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- Chemical potential and Activity 

- Gibbs Free Energy in Binary System

- Binary System

Ideal solution

Regular solution

mixture/ solution / compound

G2 = G1 + ΔGmix J/molG1 = XAGA + XBGB J/mol

(∆Hmix=0) )lnln( BBAA
mix XXXXRTG +=∆

∆ = ε ε = ε − ε + εmix AB AB AA BB

1
H P where ( )

2

)lnln( BBAABABBAA XXXXRTXXGXGXG ++Ω++=

 ∂µ =  ∂ 
B

A

A T, P, n

G'

n

• μA = GA + RTlnaA

μ는 조성에 의해 결정되기 때문에 dnA가 매우 작아서 조성변화 없어야 2



Interstitial solution

- Binary System
Ideal solution

Regular solution

mixture/ solution / compound
(∆Hmix=0)

∆ = ε ε = ε − ε + εmix AB AB AA BB

1
H P where ( )

2
0≈ε

Real solution

∆Hmix > 0  or ∆Hmix < 0

Random distribution

Ordered structure

ε > 0,  ∆Hmix > 0ε < 0,  ∆Hmix< 0

Ordered alloys            Clustering

PAB Internal E PAA, PBB

strain effect
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Fig. 1.8



Q9: Ordered phase II: 

“Long range order (LRO)”

(①superlattice, ②intermediate phase, ③intermetallic compound)
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* Solid solution → ordered phase
 random mixing
 entropy ↑

negative enthalpy ↓ 

Large composition range
 G ↓

* Compound : AB, A2B…
 entropy↓ 
 covalent, ionic contribution. 
 enthalpy more negative ↓

Small composition range
 G ↓

0<∆ S
mixH

0<<∆ S
mixH
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(a)L20:

CuZn/FeCo/NiAl/CoAl/

FeAl/AgMg/AuCd/NiZn

Superlattice formation: order-disorder transformation

β brass superlattice viewed as two inter-penetrating cubic lattices

- ε< 0,  ∆Hmix< 0   
- between dissimilar atoms than between similar atoms
- Large electrochemical factor: tendency for the solute atoms to avoid each other 

and to associate with the solvent atoms

- Size factor just within the favorable limit: lead to atomic rearrangement 
so as to relieve the lattice distortion imposed by the solute atoms
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• The entropy of mixing of structure with LRO is extremely small and the degree 

of order decrease with increasing temperature until above some critical 

temperature there is no LRO at all. 

• This temperature is  a maximum when the composition is the ideal required 

for the superlattice.

• The critical temperature for loss of LRO increases with increasing Ω or ΔHmix, 
and in many systems the ordered phase is stable up to the melting point.

Ordered phase ε < 0,  ∆Hmix< 0∆Gmix = ∆Hmix - T∆Smix

∆Smix~small

At high Temp.,

∆Gmix~ large (-)

Vacancy/another atoms
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Fig. 1.21



- Not classical phase change=~not depend on diffusion process

- change of temperature allowed a continuous re-arrangement of 

atoms without changing the phase = “2nd order transition”

- boundary: ordered lattice & disordered lattice/phase rule could not applied

there are cases in which an ordered phase of one composition exists

in equilibrium with a disordered phase of a different composition.

- Simple composition of the type AB or AB3 can the transformation 

(i.e. at the temperature maximum) be considered diffusionless.

Order-disorder phase transformation

8



ε < 0,  ∆Hmix< 0 / ∆Hmix~ -20 kJ/mol

(fcc)(fcc)

(tetragonal)

(cubic)

(cubic)

(complete solid solution)

Ordered Phase

9



∆Hmix~(-)41 kJ/mol

ε < 0,  ∆Hmix< 0

(fcc)(bcc)

(fcc)

(triclinic)

(cubic)

Intermediate Phase

(orthorhombic)
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11(hcp) (fcc)

(FCC)

Fddd
mFm

−
3mmcP /63

mFd
−
3

(Orthorhombic)

