
Introduction to Algorithms
(Chapter 8: Sorting in Linear
Time)

Kyuseok Shim

Electrical and Computer Engineering
Seoul National University

Outline
 All the sorting algorithms introduced thus far are comparison sorts since

the sorted order they determine is based only on comparisons between
the input elements.

 We prove that any comparison sort must make Ω 𝑛 log 𝑛 comparisons
in the worst case to sort n elements.

 Thus, merge sort and heapsort are asymptotically optimal, and no
comparison sort exists that is faster by more than a constant factor.

 We examine other sorting algorithms, such as counting sort and radix
sort that run in linear time.

 Those algorithms use operations other than comparisons to determine
the sorted order.

 Consequently, the Ω 𝑛 log 𝑛 lower bound does not apply to them.

Lower Bounds for Sorting
 Comparison sorting

 Use only comparisons between elements to gain order information about an
input sequence <a1, a2,…,an>.

 Given a two elements ai and aj, we perform only one of the tests ai < aj, ai

≤ aj, ai ≥ aj, or ai > aj to determine their relative order.

 Our assumption

 All input elements are distinct (i.e., we do not check ai = aj).

 The comparisons ai < aj, ai ≤ aj, ai ≥ aj, or ai > aj are all equivalent in that
they yield identical information about the relative order of ai and aj.

 Thus, all comparisons have the form ai ≤ aj.

Decision Tree Model
 A Decision tree is a full binary tree representing the comparisons

between elements performed by a particular sorting algorithm
operating on an input of a given size.

 In a decision tree, we annotate each internal node by i:j for some i and
j in the range 1 ≤ i, j ≤ n, where n is the number of elements in the
input sequence - each internal node indicates a comparison ai≤aj.

 We also annotate each leaf by a permutation 𝜋 1 , 𝜋 2 , …, 𝜋 𝑛 .

 The execution of the sorting algorithm corresponds to tracing a simple
path from the root of the decision tree down to a leaf.

 When we come to a leaf, the sorting algorithm has established the
ordering a𝜋 1 ≤ a𝜋 2 ≤…≤ a𝜋 𝑛 .

Decision Tree Model
 We consider only decision trees in which each permutation appears as a

reachable leaf.

 Because any correct sorting algorithm must be able to produce each
permutation of its input, each of the n! permutations on n elements must
appear as one of the leaves of the decision tree for a comparison sort to be
correct.

 Furthermore, each of these leaves must be reachable from the root by a
downward path corresponding to an actual execution of the comparison
sort.

Insertion Sort

1

6

2

8

3

5

index

value

sorted

1:2
≤

a1= 6, a2=8, a3=5

Insertion Sort

1

6

2

8

3

5

index

value

sorted

1:2

2:3

≤

>

a1= 6, a2=8, a3=5

Insertion Sort

1

6

2

5

3index

value

sorted

8

1:3

1:2

2:3

≤

>

>

a1= 6, a2=8, a3=5

Insertion Sort

1

5

2 3index

value

sorted

86

1:3

1:2

2:3

≤

>

<3,1,2>

>

a1= 6, a2=8, a3=5

The Decision tree for Insertion
Sort

 The decision tree corresponding to the insertion sort algorithm operating on an
input sequence of three elements.

1:2

2:3

1:3

1:3

2:3

<1,3,2>

<1,2,3>

<3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

≤

≤

≤

≤

≤

>

>

>

>

>

A Lower Bound for the Worst
Case

 The length of the longest simple path from the root of a decision tree to any of
its reachable leaves represents the worst-case number of comparisons that the
corresponding sorting algorithm performs.

 Consequently, the worst-case number of comparisons for a given comparison
sort algorithm equals the height of its decision tree.

 A lower bound on the heights of all decision trees in which each permutation
appears as a reachable leaf is therefore a lower bound on the running time of
any comparison sort algorithm.

A Binary Tree of Height h
 A binary tree of height h has no more than 2ℎ leaf nodes

ℎ = 0

ℎ = 1

ℎ = 2

ℎ = 3

A Lower Bound for the Worst
Case

 Theorem 8.1

 Any comparison sort algorithm requires Ω 𝑛 log𝑛 comparisons in the worst-case.

 Proof

 It suffices to determine the height of a decision tree in which each permutation
appears as a reachable leaf.

 Consider a decision tree of height ℎ with 𝑙 reachable leaves corresponding to a
comparison sort on n elements.

