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7.1 Entropy Changes in Reversible Processes

For reversible process,        𝜹𝒒𝒓 = 𝒅𝒖 + 𝑷 𝒅𝒗

1. Adiabatic process : 𝜹𝒒𝒓 = 𝟎, 𝒅𝒔 = 𝟎, 𝒔 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

2. Isothermal process :       𝒔𝟐 − 𝒔𝟏 = 𝟏
𝟐 𝜹𝒒𝒓

𝑻
=

𝒒𝒓

𝑻
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3. Isothermal (and isobaric) change of phase :   𝒔𝟐 − 𝒔𝟏 =
𝒍

𝑻

4.   Isochoric process :      𝒔𝟐 − 𝒔𝟏 = 𝟏
𝟐
𝒄𝒗

𝒅𝑻

𝑻
= 𝒄𝒗 𝐥𝐧

𝑻𝟐

𝑻𝟏

5. Isobaric process :        
𝜹𝒒𝒓

𝑻
=

𝒅𝒉

𝑻
−

𝒗

𝑻
𝒅𝑷 = 𝒅𝒔

𝒔𝟐 − 𝒔𝟏 = 𝟏
𝟐
𝒄𝒑

𝒅𝑻

𝑻
= 𝒄𝒑 𝐥𝐧

𝑻𝟐

𝑻𝟏

7.1 Entropy Changes in Reversible Processes
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7.2 Temperature-Entropy Diagrams

𝒒𝒓 = 𝟏
𝟐
𝑻 𝒅𝒔

ර𝑻𝒅𝒔 = 𝒒𝒓 = 𝒘
Figure 7.1 T-s diagram for a Carnot cycle [1]

The total quantity of heat transferred in a 

reversible process from state 1 to state 2 is 

given by

The T-s diagram is simple rectangle for a 

Carnot cycle. 

The area under the curve is 

ර𝑑𝑢 = 0since
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Surroundings

𝑇 + 𝑑𝑇

System

𝑇
𝑑𝑞𝑟 > 0

7.3 Entropy Change of the Surroundings (Reversible)

The heat flow out of the surroundings at every point is equal in 

magnitude and opposite in sign to the heat flow into the system.

𝑑𝑞𝑖𝑛 = 𝑑𝑞𝑜𝑢𝑡 = 𝑑𝑞𝑟

For a reversible process, temperature of system and its surroundings 

are equal.

𝑑𝑇 ≪ 𝑇
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Surroundings

𝑇 + 𝑑𝑇

System

𝑇
𝑑𝑞𝑟 > 0

|𝒅𝒔|𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = − 𝒅𝒔 𝒔𝒚𝒔𝒕𝒆𝒎 & 𝒅𝒔 𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒆 = 𝟎

7.3 Entropy Change of the Surroundings (Reversible)

𝒅𝒔𝒔𝒚𝒔𝒕𝒆𝒎 + 𝒅𝒔𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = 𝒅𝒔𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒆,

( 𝜹𝒒𝒓
𝑻+𝒅𝑻

)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 ≈ 𝜹𝒒𝒓
𝑻 𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

= (𝜹𝒔)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

So,

and from
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Surroundings

𝑇 + Δ𝑇

System

𝑇
𝑑𝑞𝑖𝑟𝑟 > 0

However for an irreversible case, 

Δ𝑇 > 0

7.3 Entropy Change of the Surroundings (Irreversible)

𝜹𝒒𝒓
𝑻 𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

> ( 𝜹𝒒𝒓
𝑻+Δ𝑻

)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = (Δ𝒔)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

and
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7.3 Entropy Change of the Surroundings (Irreversible)

Δ𝒔𝒔𝒚𝒔𝒕𝒆𝒎 + Δ𝒔𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = Δ𝒔𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒆 > 𝟎

(Entropy generation!)

