

What is Deep Learning?

Definition

■ A subfield of machine learning that is based on *deep neural networks* consisting of multiple hidden layers to mimic the structure and function of the human brain

Basic Architecture

Why Deep Learning?

■ Breakthrough in Image Classification Challenge | M ¼ G E N E T

The Deeper, The Better

Deep Learning Revolution

I Three Key Enablers

Computation Big Data Algorithms

Deep Learning Revolution

Applications in Daily Lives

Deep Learning Revolution

Applications in Construction (C!Lab)

Automated Construction Site Monitoring

Infrastructure Damage Prediction

Actual inspection

Reduce

quality

Automated Construction Document Analysis

Deep Neural Network (DNN)

Recurrent Neural Network (RNN)

Convolutional Neural Network (CNN)

Graph Neural Network (GNN)

■ 1. Deep Neural Network

■ A type of artificial neural networks that contain more than two hidden fully-connected layers

1. Deep Neural Network

- Model structure: input layer, (more than two) hidden layers, and output layer → A set of neurons
- Computational process: (1) weighting, (2) sum, and (3) activation

1. Deep Neural Network

- Computational process: (1) weighting, (2) sum, and (3) activation
 - An activation process is one of the most significant contributors to the performance of deep learning models. Specifically, *non-linear* activation functions allow deep neural networks to learn complex data and decision boundaries more effectively.

Linear vs. Non-linear (Decision Boundaries)

(Source: Feng et al. 2019)

#.#. Deep Learning

Major Architectures in Deep Learning

1. Deep Neural Network

- Advantages
 - Great ability to learn and represent complex relationships between input data (e.g., image) and output inferences (e.g., class), compared to traditional machine learning models (e.g., k-NN, support vector machine, etc.)
- Disadvantages
 - Black-box algorithms
 - Too dense and complex (← fully-connected layers)
 - A large number of parameters to be trained → possibility of overfitting
 - Need for a large amount of training data

2. Convolutional Neural Network

A type of deep neural networks that split input data into small units, share weighting parameters (i.e., convolution), and extract various features of each unit for classification (e.g., image recognition)

2. Convolutional Neural Network

■ Model structure: **convolution layer**, pooling layer, and fully-connected layer

(Source: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac)

- 2. Convolutional Neural Network
 - Model structure: **convolution layer**, pooling layer, and fully-connected layer
 - Example of image convolution

(Source: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac)

Extract important visual features

2. Convolutional Neural Network

Model structure: convolution layer, pooling layer, and fully-connected layer

Reduce the spatial dimension while maintaining information details

2. Convolutional Neural Network

■ Model structure: convolution layer, pooling layer, and fully-connected layer

Same as Deep Neural Network

2. Convolutional Neural Network

- Applications
 - Widely used for classification tasks

Image Classification

dog

Object Detection

(Source: https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088)

#.#. Deep Learning

Major Architectures in Deep Learning

2. Convolutional Neural Network

- Advantages
 - Excellent ability to learn spatial features and local connectivity (through the convolution among neighbor pixels)
 - Comparatively sparse structure compared to deep neural networks
 - Reduce the number of parameters \rightarrow less possibility of overfitting

Disadvantages

- Unable to learn temporal and time-series data (e.g., natural language processing, signal processing, video analysis)

3. Recurrent Neural Network

A type of deep neural networks that consider temporal patterns of input sequence data

3. Recurrent Neural Network: Simple RNN

- Model structure: a sequence of neural networks
- Computational process: same with deep neural networks except that
 - (1) it receives the previous hidden state as input
 - (2) it transfers the current hidden state to the next hidden state

3. Recurrent Neural Network: Simple RNN

- Advantages
 - Can consider temporal dynamics of input data
 - Robust to the length of input data
- Disadvantages
 - Difficulty in accessing information from a long time ago, called *Gradient Vanishing problems*

- 3. Recurrent Neural Network: Long Short Term Memory
 - Model structure and computational process: Same with simple RNN except that
 - The forget gate and memory cell are additionally included in hidden layers

- 3. Recurrent Neural Network: Long Short Term Memory
 - Advantages
 - Can learn important sequential information selectively

Cat, which has.., is

- Can address gradient vanishing problems
- Disadvantages
 - Unable to consider backward sequential patterns

■ 3. Recurrent Neural Network: Bidirectional RNN and LSTM

- Model structure and computational process: Similar to simple RNN and LSTM except that
 - (1) it receives both previous and next hidden states as input
 - (2) it transfers the current hidden state to both previous and next hidden state

- 3. Recurrent Neural Network
 - Applications

Image Captioning

a man on a skateboard. man riding a bicycle. orange cone on the ground. man riding a bicycle. two people riding a skateboard. red helmet on the man. skateboard on the ground. white shirt with red and white stripes. orange and white cone. trees are behind the people.