 Because each of the 𝑛! Permutations of the input appears as some leaf, 𝑛! ≤ 𝑙.

 Since a binary tree of height h has no more than 2ℎ, we have

𝑛! ≤ 𝑙 ≤ 2ℎ.

 Thus, ℎ ≥ log 𝑛!

= log 𝑛 𝑛 − 1 𝑛 − 2 …1

A Lower Bound for the Worst
Case

 Theorem 8.1

 Any comparison wort algorithm requires Ω 𝑛 log𝑛 comparisons in the worst-case.

 Proof

 It suffices to determine the height of a decision tree in which each permutation
appears as a reachable leaf.

 Consider a decision tree of height ℎ with 𝑙 reachable leaves corresponding to a
comparison sort on n elements.

 Because each of the 𝑛! Permutations of the input appears as some leaf, 𝑛! ≤ 𝑙.

 Since a binary tree of height h has no more than 2ℎ leaf nodes, we have

𝑛! ≤ 𝑙 ≤ 2ℎ.

 Thus, ℎ ≥ log 𝑛!

= log 𝑛 𝑛 − 1 𝑛 − 2 …1
= log𝑛 + log 𝑛 − 1 +⋯+ log1

A Lower Bound for the Worst
Case

 Theorem 8.1

 Any comparison wort algorithm requires Ω 𝑛 log𝑛 comparisons in the worst-case.

 Proof

 It suffices to determine the height of a decision tree in which each permutation
appears as a reachable leaf.

 Consider a decision tree of height ℎ with 𝑙 reachable leaves corresponding to a
comparison sort on n elements.

 Because each of the 𝑛! Permutations of the input appears as some leaf, 𝑛! ≤ 𝑙.

 Since a binary tree of height h has no more than 2ℎ leaf nodes, we have

𝑛! ≤ 𝑙 ≤ 2ℎ.

 Thus, ℎ ≥ log 𝑛!

= log 𝑛 𝑛 − 1 𝑛 − 2 …1
= log𝑛 + log 𝑛 − 1 +⋯+ log1

≥ log𝑛 + log 𝑛 − 1 +⋯+ log
𝑛

2

A Lower Bound for the Worst
Case

 Theorem 8.1

 Any comparison wort algorithm requires Ω 𝑛 log𝑛 comparisons in the worst-case.

 Proof

 It suffices to determine the height of a decision tree in which each permutation
appears as a reachable leaf.

 Consider a decision tree of height ℎ with 𝑙 reachable leaves corresponding to a
comparison sort on n elements.

 Because each of the 𝑛! Permutations of the input appears as some leaf, 𝑛! ≤ 𝑙.

 Since a binary tree of height h has no more than 2ℎ leaf nodes, we have

𝑛! ≤ 𝑙 ≤ 2ℎ.

 Thus, ℎ ≥ log 𝑛!

= log 𝑛 𝑛 − 1 𝑛 − 2 …1
= log𝑛 + log 𝑛 − 1 +⋯+ log1

≥ log𝑛 + log 𝑛 − 1 +⋯+ log
𝑛

2

≥
𝑛

2
log

𝑛

2
= Ω 𝑛 log𝑛

A Lower Bound for the Worst
Case

 Corollary 8.2
 Heapsort and merge sort are asymptotically optimal comparison sorts.

 Proof

 The O(n lg n) upper bounds on the running times for heapsort and merge
sort match the Ω 𝑛 log 𝑛 worst-case lower bound from Theorem 8.1.

Counting Sort
 Assumes that each of the n input elements is an integer in

the range 1 to k, for some integer k.
 When k = O(n), the sort runs in Θ(n) time.
 Use three arrays

 𝐴[1. . 𝑛]: the initial input
 𝐵[1. . 𝑛]: the stored output
 𝐶[1. . 𝑘]: 𝐶[𝑖] first store the number of input elements

equal to 𝑖 in 𝐴[], and later to store the number of input
elements less than or equal to 𝑖 in 𝐴[].

 The number of occurences of 𝐴[𝑗] will be 𝐶[𝐴[𝑗]].
 We copy 𝐴[𝑗] to 𝐵[𝐶[𝐴]]] - some care is needed for

duplicate items

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

 The overall time is Θ(k+n)
 The for loop of lines 2-3 takes Θ(k) time.
 The for loop of lines 4-5 takes Θ(n) time.
 The for loop of lines 10-12 takes Θ(n) time.