Intermediate Phase
ε < 0,  ∆Hmix< 0 / ∆Hmix~ -38 kJ/mol
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ε << 0,  ∆Hmix<< 0 / ∆Hmix~ -142 kJ/mol
Intermediate Phase
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1) Relative atomic size

- Laves phase (size difference: 1.1~1.6 ex: MgCu2)
fill space most efficiently ~ stable

- Interstitial compound: MX, M2X, MX2, M6X

2) Relative valency electron 
- electron phases ex_α & β brass

# of valency electrons per unit cell  
→ depending on compositional change

3) Electronegativity
- very different electronegativites → ionic bond_normal valency compounds
ex Mg2Sn

Intermediate Phase
_”different crystal structure as either of the pure component”

MgCu2 (A Laves phase)

3 main factors 
determining the structure of Intermediate phase ?

1.3 Binary Solutions

M= Cubic or HCP ex: Zr, Ti, V, Cr, etc, X= H, B, C, and N

13

Fig. 1.24
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: Solid solution → ordered phase : Compound : AB, A2B…0<∆ S
mixH 0<<∆ S

mixH

0<∆ S
mixH > 0<∆ S

mixH >> 0: Solid solution → solid state 
phase separation (two solid solutions)

: liquid state phase separation 
(up to two liquid solutions)

metastable miscibility gap

stable miscibility gap

Fig. 1.31



Metastable vs Stable miscibility gap

Q1: “Clustering”? →  Phase separation
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* The degree of  ordering or clustering will decrease as temp. 

increases due to the increasing importance of entropy.

∆G
mix

= ∆H
mix
- T∆S

mix

High temp.         Entropy effect Solution stability

16Fig. 1.15
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ε > 0,  ∆Hmix> 0 /∆Hmix~ +26 kJ/mol
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Dendrite / interdendrite formation
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ROI 1, 2 : 1.4 nm x 2 nm x 2 nm

ROI 3     : 1.2 nm x 2 nm x 23 nm 

(1D concentration profile)

at%1

26.19Co

24.15Cr

24.59Fe

19.59Ni

4.74Cu

Compositional analysis of as-cast CoCrFeNi/Cu HEA (dendrite)
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ε > 0,  ∆Hmix> 0 / ∆Hmix~ +17 kJ/mol
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ε > 0,  ∆Hmix> 0 / ∆Hmix~ +5 kJ/mol
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ε >> 0,  ∆Hmix>> 0 /∆Hmix~ +60 kJ/mol
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L1 + L2βTi + L
L + αY

ε >> 0,  ∆Hmix>> 0 /∆Hmix~ +58 kJ/mol
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Alloy design considering heat of mixing relation 

among constituent elements

Equilibrium condition

μA,a=μA,d,  μB,a=μB,d

A B

A B

Atomic fraction B

Atomic fraction B

ΔG

T

T2

Tc

Tl

T = Tl

T = T2

a

a b

b c

c d

dμA,a

=μA,d

μB,a

=μB,d
∂2ΔG/∂x2=0

spinodal

binodal

Two liquids 

(or SCLs)

One liquid 

(or SCL)

C2

C1 C3

ΔHmix ≫0 between A & B

creates (meta)stable miscibility gap 

in limited composition range

Phase separation to A-rich & B-rich phase

Different two-phase structure 

by initial composition before phase separation

Positive heat of mixing relation among constituent elements

Nucleation and growth  ↔ Spinodal decomposition without any barrier to the nucleation process



* Ti-Y-Al-Co system
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* La-Zr-Al-Cu-Ni system
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Phase separation in metallic glasses
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Interstitial solution

- Binary System
Ideal solution

Regular solution

mixture/ solution / compound
(∆Hmix=0)

∆ = ε ε = ε − ε + εmix AB AB AA BB

1
H P where ( )

2
0≈ε

Real solution

∆Hmix > 0  or ∆Hmix < 0

Random distribution

Ordered structure

ε > 0,  ∆Hmix > 0ε < 0,  ∆Hmix< 0

Ordered alloys            Clustering

PAB Internal E PAA, PBB

strain effect

28

Fig. 1.8
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: Solid solution → ordered phase : Compound : AB, A2B…0<∆ S
mixH 0<<∆ S

mixH

0<∆ S
mixH > 0<∆ S

mixH >> 0: Solid solution → solid state 
phase separation (two solid solutions)

: liquid state phase separation 
(up to two liquid solutions)

metastable miscibility gap

stable miscibility gap

Fig. 1.31



Q2: How can we define equilibrium                              

in heterogeneous systems?
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Equilibrium in Heterogeneous Systems

We have dealt with the case 

where the components A and B

have the same crystal structure.

