Rock Mechanics & Experiment 암석역학 및 실험

Lecture 6. Fractures – geometrical and mechanical properties/Fractured rock Lecture 6. 균열의 기하학적 및 역학적 성질/균열암반

Ki-Bok Min, PhD

Associate Professor Department of Energy Resources Engineering Seoul National University

SEOUL NATIONAL UNIVERSITY

Outline Geometrical and mechanical behavior of fractures

- Fractures (Discontinuities)
- Geometrical properties of fractures
 - Orientation
 - Spacing (and frequency)
 - Rock Quality Designation (RQD)
 - Persistence, Roughness and Aperture
- Mechanical properties of fractures
 - Normal and shear stiffness
 - Strength

Geometrical properties

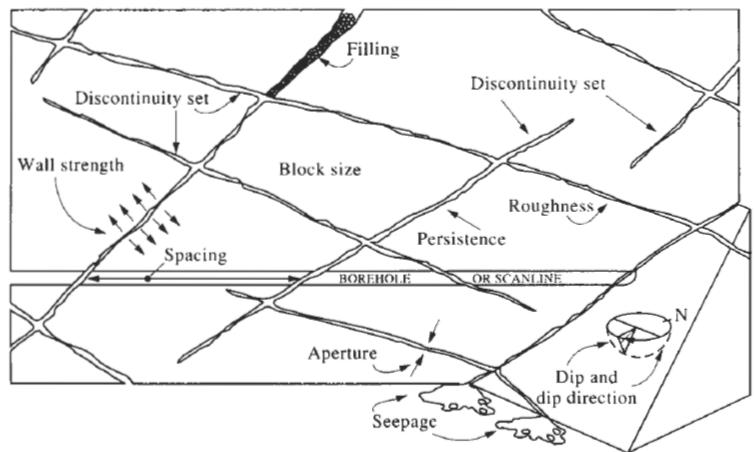
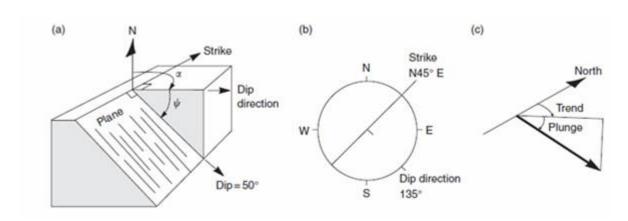


Figure 7.3 Schematic of the primary geometrical properties of discontinuities in rock (from Hudson, 1989).

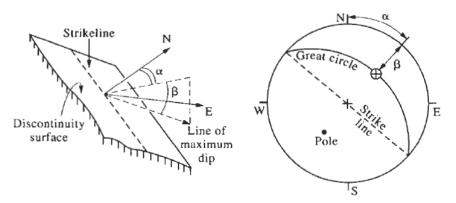
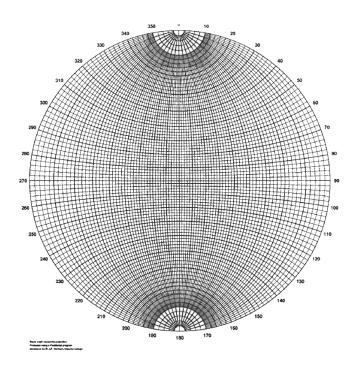
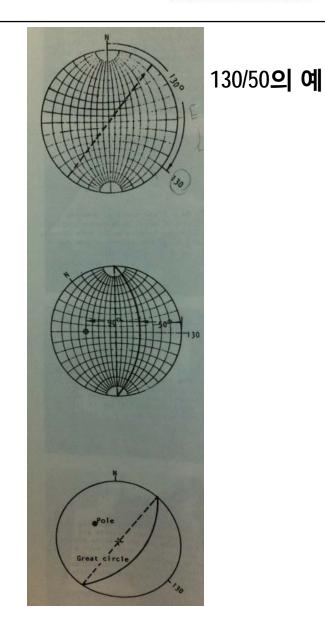