Illustration of Counting Sort

1 4 3 1 3

1 2 3 4 5

A 2 0 2 1

1 2 3 4

C C 2 2 4 5

1 2 3 4

3

1 2 3 4 5

B 2 2 3 5

1 2 3 4

C

1 3

1 2 3 4 5

B 1 2 3 5

1 2 3 4

C

1 3 3

1 2 3 4 5

B 1 2 2 5

1 2 3 4

C

1 3 3 4

1 2 3 4 5

B 1 2 2 4

1 2 3 4

C

1 1 3 3 4

1 2 3 4 5

B 0 2 2 4

1 2 3 4

C

C: Counter -> Rank

Running Time: O(n)

Start from the end of A

to the beginning:

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

0 0 0 0
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

1 0 0 0
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

1 0 0 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

1 0 1 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 0 1 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 0 2 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 0 2 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 2 2 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 2 4 1
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 2 4 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 2 4 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 2 4 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5
B

1 2 3 4

2 2 4 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

3
B

1 2 3 4

2 2 4 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

3
B

1 2 3 4

2 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

3
B

1 2 3 4

2 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

3
B

1 2 3 4

2 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3
B

1 2 3 4

2 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3
B

1 2 3 4

1 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3
B

1 2 3 4

1 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3
B

1 2 3 4

1 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3
B

1 2 3 4

1 2 3 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3
B

1 2 3 4

1 2 2 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3
B

1 2 3 4

1 2 2 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3
B

1 2 3 4

1 2 2 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3 4
B

1 2 3 4

1 2 2 5
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3 4
B

1 2 3 4

1 2 2 4
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3 4
B

1 2 3 4

1 2 2 4
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 3 3 4
B

1 2 3 4

1 2 2 4
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 1 3 3 4
B

1 2 3 4

1 2 2 4
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 1 3 3 4
B

1 2 3 4

0 2 2 4
C

Counting Sort
COUNTING-SORT(A, B, k)
1. let C[1..k] be a new array
2. for i=1 to k
3. C[i]=0
4. for j=1 to A.length
5. C[A[j]] = C[A[j]] + 1
6. // C[i] has the number of elements of A equal to i.
7. for i= 2 to k
8. C[i] = C[i] + C[i-1]
9. // C[i] has the number of elements of A that is at most i.
10. for j=A.length down to 1
11. B[C[A[j]]] = A[j]
12. C[A[j]] = C[A[j]] – 1

1 2 3 4 5

1 4 3 1 3
A

1 2 3 4 5

1 1 3 3 4
B

1 2 3 4

0 2 2 4
C

Property of Counting Sort
 It is not a comparison sort.

 No comparisons between input elements occur anywhere in the
code.

 The Ω 𝑛 lg 𝑛 lower bound for sorting does not apply when we

depart from the comparison sort model.

 The property of stability is important when satellite data are
carried around with the element being sorted.

 The numbers with the same value appear in the output array in the
same order as in the input array.

Radix Sort

 Counting Sort works only for small integers.

 Radix Sort sorts the numbers one digit at a time.
 Each input has d decimal one digits (or digits in any base)

 We use a stable sorting algorithm like Counting Sort

 We sort repetitively, starting from the lowest order digit finishing at
the highest digit.

 Since the sorting algorithm is stable, if the numbers are sorted with
respect low order digits and are later sorted with high order digits,
numbers having the same high order digit will still remain sorted
w.r.t their low order digit.

Radix Sort
RADIX-SORT(A,d)

1. for i=1 to d

2. use a stable sort to sort the array A on digit i

 Running Time : 𝑂 𝑑 × 𝑛 + 𝑘 = 𝑂 𝑛

(𝑘 : number of values that a digit can have)

246

925

238

923

923

925

246

238

923

925

238

246

238

246

923

925

Radix Sort
 Lemma 8.3

 Given 𝑛 𝑑-digit numbers in which each digit can take on up to k possible
values, RADIX-SORT correctly sorts these numbers in Θ 𝑑(𝑛 + 𝑘) time, if
the stable sort takes Θ 𝑛 + 𝑘 time.

 Proof

 The correctness of radix sort follows by induction on the column being
sorted (see Exercise 8.3-3).

 The analysis of the running time depends on the stable sort used as the
intermediate sorting algorithm.

