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A.1 Partial Derivatives

Consider a function of three variables, 𝑓 𝑥, 𝑦, 𝑧 = 0

Since only two variables are independent, we can write

𝑥 = 𝑥 𝑦, 𝑧 , 𝑦 = 𝑦 𝑥, 𝑧

Then d𝑥 = (
𝜕𝑥

𝜕𝑦
)𝑧𝑑𝑦 + (

𝜕𝑥

𝜕𝑧
)𝑦𝑑𝑧, and

d𝑦 = (
𝜕𝑦

𝜕𝑥
)𝑧𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)𝑥𝑑𝑧

We obtain,

d𝑥 = (
𝜕𝑥

𝜕𝑦
)𝑧 (

𝜕𝑦

𝜕𝑥
)𝑧𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)𝑥𝑑𝑧 + (

𝜕𝑥

𝜕𝑧
)𝑦𝑑𝑧
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A.1 Partial Derivatives

d𝑥 = (
𝜕𝑥

𝜕𝑦
)𝑧 (

𝜕𝑦

𝜕𝑥
)𝑧𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)𝑥𝑑𝑧 + (

𝜕𝑥

𝜕𝑧
)𝑦𝑑𝑧

= (
𝜕𝑥

𝜕𝑦
)𝑧(

𝜕𝑦

𝜕𝑥
)𝑧𝑑𝑥 + (

𝜕𝑥

𝜕𝑦
)𝑧(

𝜕𝑦

𝜕𝑧
)𝑥 + (

𝜕𝑥

𝜕𝑧
)𝑦 𝑑𝑧

If d𝑧 = 0 and d𝑥 ≠ 0 ,

𝝏𝒙

𝝏𝒚 𝒛
=

𝟏
𝝏𝒚

𝝏𝒙 𝒛

. This  expression is known as the reciprocal relation.

If d𝑥 = 0 and d𝑧 ≠ 0 ,

𝜕𝑥

𝜕𝑦 𝑧

𝜕𝑦

𝜕𝑧 𝑥
= −

𝜕𝑥

𝜕𝑧 𝑦
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A.1 Partial Derivatives

𝜕𝑥

𝜕𝑦 𝑧

𝜕𝑦

𝜕𝑧 𝑥
= −

𝜕𝑥

𝜕𝑧 𝑦
(previous slide)

𝜕𝑥

𝜕𝑧 𝑦
=

1
𝜕𝑧

𝜕𝑥 𝑦

(using reciprocal relation)

Substituting these equations yield,

𝝏𝒙

𝝏𝒚 𝒛

𝝏𝒚

𝝏𝒛 𝒙

𝝏𝒛

𝝏𝒙 𝒚
= −𝟏. The cyclical rule, or cyclical relation.
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A.1 Partial Derivatives

Consider a function 𝑢 of three variables x, y, z can be written as a function of 

only two variables and those two variables are independent.

𝑢 = 𝑢 𝑥, 𝑦

Alternatively,

𝑥 = 𝑥 𝑢, 𝑦

Then

d𝑥 =
𝜕𝑥

𝜕𝑢 𝑦
𝑑𝑢 +

𝜕𝑥

𝜕𝑦 𝑢
𝑑𝑦.

If we divide the equation by d𝑧 while holding 𝑢 constant,

𝜕𝑥

𝜕𝑧 𝑢
=

𝜕𝑥

𝜕𝑦 𝑢

𝜕𝑦

𝜕𝑧 𝑢
. The chain rule of differentiation.
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5.1 The Gay-Lussac-Joule Experiment

In general,  𝑢 = 𝑢 𝑇, 𝑣

Using the cyclical and reciprocal relations,

(
𝜕𝑇

𝜕𝑣
)𝑢 = −

(
𝜕𝑢

𝜕𝑣
)𝑇

(
𝜕𝑢

𝜕𝑇
)𝑣

For a reversible process,  𝑐𝑣 = (
𝜕𝑢

𝜕𝑇
)𝑣

∴ (
𝜕𝑢

𝜕𝑣
)𝑇 = −𝑐𝑣 (

𝜕𝑇

𝜕𝑣
)𝑢

Then how can we keep 𝑢 constant during the expansion?
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5.1 The Gay-Lussac-Joule Experiment

