^{\beta} = \mu_i^{\gamma} = ...$), ($a_i^{\alpha} = a_i^{\beta} = a_i^{\gamma} = ...$) ($\mu_A^{\alpha} = \mu_A^{\beta} = \mu_A^{\gamma} = ...$), ($a_A^{\alpha} = a_A^{\beta} = a_A^{\gamma} = ...$) ($\mu_B^{\alpha} = \mu_B^{\beta} = \mu_B^{\gamma} = ...$), ($a_B^{\alpha} = a_B^{\beta} = a_B^{\gamma} = ...$)

- **Binary System** mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B \quad J/mol$$
 $G_2 = G_1 + \Delta G_{mix} \quad J/mol$

Ideal solution ($\Delta H_{mix} = 0$) $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$$

Regular solution $\Delta H_{mix} = P_{AB} \varepsilon$ where $\varepsilon = \varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB})$ $G = X_A G_A + X_B G_B + \Omega X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$

- Chemical potential and Activity

$$\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T, P, n}$$

•
$$\mu_A = G_A + RT \ln a_A$$

$$\ln\!\left(\frac{a_A}{X_A}\right) = \frac{\Omega}{RT}(1 - X_A)^2$$

 $\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$

 μ 는 조성에 의해 결정되기 때문에 dn_A 가 매우 작아서 조성변화 없어야

Contents for today's class II

- Ideal Solution/ Regular Solution/ Real solution

Q7: What is "Real Solution"?

sufficient disorder + lowest internal E

 $\Delta \boldsymbol{G}_{mix} = \Delta \boldsymbol{H}_{mix} - \boldsymbol{T} \Delta \boldsymbol{S}_{mix}$ **1.3 Binary Solutions** Real solution: sufficient disorder + lowest internal E Ideal or Regular solution : over simplification of reality **Config. Entropy** $S = k \ln w$ + mixing enthalpy $\Delta H_{mix} = \Omega X_A X_B$ where $\Omega = N_a z \varepsilon$ $\varepsilon \approx 0$ $S_{thermal} = 0$ Fig. 1.18 when the size difference is large (a) $\varepsilon < 0$, $\Delta H_{mix} < 0$ (b) $\varepsilon > 0$, $\Delta H_{mix} > 0$ (c) strain effect **Ordered alloys** Clustering Interstitial solution $P_{AB} \uparrow \longrightarrow Internal E \downarrow$ P_{AA}, P_{RB} 26

* The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

Real solution: sufficient disorder + lowest internal E

- 2) In systems where there is a size difference between the atom e.g. interstitial solid solutions,
- $\rightarrow \Delta E = \Delta H_{mix} + elastic strain$
- → <u>quasi- chemical model</u> ~ underestimate ∆E due to no consideration of elastic strain field

New mathematical models are needed to describe these solutions.

Q8: Ordered phase I: "Short range order (SRO)" in solution

Fig. 1.19 (a) Random A-B solution with a total of 100 atoms and $X_A = X_B = 0.5$, $P_{AB} \sim 100$, S=0. (b) Same alloy with short-range order $P_{AB} = 132$, $P_{AB}(max) \sim 200$, S=(132-100)/(200-100)=0.32. 30

Q9: Ordered phase II: "Long range order (LRO)"

(1)superlattice, 2)intermediate phase, 3)intermetallic compound)

diate phases: (a) for an intermetallic com-(b) for an intermediate phase with a wide

* Compound : AB, A₂B...

 \rightarrow entropy \downarrow

 \rightarrow covalent, ionic contribution.

 \rightarrow enthalpy more negative \downarrow

 $\Delta H_{mix}^{S} << 0$

Small composition range → G ↓

Fig. 1.23 Free energy curves for intermed pound with a very narrow stability range, (stability range.

* The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

 $-T \triangle S_{mix}$

(c) $\Omega > 0$, high T

В

А

A

B

 $-T \Delta S_{mix}$

(d), $\Omega > 0 \text{ low } T$

Q9-a: Superlattice

1.3 Binary Solutions

Ordered phase $\epsilon < 0, \Delta H_{mix} < 0$

- * In solutions with compositions that are close to a simple ratio of A:B atoms another type of order can be found.
- * This is known as long-range order (LRO) CuAu, Cu₃Au and many other intermetallics show LRO.