 When each digit is in the range 0 to k-1 (so that it can take on k possible
values), and k is not too large, counting sort is the obvious choice.

 Each pass over 𝑛 d-digit numbers then takes Θ 𝑛 + 𝑘 time.

 There are d passes, and so radix sort is Θ 𝑑(𝑛 + 𝑘) time.

Radix Sort

 Lemma 8.4
 Given 𝑛 𝑏-bit numbers and any positive integer 𝑟 ≤ 𝑏, RADIX-SORT

correctly sorts in Θ Τ𝑏 𝑟 𝑛 + 2𝑟 time, if the stable sort takes
Θ 𝑛 + 𝑘 time for inputs in the range 0 to k.

 Proof
 For a value r ≤ 𝑏, we view each key as having 𝑑 = 𝑏/𝑟 digits of

r bits each.

 Each digit is an integer 0 to 2r – 1, so that we can use counting
sort with k=2r – 1.

 e.g.) A 32-bit word has four 8-bit digits - 𝑏 = 32, 𝑟 = 8, 𝑘 = 2𝑟 −
1 = 255, 𝑑 = 𝑏/𝑟 = 4.

 Each pass of counting sort Θ 𝑛 + 𝑘 = Θ 𝑛 + 2𝑟 , and there are 𝑑
passes.

 Total running time Θ 𝑑 𝑛 + 2𝑟 = Θ Τ𝑏 𝑟 𝑛 + 2𝑟 .

Bucket Sort

 Assumes that the 𝑛 input numbers are drawn from a uniform
distribution.

 Like counting sort, it is fast because it assumes that the input is
generated by a random process that distributes elements uniformly and
independently over the interval [)0,1 .

 Average-case running time is 𝑂(𝑛).

Bucket Sort

 Divide the interval [)0,1 into 𝑛 equal-sized subintervals (buckets).

 Distributes the 𝑛 input numbers into the buckets.

 Sort the numbers in each bucket and go through the buckets in order.

Bucket Sort
BUCKET-SORT(A)

1. let B[0…n-1] be a new array

2. n=A.length

3. for i=0 to n-1

4. make B[i] an empty list

5. for i=1 to n

6. insert A[i] into list B[𝑛𝐴 𝑖]

7. for i=0 to n-1

8. sort list B[i] with insertion sort

9. concatenate the list B[0],B[1],…,B[n-1] together in order

Bucket Sort

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

.12

.21

.39 /

.68 /

.72

.94 /

.17 /

.23

.78 /

.26 /

/

/

/

/

.78

.17

.39

.26

.72

.94

.21

.12

.23

.68

A B

Analysis of Bucket Sort

 Let ni be the random variable denoting the number of elements placed
in bucket B[i]

 Since the insertion sort runs in quadratic time, the running time of
bucket sort is

𝑇 𝑛 = Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝑛𝑖
2

Analysis of Bucket Sort
 We now analyze the average-case running time of bucket sort, by computing

the expected value of the running time, where we take the expectation over the
input distribution.

 Taking expectations of both sides of

and using linearity of expectation, we have

𝐸 𝑇 𝑛 = 𝐸 Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝑛𝑖
2

= Θ 𝑛 +

𝑖=0

𝑛−1

𝐸 𝑂 𝑛𝑖
2 = Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝐸 𝑛𝑖
2

𝑇 𝑛 = Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝑛𝑖
2

Analysis of Bucket Sort

𝑇 𝑛 = Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝑛𝑖
2

𝐸 𝑇 𝑛 = 𝐸 Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝑛𝑖
2 = Θ 𝑛 +

𝑖=0

𝑛−1

𝐸 𝑂 𝑛𝑖
2 = Θ 𝑛 +

𝑖=0

𝑛−1

𝑂 𝐸 𝑛𝑖
2

Wℎ𝑒𝑛 𝐸 𝑛𝑖
2 = 2 − Τ1 𝑛 ⇒

𝐸 𝑇 𝑛 = Θ 𝑛 + 𝑛 ∙ 𝑂 2 − Τ1 𝑛 = Θ 𝑛

Analysis of Bucket Sort

 We claim that 𝐸 𝑛𝑖
2 = 2 − Τ1 𝑛 for i=0,...,n-1.

 It is no surprise that each bucket i has the same value of 𝐸 𝑛𝑖
2 , since

each value in the input array A is equally likely to fall in any bucket.