𝑑𝑢 = 𝛿𝑞 − 𝛿𝑤 ⇒ free expansion

𝑇1 = 𝑇0 + 𝑣0
𝑣1(

𝜕𝑇

𝜕𝑣
)𝑢 𝑑𝑣,    𝜂 ≡ (

𝜕𝑇

𝜕𝑣
)𝑢 : Joule’s coefficient

From Joule’s experimental result,

𝜂 =
𝜕𝑇

𝜕𝑣 𝑢
< 0.001 K kilomole m−3

𝒗𝟎 , 𝑻𝟎 𝒗𝟏 − 𝒗𝟎

thermal insulation

gas 

sample
diaphragm

vacuum

= 0 

(adiabatic)

= 0 

(no work)
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5.1 The Gay-Lussac-Joule Experiment

For a Van der Waals gas,  (Problem 5-3)

𝜂 = −
𝑎

𝑣2𝑐𝑣

For an ideal gas, 

by using the equation 𝑑𝑢 = 𝑇𝑑𝑠 − 𝑃𝑑𝑣,

𝜕𝑢

𝜕𝑣 𝑇
= 𝑇

𝜕𝑠

𝜕𝑣 𝑇
− 𝑃 = 𝑇

𝜕𝑃

𝜕𝑇 𝑣
− 𝑃 = 𝑇 [

𝜕

𝜕𝑇

𝑅𝑇

𝑣
]𝑣 − 𝑃

=
𝑅𝑇

𝑣
− 𝑃 = 0

Then 𝑢 = 𝑢(𝑇)
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5.1 The Gay-Lussac-Joule Experiment

For a real gas,  

by using the equation 𝑑𝑞 =
𝜕𝑢

𝜕𝑇 𝑣
𝑑𝑇 +

𝜕𝑢

𝜕𝑣 𝑇
+ 𝑃 𝑑𝑣 divide by the 

temperature T, 

𝑑𝑞

𝑇
=

1

𝑇

𝜕𝑢

𝜕𝑇 𝑣
𝑑𝑇 +

1

𝑇

𝜕𝑢

𝜕𝑣 𝑇
+ 𝑃 𝑑𝑣

𝜕

𝜕𝑣

1

𝑇

𝜕𝑢

𝜕𝑇
=

𝜕

𝜕𝑇

1

𝑇

𝜕𝑢

𝜕𝑣
+ 𝑃

1

𝑇

𝜕2𝑢

𝜕𝑣𝜕𝑇
= −

1

𝑇2
𝜕𝑢

𝜕𝑣
+ 𝑃 +

1

𝑇

𝜕2𝑢

𝜕𝑣𝜕𝑇
+

1

𝑇

𝜕𝑃

𝜕𝑇

𝜕𝑢

𝜕𝑣 𝑇
= 𝑇

𝜕𝑃

𝜕𝑇 𝑣
− 𝑃
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5.2 The Joule-Thomson Experiment

Since the process takes place in an insulated cylinder, 

δ𝑞 = 0

Specific work done in forcing the gas through the plug,  𝑤1 = 𝑣1
0
𝑃1 𝑑𝑣 = −𝑃1𝑣1

Specific work done by the gas in the expansion, 𝑤2 = 0
𝑣2 𝑃2 𝑑𝑣 = 𝑃2 𝑣2

Porous plug

Initial state Final state

𝑷𝟏, 𝒗𝟏 , 𝑻𝟏
𝑷𝟐, 𝒗𝟐 , 𝑻𝟐
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5.2 The Joule-Thomson experiment

The total work,  𝑤 = 𝑤1 + 𝑤2 = 𝑃2 𝑣2 − 𝑃1 𝑣1 = 𝑢1 − 𝑢2

𝑢1 + 𝑃1 𝑣1 = 𝑢2 + 𝑃2 𝑣2 ⟺ ℎ1 = ℎ2

Thus, a throttling process occurs at constant enthalpy.

constant
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5.2 The Joule-Thomson experiment

Joule-Thomson coefficient

𝜇𝐽𝑇 ≡ (
𝜕𝑇

𝜕𝑃
)ℎ

the point where 𝜇𝐽𝑇 = 0 is called inversion point.

from  ℎ = ℎ 𝑇, 𝑃 ,

𝑑ℎ = (
𝜕ℎ

𝜕𝑇
)𝑃 𝑑𝑇 + (

𝜕ℎ

𝜕𝑃
)𝑇 𝑑𝑃

𝜇𝐽𝑇 ≡ (
𝜕𝑇

𝜕𝑃
)ℎ =

𝑇2−𝑇1

𝑃2−𝑃1 ℎ

𝑇2 = 𝑇1 − 𝜇 𝑃2 − 𝑃1

The gas is cooling when the 𝜇 is positive

and heating when the 𝜇 is negative
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5.2 The Joule-Thomson experiment

