Advanced Thermodynamics (M2794.007900)

Chapter 11

Kinetic Theory of Gases (1)

Min Soo Kim Seoul National University

11.1 Basic Assumption

Basic assumptions of the kinetic theory

1) Large number of molecules (Avogadro's number)

$$
N_{A}=6.02 \times 10^{26} \text { molecules per kilomole }
$$

2) Identical molecules which behave like hard spheres
3) No intermolecular forces except when in collision
4) Collisions are perfectly elastic
5) Uniform distribution throughout the container
$\mathrm{n}=\frac{\mathrm{N}}{\mathrm{V}} \quad \mathrm{d} N=\mathrm{nd} \mathrm{V}$
n : The average number of molecules per unit volume

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY
서 울 대 학 교 공 과 대 학

11.1 Basic Assumption

6) Equal probability on the direction of molecular velocity average number of intersections of velocity vectors per unit area; $\frac{\mathrm{N}}{4 \pi \mathrm{r}^{2}}$
the number of intersections in dA

$$
\begin{aligned}
& \mathrm{d}^{2} \mathrm{~N}_{\theta \phi}=\frac{\mathrm{N}}{4 \pi \mathrm{r}^{2}} \mathrm{~d} A=\frac{\mathrm{N} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}{4 \pi} \quad \text { Where } \mathrm{d} A=\mathrm{r}^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& \mathrm{~d}^{2} \mathrm{n}_{\theta \phi}=\frac{\mathrm{n} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}{4 \pi}
\end{aligned}
$$

$\mathrm{N}_{\theta \phi}$: The number of molecules having velocities in a direction $(\theta \sim \theta+d \theta)$ and $(\phi \sim \phi+d \phi)$

11.1 Basic Assumption

7) Magnitude of molecular velocity : $0 \sim \underline{\infty}$ c (speed of light)
dN_{v} : The number of molecules with specified speed ($\mathrm{v} \sim \mathrm{v}+\mathrm{dv}$)

11.1 Basic Assumption

- Let dN_{v} as the number of molecules with specified speed ($\mathrm{v} \sim \mathrm{v}+\mathrm{dv}$)
- $\int_{0}^{\infty} \mathrm{dN}_{v}=\mathrm{N}$
- Mean speed is $\bar{v}=\frac{1}{\mathrm{~N}} \int_{0}^{\infty} v \mathrm{dN}_{v}$
- Mean square speed is $\overline{v^{2}}=\frac{1}{\mathrm{~N}} \int_{0}^{\infty} v^{2} \mathrm{dN}_{v}$
- Square root of $\overline{v^{2}}$ is called the root mean square or rms speed:

$$
v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{1}{\mathrm{~N}} \int_{0}^{\infty} v^{2} \mathrm{dN}_{v}}
$$

- The n-th moment of distribution is defined as

$$
\overline{v^{n}}=\frac{1}{\mathrm{~N}} \int_{0}^{\infty} v^{n} \mathrm{dN}_{v}
$$

11.2 Molecular Flux

- The number of gas molecules that strike a surface per unit area and unit time
- Molecules coming from particular direction θ, ϕ with specified speed v in time dt
$\rightarrow \theta \phi v$ collision $\left[\begin{array}{l}\theta \sim \theta+\mathrm{d} \theta \\ \phi \sim \phi+\mathrm{d} \phi \\ \mathrm{v} \sim \mathrm{v}+\mathrm{dv}\end{array}\right.$
- The number of $\theta \phi v$ collisions with dA
$=\theta \phi v$ molecules in
$=\theta \phi$ molecules with speed v

Fig. Slant cylinder geometry used to calculate the number of molecules that strike the area dA in time dt .