 To prove our claim, we define indicator random variables

 𝑋𝑖𝑗 = I{𝐴 𝑗 falls in bucket 𝑖},

 Thus, 𝑛𝑖 = σ𝑗=1
𝑛 𝑋𝑖𝑗

Analysis of Bucket Sort

 To compute 𝐸 𝑛𝑖
2 , we expand the square and regroup terms:

E 𝑛𝑖
2 = E σ𝑗=1

𝑛 𝑋𝑖𝑗
2
= E σ𝑗=1

𝑛 σ𝑘=1
𝑛 𝑋𝑖𝑗𝑋𝑖𝑘

= E σ𝑗=1
𝑛 𝑋𝑖𝑗

2 + σ𝑗=1
𝑛 σ1≤𝑘≤𝑛

𝑘≠𝑗

𝑋𝑖𝑗𝑋𝑖𝑘

= σ𝑗=1
𝑛 E 𝑋𝑖𝑗

2 + σ𝑗=1
𝑛 σ1≤𝑘≤𝑛

𝑘≠𝑗

E 𝑋𝑖𝑗𝑋𝑖𝑘 (8.3)

Analysis of Bucket Sort

 Indicator random variable Xij is 1 with probability 1/n and 0 otherwise.

 Thus,

E 𝑋𝑖𝑗
2 = 12 ∙ Τ1 𝑛 + 02 ∙ 1 − Τ1 𝑛 = Τ1 𝑛

 When k ≠ j , the variables Xij and Xik are independent, and hence

E 𝑋𝑖𝑗𝑋𝑖𝑘 = E Xij E Xik = Τ1 𝑛 ∙ Τ1 𝑛 = Τ1 𝑛2

Analysis of Bucket Sort

 Substituting these two expected values in equation (8.3), we obtain

E 𝑛𝑖
2 = σ𝑗=1

𝑛 E 𝑋𝑖𝑗
2 + σ𝑗=1

𝑛 σ1≤𝑘≤𝑛
𝑘≠𝑗

E 𝑋𝑖𝑗𝑋𝑖𝑘

=

𝑗=1

𝑛

Τ1 𝑛 +

𝑗=1

𝑛

1≤𝑘≤𝑛
𝑘≠𝑗

Τ1 𝑛2

= n ∙ Τ1 𝑛 + 𝑛 𝑛 − 1 ∙ Τ1 𝑛2

= 1 + Τ𝑛 − 1 𝑛 = 2 − Τ1 𝑛

Analysis of Bucket Sort

𝑋𝑖𝑗 = I{𝐴 𝑗 falls in bucket 𝑖} 𝑛𝑖 = σ𝑗=1
𝑛 𝑋𝑖𝑗

E 𝑛𝑖
2 = E σ𝑗=1

𝑛 𝑋𝑖𝑗
2

= E σ𝑗=1
𝑛 σ𝑘=1

𝑛 𝑋𝑖𝑗𝑋𝑖𝑘

= E σ𝑗=1
𝑛 𝑋𝑖𝑗

2 + σ𝑗=1
𝑛 σ1≤𝑘≤𝑛

𝑘≠𝑗

𝑋𝑖𝑗𝑋𝑖𝑘

= σ𝑗=1
𝑛 E 𝑋𝑖𝑗

2 + σ𝑗=1
𝑛 σ1≤𝑘≤𝑛

𝑘≠𝑗

E 𝑋𝑖𝑗𝑋𝑖𝑘

Indicator random variable 𝑋𝑖𝑗 = ቊ
1 𝑝 = 1/𝑛
0 otherwise

E 𝑋𝑖𝑗
2 = 12 ∙ Τ1 𝑛 + 02 ∙ 1 − Τ1 𝑛 = Τ1 𝑛

When 𝑘 ≠ 𝑗, E 𝑋𝑖𝑗𝑋𝑖𝑘 = E Xij E Xik = Τ1 𝑛 ∙ Τ1 𝑛 = Τ1 𝑛2

Thus, 𝐸 𝑛𝑖
2 = σ𝑗=1

𝑛 Τ1 𝑛 + σ𝑗=1
𝑛 σ1≤𝑘≤𝑛

𝑘≠𝑗

Τ1 𝑛2

= n ∙ Τ1 𝑛 + 𝑛 𝑛 − 1 ∙ Τ1 𝑛2 = 1 + Τ𝑛 − 1 𝑛 = 2 − Τ1 𝑛

𝑋𝑖𝑗 𝑎𝑛𝑑 𝑋𝑖𝑘 are independent

Any Question?