So,

Surroundings

𝑇 + Δ𝑇

System

𝑇
𝑑𝑞𝑖𝑟𝑟 > 0
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7.4 Entropy Change for an Ideal Gas

With 𝒅𝒖 = 𝒄𝒗𝒅𝑻, we have

𝒒𝒓
𝑻
=
𝒄𝒗𝒅𝑻

𝑻
+
𝑷

𝑻
𝒅𝒗 = 𝒅𝒔

For a reversible process, For an ideal gas, P/T = R/𝑣 , so

𝒅𝒔 = 𝒄𝒗
𝒅𝑻

𝑻
+ 𝑹

𝒅𝒗

𝒗

Integrating, we have

𝒔𝟐 − 𝒔𝟏 = 𝒄𝒗 𝐥𝐧 (
𝑻𝟐
𝑻𝟏
)+ 𝑹 𝐥𝐧 (

𝒗𝟐
𝒗𝟏
)
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7.5 The Tds Equations

From the combined first and second laws,  𝐓𝐝𝐬 = 𝒅𝒖 + 𝑷 𝒅𝒗

𝑻𝒅𝒔 = 𝒄𝒑 𝒅𝑻 − 𝑻 (
𝝏𝒗

𝝏𝑻
)𝒑 𝒅𝑷 (𝒔 = 𝒔 𝑻, 𝑷 )

𝑻𝒅𝒔 = 𝒄𝒑(
𝝏𝑻

𝝏𝒗
)𝒑 𝒅𝒗 + 𝒄𝒗 (

𝝏𝑻

𝝏𝑷
)𝒗 𝒅𝑷 (𝒔 = 𝒔 𝒗,𝑷 )

𝑻𝒅𝒔 = 𝒄𝒗 𝒅𝑻 + 𝑻 (
𝝏𝑷

𝝏𝑻
)𝒗 𝒅𝒗 (𝒔 = 𝒔 𝑻, 𝒗 )

(※ Assignments) Entropy can be expressed as a function of specific 

volume and pressure or temperature and specific volume. Prove the 

below two equations using Maxwell relations.
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7.5 The Tds Equations

Let 𝑇 𝑎𝑛𝑑 𝑃 be the independent variables . 

The enthalpy is  ℎ ≡ 𝑢 + 𝑃 𝑣 thus, 

𝒅𝒔 =
𝟏

𝑻
(
𝝏𝒉

𝝏𝑻
)𝑷𝒅𝑻 +

𝟏

𝑻
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]𝒅𝑷

𝑻𝒅𝒔 = 𝒅𝒉 − 𝒗𝒅𝑷

= [(
𝝏𝒉

𝝏𝑻
)𝑷𝒅𝑻 + (

𝝏𝒉

𝝏𝑷
)𝑻 𝒅𝑷] − 𝒗𝒅𝑷
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With 𝑠 = 𝑠(𝑇, 𝑃), we have

𝒅𝒔 = (
𝝏𝒔

𝝏𝑻
)𝑷𝒅𝑻 + (

𝝏𝒔

𝝏𝑷
)𝑻𝒅𝑷

Since 𝑇 𝑎𝑛𝑑 𝑃 are independent, it follows that

(
𝝏𝒔

𝝏𝑻
)𝑷 =

𝟏

𝑻
(
𝝏𝒉

𝝏𝑻
)𝑷 (

𝝏𝒔

𝝏𝑷
)𝑻 =

𝟏

𝑻
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]𝑎𝑛𝑑

7.5 The Tds Equations

𝒅𝒔 =
𝟏

𝑻
(
𝝏𝒉

𝝏𝑻
)𝑷𝒅𝑻 +

𝟏

𝑻
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]𝒅𝑷
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The differential 𝑑𝑠 is exact. Therefore,  

[
𝝏

𝝏𝑷
(
𝝏𝒔

𝝏𝑻
)𝑷]𝑻=

𝝏𝟐𝒔

𝝏𝑷𝝏𝑻
=

𝝏𝟐𝒔

𝝏𝑻𝝏𝑷
= [

𝝏

𝝏𝑷
(
𝝏𝒔

𝝏𝑻
)𝑻]𝑷

𝟏

𝑻

𝝏𝟐𝒉

𝝏𝑷𝝏𝑻
=
𝟏

𝑻
[
𝝏𝟐𝒉

𝝏𝑻𝝏𝑷
− (

𝝏𝒗

𝝏𝑻
)𝑷 ] −

𝟏

𝑻𝟐
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]