What would happen when

the components A and B

have a different crystal structure? 

→ heterogeneous system

)lnln( BBAABA

BBAA

XXXXRTXX

GXGXG

++Ω+
+=

1.4

Ex (fcc) Ex (bcc)

Unstable
fcc B

Unstable
bcc A

A, B different crystal structure → two free energy curves must be drawn, one for each structure.

31

Fig. 1.25



Equilibrium in Heterogeneous Systems
α α β β

α β+ =
B B

o

B

 G (X ) and G (X ) are given,

 would be ( )  X ?

If

what G at

1.4

Fig. 1.26 The molar free energy of a two-phase mixture (α+β)

- bcg & acd, deg & dfc

: similar triangles

- Lever rule

- 1 mole (α+β)

: bc/ac mol of α + ab/ac mol of β

→ bg + ge = be_total G of 1 mol
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Lever rule

T
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Chemical Equilibrium (µ, a) 

→ multiphase and multicomponent

(µi
α = µi

β = µi
γ = …), (ai

α = ai
β = ai

γ = …)

=α β
A Aμ μ =α β

B Bμ μ

Equilibrium in Heterogeneous Systems

In X0,             G0
β > G0

α > G1

α + β phase separation

1.4

Exchange of A and B atoms

Unified Chemical potential of 
two phases

34

Fig. 1.27



Variation of activity with composition

α β

α β

=

=
A A

B B

a a

a a

The most stable state,
with the lowest free energy,
is usually defined as the
state in which the pure
component has unit activity
of A in pure α.

α= → = 1 1
A A

when X a

β= → = 1 1
B B

when X a

α βwhen  and  in equil.

Fig. 1.28 The variation of aA and aB with composition for a binary

system containing two ideal solutions, α and β
Unified activity of 
two phase

Activity, a : effective concentration for mass action
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Fig. 1.28



Equilibrium in Heterogeneous Systems

α1 β1α4 β4

-RT lnaB
β

-RT lnaB
α-RT lnaA

α

-RT lnaA
β

aA
α=aA

β aB
α=aB

β

Ge

In X0,  G0
β > G0

α > G1 α + β separation unified chemical potential

μBμA =

μB
μA

36
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Interstitial solution

- Binary System
Ideal solution

Regular solution

mixture/ solution / compound
(∆Hmix=0)

∆ = ε ε = ε − ε + εmix AB AB AA BB

1
H P where ( )

2
0≈ε

Real solution

∆Hmix > 0  or ∆Hmix < 0

Random distribution

Ordered structure

ε > 0,  ∆Hmix > 0ε < 0,  ∆Hmix< 0

Ordered alloys            Clustering

PAB Internal E PAA, PBB

strain effect

2
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: Solid solution → ordered phase : Compound : AB, A2B…0<∆ S
mixH 0<<∆ S

mixH

0<∆ S
mixH > 0<∆ S

mixH >> 0: Solid solution → solid state 
phase separation (two solid solutions)

: liquid state phase separation 
(up to two liquid solutions)

metastable miscibility gap

stable miscibility gap



Equilibrium in Heterogeneous Systems

α1 β1α4 β4

-RT lnaB
β

-RT lnaB
α-RT lnaA

α

-RT lnaA
β

aA
α=aA

β aB
α=aB

β

Ge

In X0,  G0
β > G0

α > G1 α + β separation unified chemical potential

μBμA =

μB
μA
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• Gibbs Phase Rule

• Effect of Temperature on Solid Solubility

• Equilibrium Vacancy Concentration

1.6 Influence of Interfaces on Equilibrium

• Gibbs-Duhem Equation: Be able to calculate the change in   

chemical potential that result from a change in alloy composition.