Introduction to Algorithms
(Chapter 9: Median and Order
Statistics)

Kyuseok Shim

Electrical and Computer Engineering
Seoul National University

Outline

 This chapter addresses the problem of selecting the i-
th order statistic from a set of n distinct numbers.

K-th Smallest Number
Selection Problem

 We assume for convenience that the set contains distinct
numbers, although virtually everything that we do extends to
the situation in which a set contains repeated values.

 We formally specify the selection problem as follows:
 Input: A set of n (distinct) numbers and a number i with 1 ≤ i ≤ n.

 Output: The element x∈A that is larger than exactly i-1 other
elements of A.

 We can be solved in O(n log n) time by sorting and simply
indexing the i-th element.

A Naïve Method

Using an Array with size i

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

index

value

𝑖 = 8

1 2 3 4 5 6 7 8index

value

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

3

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

3 2

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

2 3

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 6

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 6 13

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 5 6 13

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 5 6 12 13

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 5 6 12 13 15

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 5 6 11 12 13

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 5 6 10 11 12

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 10 11

Using an Array with size i

index

value

𝑖 = 8

index

value

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 9 10

Using an Array with size i

index

value

𝑖 = 8

index

value

8-th smallest : 10

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 9 10

A Better Method Using Max-
Heap

Using a Max-Heap

index

value

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

𝑖 = 8

3

2 1

6 13 5 12

15

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

Build Max-Heap

index

value

15

13 12

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

11

13 12

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

13

11 12

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

10

11 12

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

12

11 10

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

4

11 10

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

11

4 10

6 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

11

6 10

4 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

9

6 10

4 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

10

6 9

4 3 5 1

2

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Using a Max-Heap

index

value

10

6 9

4 3 5 1

2 8-th smallest : 10

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

A Divide and Conquer Method

Divide and Conquer

 RANDOMIZED-SELECT is modeled after quicksort
algorithm.

 It partitions the input array recursively.

 It works on only one side of the partition.

 While quicksort has an expected running time of Ɵ(n lg n),
its expected running time is Ɵ(n).

Divide and Conquer

 Quick Selection Algorithm
 Pick a pivot v in S.

 Partition S – {v} into S1 and S2.

 If i = 1 + |S1|, we got the answer.

 If i < |S1|, then k-th smallest element must be in S1.

 Otherwise, the i-th smallest element lies in S2 and it is (i-
|S1|)-st smallest element in S2.

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Divide and Conquer

pivot

QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

q – p =6
i > q – p +1q - p

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

q – p =6
i > q – p +1q - p

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8

q – p =6
i > q – p +1q - p

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 8 − 6 − 1 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 15 11 10 13 12

pivot

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

q - p=2
i<q – p + 1

q - p

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

q - p=2
i<q – p + 1

q - p

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

q - p=2
i<q – p + 1

q - p

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

pivot

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

q – p = 1
i<q – p + 1q - p

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

q – p = 1
i<q – p + 1q - p

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

q – p = 1
i<q – p + 1q - p

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
QUICK-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = PARTITON(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return QUICK-SELECT(A,p,q-1,i)

9. else return QUICK-SELECT(A,q+1,r,i-k)

index

value

return 10

𝑖 = 1

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 4 5 9 10 11 12 13 15

Divide and Conquer
RANDOMIZED-SELECT(A,p,r,i)

1. if p == r

2. return A[p]

3. q = RANDOMIZED-PARTITION(A,p,r)

4. k = q - p + 1

5. if i == k

6. return A[q]

7. else if i < k

8. return RANDOMIZED-SELECT(A,p,q-1,i)

9. else return RANDOMIZED-SELECT(A,q+1,r,i-k)

Analysis of RANDOMIZED-
SELECT

 Worst-case running time is Ɵ(n2).

 To analyze the expected running time of RANDOMIZED-SELECT, we let
the running time on an input array A[p,r] of n elements be a random
variable that we denote by T(n), and we obtain an upper bound on
E[T(n)]

 RANDOMIZED-PARTITION is equally likely to return any element as the
pivot.

 Therefore, for each k such that 1 ≤ k ≤ n, the subarray A[p,q] has k
elements (all less than or equal to the pivot) with probability 1/n.