(The atom sites are no longer equivalent but can be labelled as A-sites and B-sites.) * A superlattice forms in materials with LRO

Superlattice formation: order-disorder transformation

- $\epsilon < 0$, $\Delta H_{mix} < 0$
- between dissimilar atoms than between similar atoms
- Large electrochemical factor: tendency for the solute atoms to avoid each other and to associate with the solvent atoms
- Size factor just within the favorable limit: lead to atomic rearrangement

so as to relieve the lattice distortion imposed by the solute atoms

β brass superlattice viewed as two inter-penetrating cubic lattices 38

1.3 Binary Solutions

Five common ordered lattices

(a)L2₀: CuZn/FeCo/NiAl/CoAl/ FeAl/AgMg/AuCd/NiZn

(b) $L1_2$: (c) $L1_0$: $Cu_3Au/Ni_3Mn/Ni_3Fe/Ni_3Al/$ CuAu/CoPt/FePt $Pt_3Fe/Au_3Cd/Co_3V/TiZn_3$

(a) ● Cu ○ Zn

(b) Cu OAu

(c) Cu OAu

(d) Al OFe

(d) D0₃: Fe₃Al/Cu₃Sb/Mg₃Li/Fe₃Al/ Fe₃Si/Fe₃Be/Cu₃Al

(e) Cd OMg

(e) D0₁₉: 39 Mg₃Cd/Cd₃Mg/Ti₃Al/Ni₃Sn/Ag₃In/ Co₃Mo/Co₃W/Fe₃Sn/Ni₃In/Ti₃Sn

Fig. 1.22

 $\varepsilon < 0, \Delta H_{mix} < 0$

Fig. 1.21. Part of the Cu-Au phase diagram showing the regions where the Cu₃Au and CuAu superlattices are stable.

- The entropy of mixing of structure with LRO is extremely small and the degree ٠ of order decrease with increasing temperature until above some critical temperature there is no LRO at all.
- This temperature is a maximum when the composition is the ideal required ٠ for the superlattice.
- The critical temperature for loss of LRO increases with increasing Ω or $\Delta H_{mix^{2}}$ ٠ and in many systems the ordered phase is stable up to the melting point.

Ordered Phase

Q9-b: Order-disorder transition

Order-disorder phase transformation

- Not classical phase change=<u>~not depend on diffusion process</u>
- change of temperature allowed a continuous re-arrangement of atoms without changing the phase = "2nd order transition"
- boundary: ordered lattice & disordered lattice/phase rule could not applied

there are cases in which an ordered phase of one composition exists

in equilibrium with a disordered phase of a different composition.

- Simple composition of the type AB or AB₃ can the transformation

(i.e. at the temperature maximum) be considered diffusionless.

 $\varepsilon < 0$, $\Delta H_{mix} < 0 / \Delta H_{mix} \sim -21 \text{ kJ/mol}$

Q9-c:

Intermediate phase vs Intermetallic compound

- * Many intermetallic compounds have stoichiometric composition $A_m B_n$ and a characteristic free energy curve as shown in Fig (a).
- In other structure, <u>fluctuations in composition can be tolerated</u> by * some atoms occupying 'wrong' position or by atom sites being left vacant, and in these cases the curvature of the G curve is much less, Fig (b). 46

 $\varepsilon < 0, \Delta H_{mix} < 0$

47

 ε < 0, ΔH_{mix} < 0 / ΔH_{mix} ~ -38 kJ/mol

ε << 0, ΔH_{mix}<< 0 / ΔH_{mix}~ -142 kJ/mol

49

1.3 Binary Solutions

Intermediate Phase

_"different crystal structure as either of the pure component"

3 main factors determining <u>the structure of Intermediate phase</u>?

- 1) Relative atomic size
 - Laves phase (size difference: 1.1~1.6 ex: MgCu₂)
 <u>fill space most efficiently ~ stable</u>
 - Interstitial compound: MX, M₂X, MX₂, M₆X M= Cubic or HCP ex: Zr, Ti, V, Cr, etc, X= H, B, C, and N
- 2) Relative valency electron
 - electron phases ex_α & β brass
 # of valency electrons per unit cell
 → depending on compositional change

3) Electronegativity

- <u>very different electronegativites</u> \rightarrow ionic bond_normal valency compounds ex Mg₂Sn ₅₀

MgCu₂ (A Laves phase)