F = C − P + 1   (constant pressure)

Contents for today’s class

5

1.5 Binary phase diagrams_Variation of the simple phase diagram

complete solid solution → eutectic/peritectic system 
1.5.6

1.5.7

1.5.8

1.8 Additional thermodynamic relationships for binary solutions



Q1: How equilibrium is affected by temperature      

in complete solid solution?
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1.5 Binary phase diagrams

1) A Simple Phase Diagram

Assumption: (1) completely miscible in solid and liquid.

(2) Both are ideal soln.

(3) Tm(A) > Tm(B) 

(4) T1 > Tm(A) >T2 > Tm(B) >T3

Draw GL and GS as a function 
of composition XB
at  T1, Tm(A), T2, Tm(B), and T3.

0=∆ S
mixH0=∆ L

mixH

7Fig. 1.29



1) A Simple Phase Diagram

8

Fig.
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1) A Simple Phase Diagram (1) completely miscible in solid and liquid.

(2) Both are ideal soln.

(3) Tm(A) > Tm(B)

(4) T1 > Tm(A) >T2 > Tm(B) >T3

1.5 Binary phase diagrams

1) Variation of temp.: GL > Gs

2) Decrease of curvature of G curve
(∵ decrease of -TΔSmix effect)

Assumption: 

9
Fig. 1.29



10

1) A Simple Phase Diagram

1.5 Binary phase diagrams
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1.5 Binary phase diagrams

11



Q4: How equilibrium is affected by temperature    

in systems with miscibility gap?

12



2)  Systems with miscibility gab
0=∆ L

mixH

How to characterize Gs mathematically
in the region of miscibility gap between e and f ?

congruent minima

0>∆ S
mixH

1.5 Binary phase diagrams

13

Fig. 1.30



Regular Solutions

Reference state

Pure metal 000 == BA GG

)lnln( BBAABABBAA XXXXRTXXGXGXG ++Ω++=

G2 = G1 + ΔGmix

∆Gmix = ∆Hmix - T∆Smix

∆Hmix -T∆Smix

Ideal Solutions

14



2)  Systems with miscibility gab
0=∆ L

mixH

congruent minima

0>∆ S
mixH

• When A and B atoms dislike each other,

• In this case, the free energy curve at low temperature has a region 

of negative curvature,

• This results in a ‘miscibility gap’ of α′ and α″ in the phase diagram

1.5 Binary phase diagrams

15
Fig. 1.30
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* Variant of the simple phase diagram

l
mixmix HH ∆>∆ α0>∆ mixH

congruent minima

Fig.



3) Ordered alloys_Variation of the simple phase diagram

0<∆<∆ l
mixmix HH α0<∆ mixH

congruent maxima

17

Fig. Fig. 



Q2: How equilibrium is affected by temperature    

in simple eutectic/peritectic systems?

18



• ΔHm>>0 and the miscibility gap extends to the melting temperature.
(when both solids have the same crystal structure.)

4) a. Simple Eutectic Systems 0=∆ L
mixH 0>>∆ S

mixH

1.5 Binary phase diagrams

Fig. 1.32 The derivation of a eutectic phase diagram where both solid phases have the same crystal structure.

19



(when each solid has the different crystal structure.)

Fig. 1.32 The derivation of a eutectic phase diagram where each solid phases has a different crystal structure.

20



21

4) b. Simple Peritectic Systems

21
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Peritectic reaction
0>∆>∆ l

mixmix HH α

Considerable difference between the melting points

Eutectic reaction

22



23

Peritectic reaction (when both solids have the same crystal structure.)
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Fig. 1.33 Free energy curves resulting in a peritectic phase diagram. T2 is the peritectic temperature.