 For k=1,2,…,n, we define indicator random variables Xk where

Xk = I {subarray A[p..q] has exactly k elements}

 Assuming that the elements are distinct, we have E[Xk] = 1/n

Analysis of RANDOMIZED-
SELECT

 When we call RANDOMIZED-SELECT and choose A[q] as the pivot
element, we do not know, a priori, if we will terminate immediately
with the correct answer, recurse on the subarray A[p..q-1], or recurse
on the subarray A[q+1..r].

 To obtain an upper bound, we assume that the i-th element is always
on the side of the partition with the greater number of elements.

 For a given call of RANDOMIZED-SELECT, the indicator random
variable Xk has the value 1 for exactly one value of k, and it is 0 for all
other k

 When Xk=1, the two subarrays on which we might recurse have sizes
k-1 and n-k.

 Thus, 𝑇 𝑛 ≤ σ𝑘=1
𝑛 𝑋𝑘(𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂(𝑛))

= σ𝑘=1
𝑛 𝑋𝑘(𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂(𝑛)

Analysis of RANDOMIZED-
SELECT

 Taking expected value,

𝐸 𝑇 𝑛 ≤ 𝐸[

𝑘=1

𝑛

𝑋𝑘(𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂(𝑛))]

= σ𝑘=1
𝑛 𝐸[𝑋𝑘(𝑇 max 𝑘 − 1, 𝑛 − 𝑘] + 𝑂(𝑛)

= σ𝑘=1
𝑛 𝐸 𝑋𝑘 𝐸[𝑇 max 𝑘 − 1, 𝑛 − 𝑘] + 𝑂(𝑛)

= σ𝑘=1
𝑛 1

𝑛
× 𝐸[𝑇 max 𝑘 − 1, 𝑛 − 𝑘] + 𝑂(𝑛)

 Note that Xk and T(max(k-1,n-k)) being independent random
variables.

Analysis of RANDOMIZED-
SELECT

 max 𝑘 − 1, 𝑛 − 𝑘 = ቊ
𝑘 − 1
𝑛 − 𝑘

if 𝑘≥
𝑛

2

if 𝑘≤
𝑛

2

 If n is even, each term from T(
𝑛

2
) up to T(n-1) appears exactly

twice in the summation, and if n is odd, all these terms appear

twice and T(
𝑛

2
) appears once.

 Thus, we have 𝐸 𝑇 𝑛 ≤
2

𝑛
σ
𝑘=

𝑛

2

𝑛−1 𝐸 𝑇 𝑘 + 𝑂(𝑛)

Analysis of RANDOMIZED-
SELECT

 Assume that E[T(n)]≤cn for some constant c that satisfies the

initial conditions of the recurrence.

 We assume that T[n]=O(1) for n less than some constant.

 Using this inductive hypothesis,

)
24

(

24

32

2

1

4

3
c2

24

3

n

c

2

22/34/

2

1

n

2c

2

)12/)(22/(

2

)1(

n

2c

2

2/)12/(

2

)1(

n

2c2

n

2
E[T(n)]

2

22

12/

1

1

1

1

2/

an
ccn

cn

an
ccn

an
n

n
an

nn

an
nnn

an
nnnn

an
nnnn

ankk
n

c
anck

n

k

n

k

n

nk

Analysis of RANDOMIZED-
SELECT

 We need to show that for sufficient large n, cn/4-c/2-an ≥ 0.

 If we add c/2 to both sides and factor out n, we get n(c/4-a) ≥ c/2.

 As long as we choose the constant c so that (c/4-a)>0, i.e., c > 4a, we
can divide both sides by c/4-a, and obtain

ൗ𝑛≥𝑐/2
𝑐

4
− 𝑎 = Τ2𝑐 (𝑐 − 4𝑎).

 If we assume T(n) = O(1) for n < 2c/(c-4a), then E(T(n)] = O(n).

)()]([then ,0
24

 for)1()(if

)
24

(
n

2
E[T(n)]

 constant some for)]([Assume
1

2/

nOnTEan
ccn

OnT

an
ccn

cnanck

ccnnTE
n

nk

Selection in Worst-case Linear
Time

 Want to develop a selection algorithm in O(n) time in worst
case.

 Idea:

 Guarantee a good split for partitioning

 Use deterministic partitioning algorithm

Selection in Worst-case Linear
Time

 The SELECT algorithm the desired element by recursively
partitioning the input array.