(Source: https://cs.stanford.edu/people/karpathy/densecap/)

Machine Translation

Speech Recognition

(Source: https://becominghuman.ai/voice-recognition-beyond-smart-speakers-6b6c61c7b9e8)

#.#. Deep Learning

Major Architectures in Deep Learning

■ 3. Recurrent Neural Network: Bidirectional RNN and LSTM

- Advantages
 - Can consider both forward and backward sequential patterns
- Disadvantages
 - More complex models than simple RNN and LSTM → Bidirectional models are not always best
 - Unable to learn complex multi-dimensional networks

- 4. Graph Neural Network (as an emerging architecture)
 - A type of deep neural networks that learn a set of objects (i.e., nodes) and their relationships (i.e., edges)

4. Graph Neural Network

- Model structure: a set of nodes and their linked edges
- Computational process: there are diverse processing methods, but one of the most typical processes is
 - Neighbor aggregation (i.e., message passing): node-to-edge embedding, edge-to-node embedding, and concatenation

Problem: What types are their relationships? (EDGE)

Given: Object features (NODE)

Object features (e.g., CNN visual features, spatial features, ..)

4. Graph Neural Network

- Model structure: a set of nodes and their linked edges
- Computational process: there are diverse processing methods, but one of the most typical processes is
 - Neighbor aggregation (i.e., message passing): node-to-edge embedding, edge-to-node embedding, and concatenation

N2E

Embedding can be performed by various types of neural networks (e.g., fully-connected, convolution) or other unsupervised techniques (e.g., concatenation)

4. Graph Neural Network

- Model structure: a set of nodes and their linked edges
- Computational process: there are diverse processing methods, but one of the most typical processes is
 - Neighbor aggregation (i.e., message passing): node-to-edge embedding, edge-to-node embedding, and concatenation

E2N

Embedding can be performed by various types of neural networks (e.g., fully-connected, convolution) or other unsupervised techniques (e.g., concatenation)

4. Graph Neural Network

- Model structure: a set of nodes and their linked edges
- Computational process: there are diverse processing methods, but one of the most typical processes is
 - Neighbor aggregation (i.e., message passing): node-to-edge embedding, edge-to-node embedding, and concatenation

N2E

Embedding can be performed by various types of neural networks (e.g., fully-connected, convolution) or other unsupervised techniques (e.g., concatenation)

4. Graph Neural Network

- Model structure: a set of nodes and their linked edges
- Computational process: there are diverse processing methods, but one of the most typical processes is
 - Neighbor aggregation (i.e., message passing): node-to-edge embedding, edge-to-node embedding, and concatenation

- 4. Graph Neural Network
 - Applications

Visual Relationship Detection

Social Network Analysis

https://rossdawson.com/blog/analyzing_media/)

#.#. Deep Learning

Major Architectures in Deep Learning

4. Graph Neural Network

- Advantages
 - Ability to learn and interpret complex multi-dimensional relationships
 - Can connect data points that exist far from each other but have relationships (i.e., Non-Euclidean space)
 - Can minimize the model complexity (i.e., the number of parameters to be trained)
- Disadvantages
 - Unable to learn temporal and time-series data (e.g., natural language processing, signal processing, video analysis)

Hybrid Architecture

- Example 1: CNN-RNN, CNN-LSTM
 - CNN: extract important visual features from each image frame
 - RNN/LSTM: analyze temporal patterns of visual features extracted

I Hybrid Architecture

- Example 2: Graph Convolutional Neural Networks
 - GNN: process a graph-structured data
 - CNN: extract important nodes, edges, and sub-graphs from a graph-structured input data

- Traditional Approaches: The More Data, The Better Performance
 - Challenges
 - A large amount of human efforts and time
 - A lack of training data in the real-world (e.g., medical data)

MS COCO Dataset

More than 330,000 images

Image Labeling

About 30 seconds per image

More than 115 days

- Novel Approaches: The Less Data, But Comparable Performance
 - 1. Transfer learning
 - A machine learning method where a model developed for a task is reused as the starting point for a model on a second task.

10,000 images

- Novel Approaches: The Less Data, But Comparable Performance
 - 2. Data augmentation

Data Augmentation

Original Image

Augmented Images

- Novel Approaches: The Less Data, But Comparable Performance
 - 5. Active learning
 - Active learning selects the most meaningful-to-learn instances from abundant training data and trains a deep learning model with the selected data first.

Low Uncertainty

No information to learn

Mean Average Precisions according to the Number of Training Images

High Uncertainty

New information to learn

- Novel Approaches: The Less Data, But Comparable Performance
 - 6. Meta learning (i.e., "learning to learn")
 - Human can learn new concepts and skills only with few examples.

(e.g., if human knows how to ride a bicycle, he or she can easily learn how to ride a motorcycle.)