24

(when both solids have the different crystal structure.)Peritectic reaction
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Peritectoid: two other solid phases transform into

another solid phase upon cooling 



5) Phase diagrams containing intermediate phases

1.5 Binary phase diagrams

26
Fig. 1.34 The derivation of a complex phase diagram.



5) Phase diagrams containing intermediate phases

1.5 Binary phase diagrams

27Fig. 1.35 Free energy diagram to illustrate that the range of compositions over which 

a phase is stable depends on the free energies of the other phases in equilibrium.



θ phase in the Cu-Al system is usually denoted as CuAl2 although
the composition XCu=1/3, XAl=2/3 is not covered by the θ field
on the phase diagram.

28



Summary I: Binary phase diagrams

1) Simple Phase Diagrams

2)  Systems with miscibility gap

4) a. Simple Eutectic Systems

3) Ordered Alloys

5) Phase diagrams containing intermediate phases

Both are ideal soln. →

0=∆ L
mixH 0>∆ S

mixH
1)Variation of temp.: GL > Gs 2)Decrease of curvature of G curve + Shape change of G curve by H 

0=∆ L
mixH 0>>∆ S

mixH
→ miscibility gap extends to the melting temperature. 

0=∆ L
mixH 0<∆ S

mixH

ΔHmix<< 0 → The ordered state can extend to the melting temperature.
ΔHmix  < 0 → A atoms and B atoms like each other. → Ordered alloy at low T

Stable composition  =  Minimum G with stoichiometric composition 

1) Variation of temp.: GL > Gs 2) Decrease of curvature of G curve

(∵ decrease of -TΔSmix effect)

29

Simple Peritectic Systems
→ Considerable difference between the melting points



- Equilibrium in Heterogeneous Systems

- Binary phase diagrams
1) Simple Phase Diagrams

G0
β > G0

α > G0
α+β α + β separation unified chemical potential

Assume: (1) completely miscible in solid and liquid.

(2) Both are ideal soln.

0=∆ S
mixH0=∆ L

mixH

2) Variant of the simple phase diagram

0>∆>∆ l
mixmix HH α 0<∆<∆ l

mixmix HH α

miscibility gab Ordered phase

30

Summary I: Binary phase diagrams
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Eutectic reaction

31

Peritectic reaction
0>∆>∆ l

mixmix HH α

Considerable difference between the melting points



Q3: “Gibbs Phase Rule”?

F = C − P + 1   (constant pressure)

Gibbs' Phase Rule allows us to construct phase diagram to represent 
and interpret phase equilibria in heterogeneous geologic systems. 

32



Degree of freedom (number of variables that can be varied independently)

The Gibbs Phase Rule

= the number of variables – the number of constraints

33

(1.49)

(1.50)



The Gibbs Phase Rule

In chemistry, Gibbs' phase rule describes the possible number of
degrees of freedom (F) in a closed system at equilibrium, in terms of

the number of separate phases (P) and the number of chemical

components (C) in the system. It was deduced from thermodynamic

principles by Josiah Willard Gibbs in the 1870s.

In general, Gibbs' rule then follows, as:

F = C − P + 2 (from T, P).

From Wikipedia, the free encyclopedia

1.5 Binary phase diagrams

34

(1.49)



2

2

23

1

1

1

1 single phase
F = C - P + 1

= 2 - 1 + 1
= 2

can vary T and 
composition 
independently

2 two phase
F = C - P + 1

= 2 - 2 + 1
= 1

can vary T or
composition 

3 eutectic point
F = C - P + 1

= 2 - 3 + 1
= 0

can’t vary T or 
composition

For Constant Pressure, 

P + F = C + 1

When C=2, P+F = 3

The Gibbs Phase Rule

35

(1.50)



The Gibbs Phase Rule
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Q4: “Effect of Temperature on Solid Solubility”?
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1.5.7 Effect of T on solid solubility
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αβαβ

αβαβαβ 이므로

Q : heat absorbed (enthalpy) when 1 mole of β dissolves in A rich α as a dilute solution.

↑↑ e
BXT







−=

RT

Q
AX e

B exp
A is virtually insoluble in B.

ββµ BB G~= _

Stable β form

Unstable α form

A is virtually insoluble in B

↑↑ e
BXT

38Fig. 1.35 Solubility of B in A.
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* Limiting forms of eutectic phase diagram

The solubility of one metal in another may be so low.