11.2 Molecular Flux

- How many molecules in unit volume \square dn_{v} : Density between speed (v $\sim \mathrm{v}+\mathrm{dv}$)
$d A$: Surface of spherical shell of radius v and thickness $d v$ (i.e., θ, ϕ molecules)

$$
\mathrm{d}^{3} \mathrm{n}_{\theta \phi v}=\mathrm{dn}_{v} \cdot \frac{d A}{A}=\mathrm{dn}_{v} \frac{v^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}{4 \pi v^{2}}
$$

- The number of $\theta \phi v$ molecules in the cylinder toward dA

Volume of cylinder: $\mathrm{dV}=\mathrm{dA}(\mathrm{vdt} \cos \theta)$

$$
\mathrm{d}^{3} \mathrm{n}_{\theta \phi v} d V=(d A v \mathrm{dt} \cos \theta) \mathrm{dn}_{v} \frac{\sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}{4 \pi}
$$

11.2 Molecular Flux

- The number of collisions per unit area and time (i.e., particle flux)

$$
\frac{\mathrm{d}^{3} \mathrm{n}_{\theta \phi v} \mathrm{dV}}{\mathrm{dAdt}}=\frac{1}{4 \pi} v \mathrm{dn}_{v} \sin \theta \cos \theta \mathrm{~d} \theta \mathrm{~d} \phi
$$

- Total number of collisions per unit area and time by molecules having all speed

$$
\int \frac{\mathrm{d}^{3} \mathrm{n}_{\theta \phi v} \mathrm{dV}}{\mathrm{dAdt}}=\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi / 2} \sin \theta \cos \theta \mathrm{~d} \theta \cdot \frac{1}{4 \pi} \int_{0}^{\infty} v \mathrm{dn}_{v}=\frac{\mathbf{1}}{\mathbf{4}} \boldsymbol{n} \bar{v} \quad\left(\int_{0}^{\infty} v \mathrm{dn}_{v}=n \bar{v}\right)
$$

Cf. average speed $\bar{v}=\frac{\sum \bar{v}}{N}=\frac{\sum N_{i} v_{i}}{N}=\frac{\sum n_{i} v_{i}}{\sum n_{i}}=\frac{\int v \mathrm{~d} n_{v}}{n}$

11.3 Gas Pressure and Ideal Gas Law

- Gas pressure in Kinetic theory

Gas pressure is interpreted as impulse flux of particles striking a surface

11.3 Gas Pressure and Ideal Gas Law

- Perfect elastic $v=v^{\prime}$
- Average force exerted by molecules $\mathrm{F}=\frac{\mathrm{d}(m \vec{v})}{\mathrm{dt}}=m \vec{a}+\dot{m} \vec{v}$
- Momentum change of one molecule (normal component only)

$$
m v \cos \theta-(-m v \cos \theta)=2 m v \cos \theta
$$

- The number of $\theta \phi v$ collisions for dA, dt

$$
\frac{\mathrm{d}^{3} \mathrm{n}_{\theta \phi v} \mathrm{dV}}{\mathrm{dAdt}}=\frac{1}{4 \pi} v \mathrm{dn}_{v} \sin \theta \cos \theta \mathrm{~d} \theta \mathrm{~d} \phi
$$

11.3 Gas Pressure and Ideal Gas Law

- Change in momentum due to $\theta \phi v$ collisions in time dt

$$
2 m v \cos \theta \times \frac{1}{4 \pi} v \mathrm{dn}_{v} \sin \theta \cos \theta \mathrm{~d} \theta \mathrm{~d} \phi=\frac{1}{2 \pi} m v^{2} \mathrm{dn}_{v} \sin \theta \cos ^{2} \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} A \mathrm{dt}
$$

- Change in momentum p in all v collisions $0<\theta \leq \frac{\pi}{2}, 0<\phi \leq 2 \pi$ at all speed

$$
\mathrm{dp}=\int_{0}^{\infty} \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \frac{1}{2 \pi} \mathrm{mv}^{2} \mathrm{dn}_{\mathrm{v}} \sin \theta \cos ^{2} \theta \mathrm{~d} \theta \mathrm{~d} \phi \cdot \mathrm{dAdt}=\frac{1}{3} m n \overline{v^{2}} \mathrm{dAdt}
$$

- Change in momentum from collisions of molecules with unit time

$$
\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{d} \overrightarrow{\mathrm{~F}}=\frac{1}{3} m n \overline{v^{2}} \mathrm{dA}
$$

$$
\text { cf. } \overline{v^{2}}=\frac{\sum v^{2}}{N}=\frac{\int v^{2} \mathrm{~d} n_{v}}{n}
$$

- Average pressure $\bar{P}=\frac{d \vec{F}}{d A}$

$$
\bar{P}=\frac{1}{3} m n \overline{v^{2}}
$$

11.3 Gas Pressure and Ideal Gas Law

Since $n=\frac{N}{V} \quad$ then pressure $P=\frac{1}{3} \frac{N}{V} m \overline{v^{2}} \quad \therefore P V=\frac{1}{3} N m \overline{v^{2}}$