Geometrical properties Orientation - definition

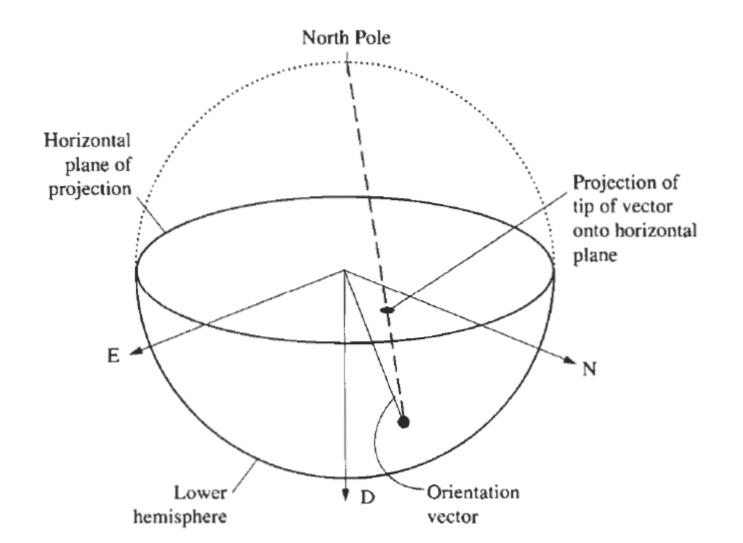
- Plane
 - Dip (경사) & Dip direction (경사각)

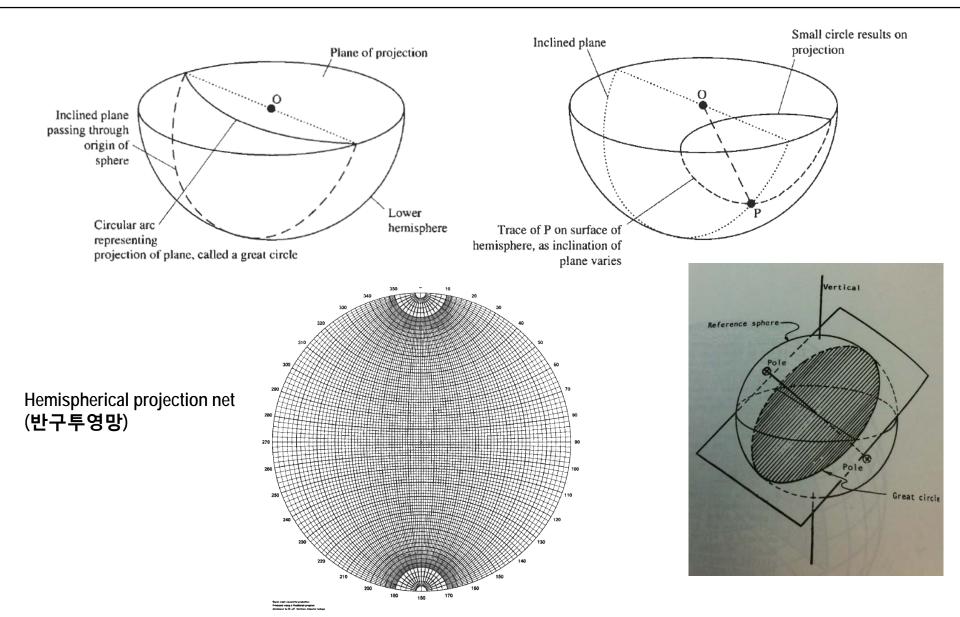
ষ্ব Dip angle: angle between the steepest line and horizontal plane ষ্ব Dip direction: bearing of this steepest line measured from North (clockwise) ষ্ব Ex) 130/50 (dip direction/dip)