Joule-Thomson coefficient

𝜇𝐽𝑇 =
𝜕𝑇

𝜕𝑃 ℎ
= −

𝜕𝑇

𝜕ℎ 𝑃

𝜕ℎ

𝜕𝑃 𝑇
=

1

𝐶𝑃
𝑇

𝜕𝑣

𝜕𝑇 𝑃
− 𝑣

For a real gas,  

𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑃

𝑇
𝜕𝑠

𝜕𝑃 𝑇
=

𝜕ℎ

𝜕𝑃 𝑇
− 𝑣

𝜕𝑠

𝜕𝑃 𝑇
=

𝜕(𝑠,𝑇)

𝜕(𝑃,𝑇)
=

𝜕(𝑣,𝑃)

𝜕(𝑃,𝑇)
=-

𝜕𝑣

𝜕𝑇 𝑃

𝜕ℎ

𝜕𝑃
𝑇

= −𝑇
𝜕𝑣

𝜕𝑇
𝑃

+ 𝑣
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5.2 The Joule-Thomson experiment

Joule-Thomson coefficient

𝜇𝐽𝑇 =
𝜕𝑇

𝜕𝑃 ℎ
= −

𝜕𝑇

𝜕ℎ 𝑃

𝜕ℎ

𝜕𝑃 𝑇
=

1

𝐶𝑃
𝑇

𝜕𝑣

𝜕𝑇 𝑃
− 𝑣

For an ideal gas,  𝜇𝐽𝑇 = 0,

𝜕ℎ

𝜕𝑃 𝑇
= 0 and  ℎ = ℎ 𝑇

For a Van der Waals gas, 𝑃 =
𝑅𝑇

𝑣−𝑏
−

𝑎

𝑣2

𝜇𝐽𝑇 =
1

𝑐𝑃

2𝑎
𝑅𝑇

1 −
𝑏
𝑣

2

− 𝑏

1 −
2𝑎
𝑣𝑅𝑇

1 −
𝑏
𝑣

2

If 𝜇𝐽𝑇 = 0, 𝑇𝑖 =
2𝑎

𝑏𝑅
1 −

𝑏

𝑣

2
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5.3 Heat engines and the Carnot cycle

Carnot cycle

In (a), work is done on the system and is converted to heat.

In (b), heat is extracted from a reservoir and is converted to mechanical work.

This configuration is not possible.

𝑇

𝑸

𝑾 𝑴

𝑇

𝑸

𝑾𝑴

(a) (b)

Fig. The concept of a heat engine.
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5.3 Heat engines and the Carnot cycle

Carnot cycle

Can the work done by the system be equal to the heat in?

The second law of thermodynamics states unequivocally that it is impossible to    

construct a perfect heat engine.

Thus case (b) must be modified as case (c)

𝑇

𝑸

𝑾𝑴

(b) (c)

Fig. The concept of a heat engine.

𝑇𝑏

𝑇𝑎

𝑸𝑯

𝑸𝑳

𝑾𝑴
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5.3 Heat engines and the Carnot cycle

Clausius statement

It is impossible to construct a device that operates in a cycle and whose sole 

effect is to transfer heat from a cooler body to a hotter body.

Kelvin-Planck statement

It is impossible to construct a device that operates in a cycle and produces no 

other effect than the performance of work and the exchange of heat with a 

single reservoir.
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5.3 Heat engines and the Carnot cycle

Carnot cycle

1 – 2 : isothermal expansion

2 – 3 : adiabatic expansion

3 – 4 : isothermal compression

4 – 1 : adiabatic compression

𝑇𝑏

𝑇𝑎

𝑸𝑯

𝑸𝑳

𝑾

Fig. P-V and T-S diagrams of Carnot cycle.



19/24

5.3 Heat engines and the Carnot cycle

The efficiency of the engine, 

𝜂 =
𝑊

𝑄𝐻
=

𝑊

𝑄𝐻
=
output

input

Applying the first law to the system,

∆𝑈 = 𝑄𝐻 + 𝑄𝐿 −𝑊 = 𝑄𝐻 − 𝑄𝐿 − 𝑊 𝑄𝐿 < 0

Since the system is in a cyclical process, ∆𝑈 = 0. Then,

𝑊 = 𝑄𝐻 + 𝑄𝐿 or 𝑊 = 𝑄𝐻 − 𝑄𝐿

Substituting the equations,

𝜂 =
𝑄𝐿+𝑄𝐻

𝑄𝐻
= 1 +

𝑄𝐿

𝑄𝐻
= 1 −

𝑄𝐿

𝑄𝐻
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5.3 Heat engines and the Carnot cycle

