Entity Relationship Modeling

Entity-Relationship Diagram (ERD)

Components

- Entities: correspond to tables in the relational database
- Attributes: define the characteristics of entities
 - Attributes have a domain: a set of possible values
- Relationships: association between entities
 - Connectivity and cardinality: defines the characteristics of the relationships

Example: STUDENT Entity

Attributes

Composite attribute (e.g.: address)

Further subdivided to yield additional attributes: street, city, state, zip code

Simple attribute (e.g.: sex)

Cannot be subdivided

Single-valued attribute (e.g.: SSN)

Have only a single value, No need for being simple attribute (serial number)

Multi-valued attributes

Have many values, car colors \rightarrow interior, exterior, roof, etc.

Derived Attributes

- Attribute whose value may be calculated (derived) from other attributes
- Need not be physically stored within the database
- Can be derived by using an algorithm

Connectivity and Cardinality

- Connectivity
 - Used to describe the relationship classification (1:1, 1:M, M:N)
- Cardinality
 - Expresses the specific number of entity occurrences (min and max) associated with one occurrence of the related entity (provide boundary conditions like 1:3, define the storage requirements/limitations)
- Established by *business rules*

Connectivity and Cardinality in an ERD

RELATIONSHIP Strength

- Existence dependence Weak entity
 - Entity's existence depends on the existence of one or more other entities (EMPLOYEE claims DEPENDENT) DEPENDENT entity cannot exist without EMPLOYEE entity
- Existence independence strong entity, In-house parts VS vendors "PART is supplied by VENDOR"
 - Entity can exist apart from one or more related

entities

Strong relationships: contain/inherit parent entity's PK as composite PK COURSE(<u>CRS_CODE</u>, DEPT_CODE, CRS_DISCRIPTION, CRS_CREDIT) CLASS(<u>CRS_CODE</u>, <u>CLASS_SECTION</u>, CLASS_TIME, ROOM_CODE, ...)

CLASS(<u>CLASS_CODE</u>, CRS_CODE, CLASS_SECTION, …) → weak relationships (PK and FK link)

Relationship Degree

- Indicates number of associated entities or participants
 - Unary relationship
 - Association is maintained within a single entity
 - Binary relationship
 - Two entities are associated
 - Ternary relationship
 - Three entities are associated

Relationship Degree (2)

O: Optional (when the 'parent' does not require a 'child' to be present) "Professor teaches 0 to 3"

Relationship Degree (2)

TABLE Crow's Foot Symbols 4.3						
CROW'S FOOT SYMBOL	CARDINALITY	COMMENT				
O€	(0,N)	Zero or many. Many side is optional.				
ł€	(1,N)	One or many. Many side is mandatory.				
H	(1,1)	One and only one. 1 side is mandatory.				
Ol	(0,1)	Zero or one. 1 side is optional.				

Recursive Relationships

Various Implementations of a 1:1 Recursive Relationship

Table name: EMPLOYEE_V1

148	EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_SPOUSE
	345	Ramirez	James	347
	346	Jones	Anne	349
	347	Ramirez	Louise	345
	348	Delaney	Robert	
	349	Shapiro	Anton	346

Database name: Ch04_PartCo

First implementation

If divorces, two records must be updated! → Possible inconsistent data

Table name: EMPLOYEE

EMP_NUM	EMP_LNAME	EMP_FNAME
345	Ramirez	James
346	Jones	Anne
347	Ramirez	Louise
348	Delaney	Robert
349	Shapiro	Anton

Table name: MARRIED_V1

252	EMP_NUM	EMP_SPOUSE
	345	347
	346	349
112	347	345
	349	346

Second implementation

Better no "null" → still redundant

Table name: MARRIAGE

1000		MAR_NUM	MAR_DATE
	+	1	04-Mar-03
	+	2	02-Feb-99

Table name: MARPART

0.035	MAR_NUM	EMP_NUM
	1	345
	1	347
	2	346
	2	349

Table name: EMPLOYEE

	EMP_NUM	EMP_LNAME	EMP_FNAME
•	345	Ramirez	James
12	346	Jones	Anne
	347	Ramirez	Louise
	348	Delaney	Robert
	349	Shapiro	Anton

The Relational Schema for the Third Implementation

Composite Entities

- Also known as *bridge entities*
- Composed of the primary keys of each of the entities to be connected
- May also contain additional attributes that play no role in the connective process

The M:N Relationship Between STUDENT and CLASS

FIGURE 4.25 THE M:N RELATIONSHIP BETWEEN STUDENT AND CLASS

A Composite Entity in an ERD

•Converting the M:N Relationship into Two 1:M Relationships

Converting the M:N Relationship into Two 1:M Relationships

Database name: Ch04 CollegeTry

Table name: STUDENT

		STU_NUM	STU_LNAME
•	+	321452	Bowser
	+	324257	Smithson

Table name: ENROLL

CLASS_CODE	STU_NUM	ENROLL_GRADE
10014	321452	С
10014	324257	в
10018	321452	A
10018	324257	в
10021	321452	С
10021	324257	С

Table name: CLASS

	CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
+	10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
+	10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
+	10021	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114

into Two 1:M Relationships

A Comparison of ER Modeling Symbols

FIGURE 4.31 A COMPARISON OF ER MODELING SYMBOLS

	Chen	Crow's Foot	Rein85	IDEF1X
Entity				
Relationship line				
Relationship	<>			
Option symbol	0	0	0	\diamond
One (1) symbol	1	- I	$\overline{}$	
Many (M) symbol	м		-	\bigcirc
Composite entity				
Weak entity				

The Chen Representation of the Invoicing Problem

Components of the ER Model

TABLE 4.2 COMPONENTS OF THE ER MODEL

ENTITY	RELATIONSHIP	CONNECTIVITY	ENTITY
SCHOOL	operates	1:M	DEPARTMENT
DEPARTMENT	has	1:M	STUDENT
DEPARTMENT	employs	1:M	PROFESSOR
DEPARTMENT	offers	1:M	COURSE
COURSE	generates	1:M	CLASS
PROFESSOR	is an	1:1	EMPLOYEE
PROFESSOR	is dean of	1:1	SCHOOL
PROFESSOR	chairs	1:1	DEPARTMENT
PROFESSOR	teaches	1:M	CLASS
PROFESSOR	advises	1:M	STUDENT
STUDENT	enrolls in	1:M	CLASS
BUILDING	contains	1:M	ROOM
ROOM	is used for	1:M	CLASS

The Completed Tiny College ERD

ER Diagram Exercises

- Given the following brief summary for the CM catering service, draw the fully labeled ERD. Make sure to include all appropriate entities, attributes, relationships, connectivities, and cardinalities. Each dinner is based on a single entrée, but each entrée can be served at many dinners. A guest can attend many dinners, and each dinner can be attended by many guests. Each dinner invitation can be mailed to many quests, and each guest can receive many invitations.
- 2. The Travis County Basketball Conference (TCBC) is an amateur basketball association. Each city in the county has one team that represents it. Each team has a maximum of 12 players and a minimum of nine players. Each team also has up to three coaches. Each team plays two games (home and visitor) against each of the other teams during the season. Scores of each game must be recorded. Given these conditions draw an ERD to represent the TCBC database. Make sure to include all appropriate entities, attributes, relationships, connectivities, and cardinalities.