−=

RT

Q
AX e

B exp

It is interesting to note that, except at absolute zero, 

XB
e can never be equal to zero, that is, no two compo

-nents are ever completely insoluble in each other. 

↑↑ e
BXTa)

b)

39
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Q5: “Equilibrium Vacancy Concentration”?

41



1) Vacancies increase the internal energy of crystalline metal 
due to broken bonds formation.

2) Vacancies increase entropy because they change 
the thermal vibration frequency and also the configurational entropy. 

• Total entropy change is thus

V VH H X∆ ≅ ∆

= + ∆ = + ∆ − ∆ + + − −A A V V V V V V V VG G G G H X T S X RT{X ln X (1 X )ln(1 X )}

The molar free energy of the crystal containing Xv mol of vacancies

∆ = ∆ − + − −V V V V V VS S X R{X ln X (1 X )ln(1 X )}

With this information, 
estimate the equilibrium vacancy concentration.

1.5.8. Equilibrium Vacancy Concentration STHG ∆−∆=∆

(Here, vacancy-vacancy interactions are ignored.)

Small change due to changes in the vibrational frequencies “Largest contribution”

G of the alloy will depend on the concentration of vacancies and       will be that 
which gives the minimum free energy.

a) 평형에미치는공공의영향

42



• In practice, ∆HV is of the order   
of 1 eV per atom and XV

e

reaches a value of about 10-4~10-3 

at the melting point of the solid

=

 
= 

  e
V V

V X X

dG
0

dX

∆ − ∆ + =e

V V VH T S RTln X 0

∆ −∆= ⋅

∆ = ∆ − ∆
−∆=

e V V
V

V V V

e V
V

S H
X exp exp

R RT

putting G H T S

G
X exp

RT

at equilibrium

Fig. 1.37 Equilibrium vacancy concentration.

: adjust so as to reduce G to a minimum

A constant ~3, independent of T Rapidly increases with increasing T

Equilibrium concentration       will be that which gives the minimum free energy.
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Q6: “Influence of Interfaces on Equilibrium”?

r

V
G mγ2=∆ Gibbs-Thomson effect

44



r

V
G mγ2=∆

r
P

γ2=∆

Fig. 1.38   The effect of interfacial E on the solubility of small particle

1.6 Influence of Interfaces on Equilibrium

The G curves so far have been based on the molar Gs of infinitely large amounts of material of 
a perfect single crystal. Surfaces, GBs and interphase interfaces have been ignored.

Extra pressure ΔP due to curvature of the α/β

ΔG = ΔP∙V

The concept of a pressure difference is very
useful for spherical liquid particles, but it is less
convenient in solids (often nonspherical shape).

Fig. 1.39 Transfer of dn mol of β from large to a small particle.

Spherical interface

Planar interface

dG = ΔGγdn = γdA ΔGγ = γdA/dn

Since n=4πr3/3Vm and A = 4πr2

r

V
G mγ2=∆

Early stage of phase transformation

Interface (α/β)=γ

- b) 평형에미치는계면의영향
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Gibbs-Thomson effect (capillarity effect): 

Free energy increase due to interfacial energy

For small values of the exponent,

For r=10 nm, solubility~10% increase
Fig. 1.38 The effect of interfacial energy on the solubility of small particles.

Quite large solubility differences can arise for 

particles in the range r=1-100 nm.  However, 

for particles visible in the light microscope 

(r>1um) capillarity effects are very small.







−=

RT

Q
AX e

B exp
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n
V

m

G
G per unit volume of

V
β∆∆ =

0V eG X where X X X∆ ∝ ∆ ∆ = −

Total Free Energy Decrease per Mole of Nuclei

Driving Force for Precipitate Nucleation

∆G0=-V∆GV +Aγ + V∆Gs

βαβα µµ BBAA XXG +=∆ 1

ββββ µµ BBAA XXG +=∆ 2

12 GGGn ∆−∆=∆

For dilute solutions,

TXGV ∆∝∆∝∆

: Decrease of total free E of system
by removing a small amount of material 
with the nucleus composition (XB

β) (P point)

: Increase of total free E of system
by forming β phase with composition XB

β

(Q point)

: driving force for β precipitation

∝undercooling below Te

(length PQ)

∆GV

Chapter 5.1 : 변태를 위한 전체 구동력, 핵생성을 위한 구동력은 아님
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Q7: “Gibbs-Duhem Equation”?