For an ideal gas,  𝑃𝑣 = 𝑅𝑇 , 𝑢 = 𝑢 𝑇 ,

For isothermal process,  𝑄𝐻 = 𝑊12 = 𝑛 ത𝑅 𝑇𝑏 ln
𝑉2

𝑉1
> 0

-𝑄𝐿 = 𝑊34 = 𝑛 ത𝑅 𝑇𝑎 ln
𝑉4

𝑉3
< 0

For adiabatic process,  𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ,

𝑇𝑏 𝑉2
𝛾−1 = 𝑇𝑎 𝑉3

𝛾−1

𝑇𝑏 𝑉1
𝛾−1 = 𝑇𝑎 𝑉4

𝛾−1

⇒
𝑉2

𝑉1
=

𝑉3

𝑉4

⇒
𝑄𝐻

𝑄𝐿
=

𝑇𝑏

𝑇𝑎

The efficiency of the Carnot cycle,  𝜂 = 1 −
𝑄𝐿

𝑄𝐻
= 1 −

𝑇𝑎

𝑇𝑏

𝑠2 − 𝑠1 = 𝑐𝑣ln
𝑇2
𝑇1

+ 𝑅ln
𝑣2
𝑣1

= 𝑐𝑝ln
𝑇2
𝑇1

− 𝑅ln
𝑃2
𝑃1

= 0

𝑐𝑣 =
1

𝜅 − 1
𝑅, 𝑐𝑝 =

𝜅

𝜅 − 1
𝑅

𝑃2
𝑃1

=
𝑣1
𝑣2

𝜅
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5.3 Heat engines and the Carnot cycle

Carnot engine has the maximum efficiency for any engine that one might design.

1. Carnot engine operates between two reservoirs and that it is reversible. 

2. If a working substance other than an ideal gas is used, the shape of curves in   

the P-V diagram will be different.

3. The efficiency would be 100 percent if we were able to obtain a low temperature 

reservoir at absolute zero. → However this is forbidden by the third law.
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5.3 Heat engines and the Carnot cycle

Carnot refrigerator

Reverse process of Carnot engine

Coefficient of performance(COP)

COP ≡ −
𝑄𝐿
𝑊

=
𝑄𝐿
𝑊

=
𝑄𝐿

𝑄2 − 𝑄𝐿
=

𝑇1
𝑇2 − 𝑇1

We introduce a minus sign in order to make the COP a positive quantity.

The heat 𝑄𝐿 is extracted from the low temperature reservoir and W is the work done 

on the system. 𝑄𝐿 is positive (heat flow into the system) and W is negative (work 

done on the system)

𝑇𝑏

𝑇𝑎

𝑸𝑯

𝑸𝑳

𝑾
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5.3 Heat engines and the Carnot cycle

Typical refrigerator

1. The refrigerant is a substance chosen to be a saturated liquid at the pressure 

and temperature of condenser.

2. The liquid undergoes a throttling process in which it is cooled and is partially 

vaporized.

Condenser

Evaporator

𝑸𝑯

𝑸𝑳

𝑾

C
o
m

p
re

s
s
o
r

Expansion 

valve

low 

pressure 

liquid/ 

vapor

low 

pressure 

vapor

high 

pressure 

vapor

high 

pressure 

liquid

(heat out to surrounding)

(heat in from refrigerator space)

refrigerant 

(e.g. freon)

long capillary tube

Fig. Schematic diagram of a typical refrigerator
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5.3 Heat engines and the Carnot cycle

Condenser

Evaporator

𝑸𝑯

𝑸𝑳

𝑾

C
o
m

p
re

s
s
o
r

Expansion 

valve

low 

pressure 

liquid/ 

vapor

low 

pressure 

vapor

high 

pressure 

vapor

high 

pressure 

liquid

(heat out to surrounding)

(heat in from refrigerator space)

refrigerant 

(e.g. freon)

long capillary tube

Fig. Schematic diagram of a typical refrigerator

Typical refrigerator

3. The vaporization is completed in the evaporator: the heat is absorbed by the 

refrigerant from the low temperature reservoir (the interior refrigerator space).

4. The low pressure vapor is then adiabatically compressed and isobarically cooled 

until it becomes a liquid again.
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6.1 Introduction to the Second Law of Thermodynamics 

Figure 6.1 Coffee

Irreversible Process 

Not possible !
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• Is there any way in which we can write the first law in terms of state 

variables only?          →   The Second Law of thermodynamics

• Is there any state variable by which we can distinguish between a 

reversible and an irreversible process?