Substituting last two Equations from previous slide, we get  

↔ (
𝝏𝒉

𝝏𝑷
)𝑻 = −𝑻 (

𝝏𝒗

𝝏𝑻
)𝑷 + 𝒗

7.5 The Tds Equations
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For a reversible process 𝑐𝑃 =
𝜕ℎ

𝜕𝑇 𝑃

𝑻𝒅𝒔 = 𝒄𝑷𝒅𝑻 − 𝑻 (
𝝏𝒗

𝝏𝑻
)𝑷 𝒅𝑷

Finally, since the coefficient of volume expansion 𝛽 =
1

𝑣

𝜕𝑣

𝜕𝑇 𝑃
, we have

𝑻𝒅𝒔 = 𝒄𝑷𝒅𝑻 − 𝑻 𝒗𝜷𝒅𝑷

7.5 The Tds Equations
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8.1 Introduction

Figure 8.1 Pictorial summary of the four dynamic properties [1]

U Internal

energy F

GH

Helmholtz

Free energy

Gibbs

Free energy
Enthalpy

U = energy needed 

to create a system

F = energy needed to create a 

system – energy provided by 

the environment

H = energy needed to 

create a system + the work 

needed to make room for it

G = total energy needed to create a 

system + the work needed to make 

room for it – energy provided by the 

environment

𝑮 = 𝑼 + 𝑷𝑽 − 𝑻𝑺𝑯 = 𝑼 + 𝑷𝑽

𝑭 = 𝑼 − 𝑻𝑺

+𝑷𝑽

−𝑻𝑺
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8.1 Introduction

𝒅𝑼 = 𝑻𝒅𝑺 − 𝑷𝒅𝑽

𝑺 𝒂𝒏𝒅 𝑽 :      intrinsically extensive quantities

𝑻 𝒂𝒏𝒅 − 𝑷: intensive variables that are said to be canonically conjugate to them 

So, canonically conjugate pairs are  

𝑻, 𝑺 𝒂𝒏𝒅 − 𝑷, 𝑽

𝑻 𝒂𝒏𝒅 𝑺 are thermal variables, whereas 𝑷 𝒂𝒏𝒅 𝑽 are mechanical variables
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8.1 Introduction

𝒅𝑼 = (
𝝏𝑼

𝝏𝑺
)𝑽𝒅𝑺 + (

𝝏𝑼

𝝏𝑽
)𝑺𝒅𝑽

𝑼 = 𝑼(𝑺, 𝑽)Assume

(
𝝏𝑼

𝝏𝑺
)𝒗= 𝑻 , (

𝝏𝑼

𝝏𝑽
)𝒔= −𝑷

However, the selection of the two independent variables is a matter of choice.
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8.3 Definition of the Thermodynamic Potentials

𝒅𝑯 = (
𝝏𝑯

𝝏𝑺
)𝑷𝒅𝑺 + (

𝝏𝑯

𝝏𝑷
)𝒔𝒅𝑷

𝑯 = 𝑯(𝑺,𝑷)Assume

(
𝝏𝑯

𝝏𝑺
)𝑷= 𝑻 , (

𝝏𝑯

𝝏𝑷
)𝑺= 𝑽

𝒅𝑯 = 𝑻𝒅𝑺 + 𝑽𝒅𝑷

𝑯 = 𝑼+ 𝑷𝑽
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𝒅𝑭 = (
𝝏𝑭

𝝏𝑽
)𝑻𝒅𝑽 + (

𝝏𝑭

𝝏𝑻
)𝑽𝒅𝑻

𝑭 = 𝑭(𝑻, 𝑽)Assume

(
𝝏𝑭

𝝏𝑽
)𝑻= −𝑷 , (

𝝏𝑭

𝝏𝑻
)𝑽= −𝑺

𝒅𝑭 = −𝑷𝒅𝑽 − 𝑺𝒅𝑻

𝑭 = 𝑼 − 𝑺𝑻

8.3 Definition of the Thermodynamic Potentials
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𝒅𝑮 = (
𝝏𝑮

𝝏𝑻
)𝑷𝒅𝑻 + (

𝝏𝑮

𝝏𝑷
)𝑻𝒅𝑷

𝑮 = 𝑮(𝑻, 𝑷)Assume

(
𝝏𝑮

𝝏𝑻
)𝑷= −𝑺 , (

𝝏𝑮

𝝏𝑷
)𝑻= 𝑽

𝒅𝑮 = −𝑺𝒅𝑻 + 𝑽𝒅𝑷

𝑮 = 𝑼 + 𝑷𝑽 − 𝑺𝑻

8.3 Definition of the Thermodynamic Potentials
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8.4 The Maxwell Relations 