2

2

ln ln
1 1

ln ln
A B

A B
A B

d G d d
X X RT RT

dX d X d X

γ γ   
= + = +   

   

합금조성의미소변화 (dX)로인한화학퍼텐셜의미소변화(dμ) 를계산

: Be able to calculate the change in chemical potential 

that result from a change in alloy composition.
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1.8 Additional Thermodynamic Relationships for Binary Solutions

1

)(d

X

d

X

d AB

A

B

B

A µµµµ −==−
1

AB

BdX

dG µµ −=

2

2A A B B A B B

d G
X d X d X X dX

dX
µ µ− = =

0A A B BX d X dµ µ+ =

Gibbs-Duhem equation: Calculate the change in (dμ) that results from a change in (dX)

Comparing two similar triangles,

Substituting right side Eq.
& Multiply XAXB

d2G/dX2
(⸪ d2G/dXB2=d2G/dXA2 )
,

Eq. 1.75

1−= µ + µA A B BG X X Jmol

(T, P: constant )
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G-X 곡선기울기

Gibbs-Duhem Equation

Fig. 1.50



The Gibbs-Duhem Equation

be able to calculate the change in chemical potential (dμ) that result 

from a change in alloy composition (dX).

= + + Ω + +A A B B A B A A B BG X G X G X X RT(X lnX X lnX )
2

2
2

A B

d G RT

dX X X
= − Ω

For a ideal solution, Ω = 0,

2

2
A B

d G RT

dX X X
=

µ = + = + γB B B B B BG RTlna G RTln X

ln
1 1

ln
B B B B

B B B B B B

d RT X d RT d

dX X dX X d X

µ γ γ
γ

   
= + = +   

   

For a regular solution,

Additional Thermodynamic Relationships for Binary Solutions

합금조성의미소변화 (dX)로인한화학퍼텐셜의미소변화(dμ) 를계산

γB= aB/XB

①

②

Differentiating
With respect to XB,

Different form

Eq. 1.75
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a similar relationship can be derived for dμA/dXA

ln ln
1 1

ln ln
A B

A A B B B B
A B

d d
X d X d RT dX RT dX

d X d X

γ γµ µ
   

− = = + = +   
   

2

2A A B B A B B

d G
X d X d X X dX

dX
µ µ− = =

2

2

ln ln
1 1

ln ln
A B

A B
A B

d G d d
X X RT RT

dX d X d X

γ γ   
= + = +   

   

be able to calculate the change in chemical potential (dμ) that 

result from a change in alloy composition (dX).

Eq. 1.81

ln
1 1

ln
B B B B

B B B B B B

d RT X d RT d

dX X dX X d X

µ γ γ
γ

   
= + = +   

   
Eq. 1.79

Eq. 1.80

The Gibbs-Duhem Equation
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• Effect of Temperature on Solid Solubility

• Equilibrium Vacancy Concentration

• Influence of Interfaces on Equilibrium

• Gibbs-Duhem Equation:
: Be able to calculate the change in chemical potential that result from a change in alloy composition.

r

V
G mγ2=∆ Gibbs-Thomson effect

2

2

ln ln
1 1

ln ln
A B

A B
A B

d G d d
X X RT RT

dX d X d X

γ γ   
= + = +   

   

합금조성의미소변화 (dX)로인한화학퍼텐셜의미소변화(dμ) 를계산

- Gibbs Phase Rule F = C − P + 1   (constant pressure)

Gibbs' Phase Rule allows us to construct phase diagram to represent 
and interpret phase equilibria in heterogeneous geologic systems. 

Summary II: Binary phase diagrams
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