→   The Second Law of thermodynamics

Most general form (for closed system) is,

𝒅𝑼 = 𝜹𝑸 − 𝜹𝑾 (𝒆𝒒. 𝟔. 𝟏)

(Neither 𝜹𝑄 or 𝜹𝑊 is an exact differential) 

6.1 Introduction to the Second Law of Thermodynamics 
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6.2 The Mathematical Concept of Entropy 

𝜹𝑾𝒓 = 𝑷𝒅𝑽 (𝑉 is a state variable and  d𝑉 is an exact differential)

𝜹𝑾𝒓

𝑷
= 𝒅𝑽 (𝒆𝒒. 𝟔. 𝟐) (

1

𝑃
is integrating factor) 

𝜹𝑸𝒓

𝑻
≡ 𝒅𝑺 (𝒆𝒒. 𝟔. 𝟑) (Clausius definition of the entropy S) 

Substituting eq. 6.2 & eq. 6.3 in eq. 6.1 ,

_________________________
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6.3 Irreversible Processes (Clausius statement)

Figure 6.2 Schematic diagram of a device

forbidden by the Clausius

statement of the second law.

𝑇2 (hot)

𝑇1 (𝑐𝑜𝑙𝑑)

𝑀

𝑄2

𝑄1

• Clausius statement : It is impossible to 

construct a device that operates in a cycle and 

whose sole effect is to transfer heat from a 

cooler body to a hotter body

→ 𝐼𝑓 𝑇2 > 𝑇1 then 𝑄2 = 𝑄1 ,
𝑤𝑖𝑡ℎ 𝑊 = 0 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
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6.3 Irreversible Processes (Kelvin-Planck statement)

• Kelvin-Planck statement : It is impossible to 

construct a device that operates in a cycle and 

produces no other effect than the performance 

of work and the exchange of heat with a single 

reservoir. 

→ 𝐼𝑡 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑊 = 𝑄

Figure 6.3 Schematic diagram of a device

forbidden by the Kelvin-Planck

statement of the second law.

𝑇

𝑀

𝑄

𝑊
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6.4 Carnot’s Theorem 

Figure 6.4 A composition engine in violation

of the Clausius statement

𝑇2

𝑇1

𝑀′

𝑄1

𝑄1

𝑀

𝑄1

𝑄2

𝑊

Figure 6.5 The equivalent engine in violation

of the Kelvin-Planck statement

𝑇

𝑀

𝑄2 − 𝑄1

𝑊

C.V. C.V.

Work generation from? Heat is transported from T to where? 

Applying Carnot’s theorem to both statement,

it is impossible to make engine which goes against the statements.
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Figure 6.6 Schematic diagram of Carnot’s cycle
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𝑀
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For Carnot cycle,
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+
𝑄1
𝑇1

= 0
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𝑇2

+
𝜹𝑄1
𝑇1

= 0


𝜹𝑄𝑡
𝑇𝑡

→
_______________
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For irreversible cycle,

𝑄1′

𝑄2′
<

𝑄1
𝑄2

= −
𝑇1
𝑇2

𝑸𝟐′

𝑻𝟐
+

𝑸𝟏′

𝑻𝟏
< 𝟎

ර
𝜹𝑄𝑟
𝑇

< 0 ර
𝜹𝑄

𝑇
≤ 0

→

→→ → ර
𝜹𝑸

𝑻
=ර

𝟏

𝟐𝜹𝑸

𝑻
+ර

𝟐

𝟏𝜹𝑸𝒓

𝑻
≤ 𝟎

ර
1

2𝜹𝑄

𝑇
≤ ර

2

1𝜹𝑄𝑟
𝑇

≡ → 𝒅𝑺 ≥
𝜹𝑸

𝑻

∆𝑆 ≡ 𝑆2 − 𝑆1 ≥ 0 (𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚)

6.5 The Clausius Inequality and The Second Law 

_______________

________
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∆𝑺 ≡ 𝑺𝟐 − 𝑺𝟏 ≥ 𝟎 (𝒊𝒔𝒐𝒍𝒂𝒕𝒆𝒅 𝒔𝒚𝒔𝒕𝒆𝒎)

The entropy of an isolated system increases in 

any irreversible process and is unaltered in any 

reversible process. 

This is the

6.5 The Clausius Inequality and The Second Law 

______________________________________