𝝏𝟐𝑼

𝝏𝑽𝝏𝑺
= (

𝝏𝑻

𝝏𝑽
)𝑺=

𝝏𝟐𝑼

𝝏𝑺𝝏𝑽
= −(

𝝏𝑷

𝝏𝑺
)𝑽

Each of the four thermodynamic potentials is a state variable whose 

differential is exact.   As an example, we consider

(
𝝏𝑻

𝝏𝑽
)𝑺= −(

𝝏𝑷

𝝏𝑺
)𝑽

𝒅𝑼 = 𝑻𝒅𝑺 + −𝑷 𝒅𝑽 = (
𝝏𝑼

𝝏𝑺
)𝑽𝒅𝑺 + (

𝝏𝑼

𝝏𝑽
)𝑺𝒅𝑽

Maxwell relation :
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8.5 The Helmholtz Function 

Change in U is the heat flow in an isochoric reversible process.

𝒅𝑼 = 𝑻𝒅𝑺 + −𝑷 𝒅𝑽

Change in H is the heat flow in an isobaric reversible process.

∆𝑼 = 𝑸𝑺𝒖𝒑𝒑𝒍𝒊𝒆𝒅→

𝒅𝑯 = 𝑻𝒅𝑺 + 𝑽𝒅𝑷 ∆𝑯 = 𝑸𝑺𝒖𝒑𝒑𝒍𝒊𝒆𝒅→
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8.5 The Helmholtz Function 

For isothermal process, change in F

𝒅𝑭 = −𝑺𝒅𝑻 − 𝑷𝒅𝑽 ∆𝑭 = −න𝑷𝒅𝑽→

∆𝑾 = −∆𝑭𝑻

𝑸 𝒕𝒐 𝑺𝒚𝒔𝒕𝒆𝒎

∆𝑭 = Maximum energy available for 

work in the isothermal process

(Work done on/by the system)

∆𝑾 ≤ −∆𝑭
(no change in 𝑇)

𝜹𝑸 = 𝒅𝑼 + 𝜹𝑾 = 𝒅𝑼 + 𝑷𝒅𝑽 𝒅𝑺 =
𝜹𝑸

𝑻
+ 𝜹𝚯

𝜹𝑾 = −𝒅𝑼 + 𝑻𝒅𝑺 − 𝑻𝜹𝚯 = −𝒅 𝑼 − 𝑻𝑺 − 𝑻𝜹𝚯 = −𝒅𝑭 − 𝑻𝜹𝚯
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8.6 The Gibbs Function 

𝒅𝑮 = −𝑺𝒅𝑻 + 𝑽𝒅𝑷

Consider a system in a surrounding environment that constitutes a 

temperature and pressure reservoir. Most chemical reactions and some 

phase changes take place in this way. 

𝑰𝒇 𝑻 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝑷 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕, ∆𝑮)𝑻,𝑷 = 𝟎
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8.6 The Gibbs Function 

∆𝑮 = Maximum energy available for work 

in the isothermal, isobaric process

∆𝑾𝒏𝒐𝒏−𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 ≤ −∆ 𝑼 + 𝑷𝑽 − 𝑻𝑺 = −∆𝑮

𝜹𝑾𝒏𝒐𝒏−𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 = −𝒅𝑼 − 𝑷𝒅𝑽 + 𝑻𝒅𝑺 − 𝑻𝜹𝚯

𝜹𝑾 = 𝑷𝒅𝑽 + 𝜹𝑾𝒏𝒐𝒏−𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍

= −𝒅𝑼 + 𝜹𝑸 = −𝒅𝑼 + 𝑻𝒅𝑺 − 𝑻𝜹𝚯

= −𝒅 𝑼 + 𝑷𝑽 − 𝑻𝑺 − 𝑻𝜹𝚯 = −𝒅𝑮 − 𝑻𝜹𝚯

𝑷∆𝑽𝑻,𝑷

𝑸 𝒕𝒐 𝑺𝒚𝒔𝒕𝒆𝒎

∆𝑾𝒏𝒐𝒏−𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 = −∆𝑮
⊕⊖