- Or Dip & Strike (주향) ぁEx) strike N40E, dip 50SE
- Line
 - Trend & Plunge

Geometrical properties Orientation – hemispherical projection

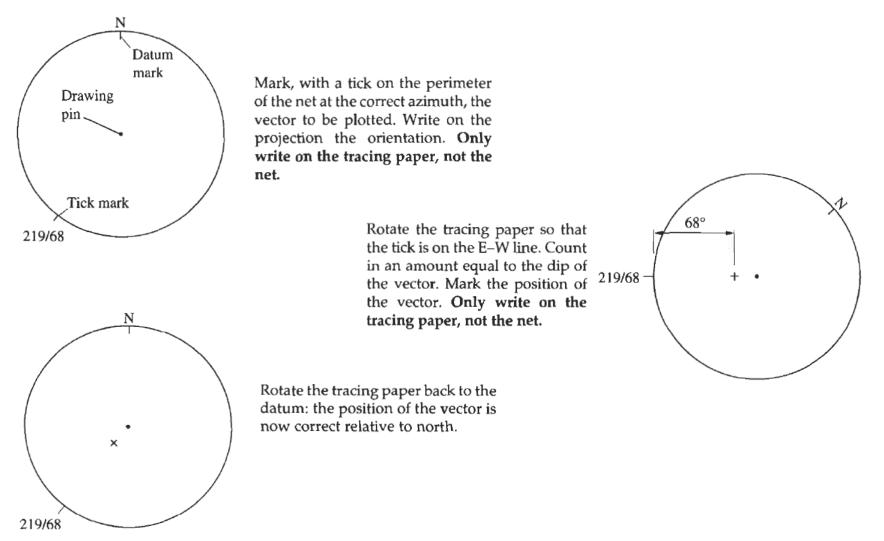





Figure 7.12 Discontinuity plane and the associated hemispherical projection.



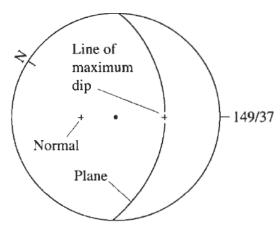
Hemispherical projection projection of a line onto two dimensions

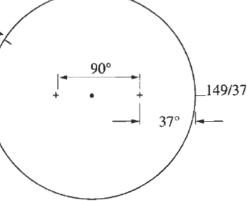
Hemispherical projection projection of a plane: great circles & small circles



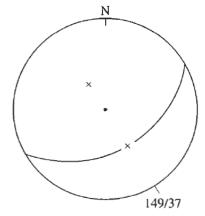
SEOUL NATIONAL UNIVERSITY

Hemispherical projection plotting vectors



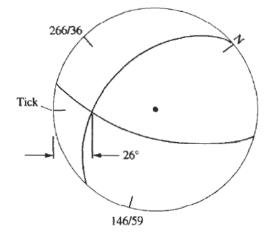

Hemispherical projection plotting planes

Dip direction/dip 149/37


Rotate the tracing paper so that the tick lies on the E–W line, and count in an amount equal to the **dip amount** of the plane. Count a further 90° along the E–W line, and mark this new position.

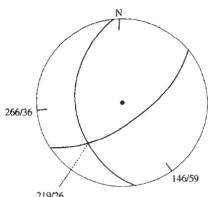
Trace the great circle that passes over the first point: this represents **the plane**. The second point represents **the normal to the plane** (i.e. the vector that is perpendicular to the plane). The first point represents the **line of maximum dip**; the second point is termed the **pole**.

Rotate the tracing paper back to the datum: the positions of the plane and the normal are now correct relative to north.

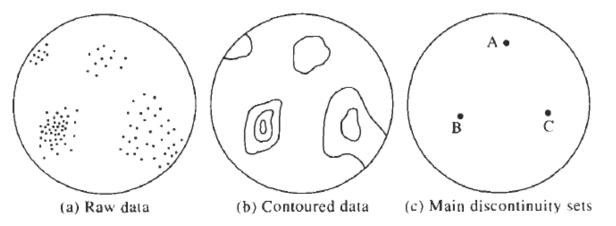


Hemispherical projection Determining the line of two intersection of two planes

• 266/39 & 146/59


For any pair of planes, there is a line of intersection: it is where the two great circles cross. Finding its orientation is easy.

Rotate the tracing paper so that the intersection of the great circles lies on the E–W line. Mark the azimuth of this with a tick on the perimeter of the projection. Measure the plunge of the line by counting in from the perimeter, along the E–W line.


Rotate the tracing paper back to the datum, and measure the azimuth of the intersection. Thus we can see that the planes 266/36 and 146/59 have an intersection of 219/26. You should be able to measure graphically all such angles to the nearest degree.