 However, we want to guarantee a good split upon partition the
array.

 SELECT uses the deterministic partitioning algorithm PARTITION
from quicksort.

 But, we modify PARTITION to take the element to split around
as an input parameter.

Selection in Worst-case Linear
Time

 Divide the input elements into 𝑛/5 groups (5 elements each)
 Find the median of each of the 𝑛/5 groups by sorting.
 Use SELECT to find the find median x of the 𝑛/5 medians.

 Partition the input array around the median-of-median x.
 Let k be one more than the # of elements on the left side.

Thus, n-k elements in right side
 If i=k, then return x.
 Otherwise, call SELECT recursively to find

 the i-th smallest one in the left side, if i<k,
 the (i-k)-th smallest one in the right side, if i>k

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

index

value

𝑖 = 8

Selection in Worst-case Linear
Time

index

value

𝑖 = 8

3 2 1 6 13 5 12 15 11 10

4 9

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Selection in Worst-case Linear
Time

index

value

𝑖 = 8

3 2 1 6 13 5 12 15 11 10

4 9

3 11 4

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Selection in Worst-case Linear
Time

index

value

𝑖 = 8

4 : median
of medians

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

3 2 1 6 13 5 12 15 11 10

4 9

3 11 4

Selection in Worst-case Linear
Time

index

value

𝑖 = 8

pivot

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 6 13 5 12 15 11 10 4 9

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

index

value

𝑖 = 8

partition

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

index

value

𝑖 = 8

𝑝 = 1 𝑞 = 4

𝑞 − 𝑝 + 1 < 𝑖

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

index

value

𝑖 = 8 − (4 − 1 + 1) = 4

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

index

value

𝑖 = 4

6 13 5 12 15 11 10 9

Selection in Worst-case Linear
Time

index

value

𝑖 = 4

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

6 13 5 12 15 11 10 9

Selection in Worst-case Linear
Time

index

value

𝑖 = 4

median of medians : 10

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

6 13 5 12 15 11 10 9

Selection in Worst-case Linear
Time

index

value

𝑖 = 4

pivot

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 13 5 12 15 11 10 9

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 5 9 10 15 11 13 12

index

value

𝑖 = 4

partition

Selection in Worst-case Linear
Time

1 2 3 4 5 6 7 8 9 10 11 12

3 2 1 4 6 5 9 10 15 11 13 12

index

value

𝑖 = 4

𝑞 − 𝑝 + 1 == 𝑖

∴ return 𝐴 𝑞 = 10

𝑝 = 5 𝑞 = 8

Analysis of SELECT

 The n elements are represented by small circles, and each
group of 5 elements occupies a column.

 The medians of the groups are whitened, and the median-of-
medians x is labeled.

 Arrows go from larger elements to smaller, from which we can
see that 3 out of every full group of 5 elements to the right of x
are greater than x, and 3 out of every group of 5 elements to
the left of x.

 The elements known to be greater than x appear on a shaded
background.

Selection in Worst-case Linear
Time

 We assume that every numbers are distinct!

 We want to determine a lower bound on the number of
elements that are greater than the partitioning element the
median-of-median x.

 At least half of the medians found in the 2-nd step are greater
than or equal to the median-of-median x.

 Thus, at least half of the 𝑛/5 groups contribute at least 3

elements that are greater than x except for the last one group
and the one group containing x itself

 Discounting these two groups, we obtain

6
10

3
)2

52

1
(3

 nn

Selection in Worst-case Linear
Time

 We assume that every numbers are distinct!

 The number of elements greater than x is at least

 Similarly, the number of elements less than x is the same as
above.

 Thus, in worst case, SELECT is called recursively on at most
7n/10+6 elements in the last step.

6
10

3
)2

52

1
(3

 nn

Linear Time Complexity

which is at most if

)710/(710/9

610/75/

)610/7(5/)(

:Pr

140 all and constant large suitably some for)(Assume

140 if)()610/7()5/(

140 if)1(
)(

anccncnanccn

anccnccn

anncncnT

oof

nccnnT

nnOnTnT

nO
nT

acnnn

nnnacanccn

20 2)70/(140

70 when))70/((10 0710/

Any Question?

	WEEK-4-1-CH8.pdf
	WEEK-4-2-CH9.pdf