EOS of an ideal gas: $\mathrm{PV}=\mathrm{n} \bar{R} T=\mathrm{mRT}=\frac{\mathrm{N}}{\mathrm{N}_{A}} \overline{\bar{R}} T=N k T$
N_{A} : Avogadro's number : 6.02×10^{26} molecules/kmole
$k_{B}:$ Boltzmann constant : $k_{B}=\frac{\bar{R}}{N_{A}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$P V=\frac{1}{3} N m \overline{v^{2}}=N k T$
$\therefore \frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T$
The temperature is proportional to the average kinetic energy of molecule

11.4 Equipartition of Energy

- Equipartition of energy

Because of even distribution of velocity of particles,

$$
\overline{v^{2}}=\overline{v_{x}^{2}}+\overline{v_{y}^{2}}+\overline{v_{z}^{2}}
$$

By assumption, no preferred direction

$$
\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}} \quad \rightarrow \frac{1}{2} m \overline{v_{x}^{2}}=\frac{1}{6} m \overline{v^{2}}=\frac{1}{2} k T
$$

It can be interpreted that a degree of freedom allocate energy of $\frac{1}{2} k T$

11.5 Specific Heat

Total energy of a molecule in Cartesian coordinate

$$
\bar{\varepsilon}=\bar{\varepsilon}_{\mathrm{x}}+\bar{\varepsilon}_{\mathrm{y}}+\bar{\varepsilon}_{\mathrm{z}}=\frac{1}{2} m \overline{v_{x}^{2}}+\frac{1}{2} m \overline{v_{y}^{2}}+\frac{1}{2} m \overline{v_{\mathrm{z}}^{2}}=\left(\frac{k T}{2}+\frac{k T}{2}+\frac{k T}{2}\right)=\frac{3}{2} k T
$$

General expression of total energy of molecules for f-DOF (Degree of Freedom)

$$
\begin{aligned}
& \mathrm{U}=\mathrm{N} \bar{\varepsilon}=\frac{\mathrm{f}}{2} \mathrm{NkT}=\frac{\mathrm{f}}{2} \mathrm{nRT} \leftrightarrow \mathrm{u}=\frac{\mathrm{U}}{n}=\frac{f}{2} R T \\
& \left.c_{v}=\frac{\partial u}{\partial T}\right)_{v}=\frac{\mathrm{f}}{2} R \quad \text { from the above equation } \\
& c_{P}=\left(\frac{\partial h}{\partial T}\right)_{p}=\frac{f}{2} R+R=\frac{(f+2)}{2} R \\
& \text { cf) } \mathrm{c}_{\mathrm{p}}=\mathrm{c}_{\mathrm{v}}+\mathrm{R}
\end{aligned}
$$

The ratio of specific heat: $\gamma=\frac{c_{p}}{c_{v}}=\frac{f+2}{f}$

11.5 Specific Heat

Monatomic gas	\bigcirc	$\begin{equation*} \frac{1}{2} m v_{x}^{2}, \frac{1}{2} m v_{y}^{2}, \frac{1}{2} m v_{z}^{2} \tag{3} \end{equation*}$ DOF	$\frac{c_{p}}{c_{v}}=\frac{3+2}{3}=1.67$
Diatomic gas	\bigcirc Own	$\frac{1}{2} m v_{x}^{2}, \frac{1}{2} m v_{y}^{2}, \frac{1}{2} m v_{z}^{2}$ Translational negligible $\frac{1}{2} I w_{x}^{2}, \frac{1}{2} I w_{y}^{2}, \frac{1}{2} \Lambda w_{z}^{2}$ Rotational $\frac{1}{2} k x^{2}, \frac{1}{2} m \dot{x}^{2}$ no y, z vibration Vibrational	$\left[\frac{c_{p}}{c_{v}}=\frac{5+2}{5}=1.4\right.$

Near room temperature, rotational or vibrational DOF are excited, but not both. DOF: $7 \rightarrow 5$

11.5 Specific Heat

- Vibration modes of CO_{2}

Stretch

Bending

11.5 Specific Heat

Solid