Geometrical properties Orientation

- Fracture sets
 - Fractures with similar orientations are identified as a 'set'

Figure 7.13 Discontinuity orientation data plotted on the lower-hemispherical projection.

Geometrical properties Spacing (frequency)

- Spacing
 - Distance between adjacent fracture intersections with the measuring scanline
- Frequency
 - Number of fractures per unit distance (reciprocal of spacing)
 - P_{10} : number of fracture per unit length of scan line
- Intensity
 - 2D, P_{21} : length of fracture traces per unit area of sampling surface
 - 3D, P_{32} : area of fractures per unit volume of rock mass

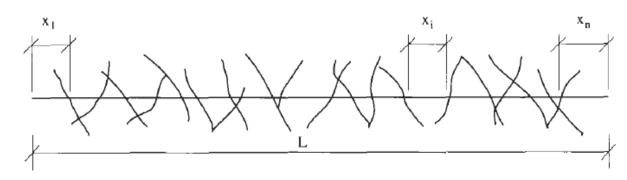


Figure 7.4 Quantifying discontinuity occurrence along a sampling line.

Geometrical properties Spacing (frequency)

Geological Survey

Figure 7.15 Diagrammatic representation of discontinuity traces intersecting a scanline set up on a rock face.

Geometrical properties RQD

- Rock Quality Designation (RQD)
 - Percentage of the sampling line (cores) consisting of spacing values greater than 10 cm.

$$RQD = 100 \sum_{i=1}^{n} \frac{x_i}{L} \%$$

where x_i = spacing values greater than 0.1 m, and *n* is the number of these intersected by a borehole core or scanline of length *L*.

Geometrical properties Persistence, roughness and aperture

- Persistence (연속성)
 - Lateral extent of a discontinuity plane
 - Dimension (length, area) of fracture + connectivity
 - Dimension
 - ন্ধ Trace length

ର୍କ୍ Area

- Aperture
 - The distance between adjacent walls of a discontinuity. Openness of the discontinuity
 - Important for hydraulic and mechanical behavior
 - Has distribution

Geometrical properties Discrete Fracture Network (DFN)

SEOUL NATIONAL UNIVERSITY

- Measurement of Aperture
 - Direct measurement

ন্ধ Insertion of feeler gauge (steel with different thickness)

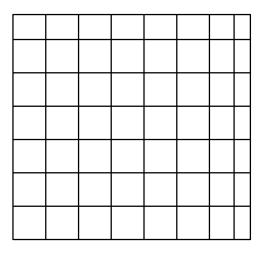
- ম্ব Impression packer
- ন্ধ Borehole camera
- Indirect measurement
 - a Back calculation from the flow rates

$$Q = \frac{\rho_w g e^3}{12\mu} \frac{\partial h}{\partial x} \qquad e = \left(\frac{12\mu Q}{\rho_w g} / \frac{\partial h}{\partial x}\right)^{1/3}$$

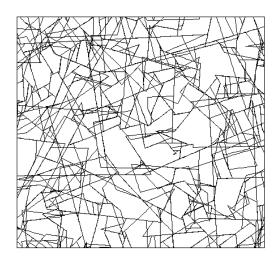
Geometrical properties Discrete Fracture Network (DFN)

- Geometrical properties of fractures
 - Orientation (dip and dip direction), size (trace length in 2D), intensity (spacing in parallel infinite fracture), location, aperture, roughness
- Characterization method
 - Exposed rock faces

육 scanline sampling: line-based sample, use measuring tape (줄자).

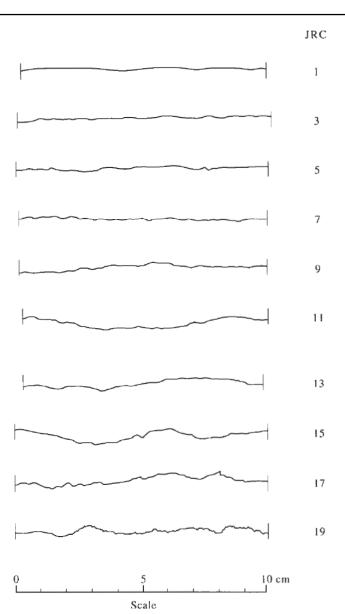

 $\ensuremath{\mathfrak{B}}$ Window sampling: area-based sample, rectangle of measuring tapes

- Borehole sampling
- We then need to construct a geometric model of fractured rock deterministic or stochastic generation of fractures
 - Monte Carlo Simulation


Geometrical properties Discrete Fracture Network (DFN)

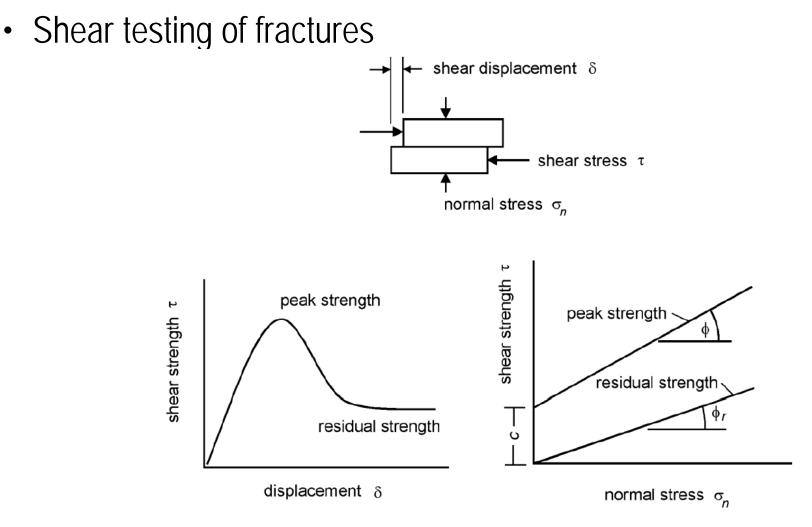
Geometrical models based on the characterisation

Idealized regular fracture model



Discrete Fracture Network (암반균열망)

Geometrical properties Persistence, roughness and aperture

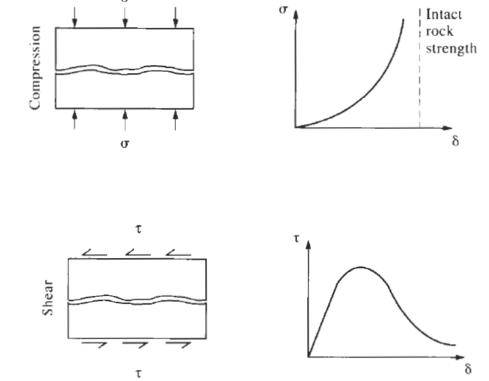


- Roughness (거칠기)
 - Deviation of a discontinuity surface from perfect planarity
- Joint Roughness Coefficient (JRC)
 - Compare the profiles of discontinuity surface with standard roughness profile and assign numerical values.
 - Developed by Nick Barton (1977)
 - Not robust way but practically very important for mechanical and hydraulic properties of fractures

Mechanical properties

Hoek E, 2007, Practical Rock Engineering, ,https://www.rocscience.com/learning/hoek-s-corner/books

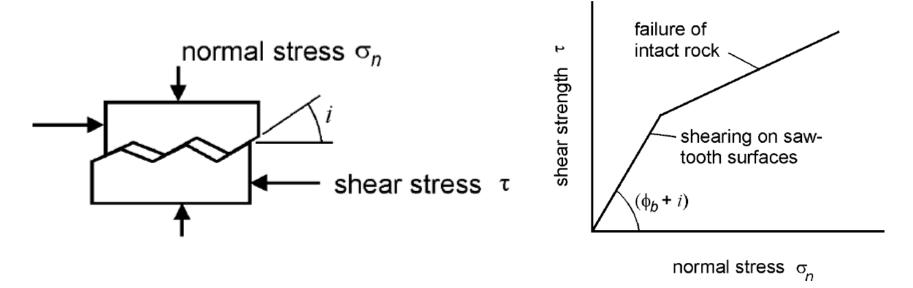
Normal stiffness


- Unit: Stress/length (MPa/m)
- Linear model $\sigma_n = K_n \delta_n$
- Non-linear model

$$\delta_n = \frac{\sigma_n}{c + d\sigma_n}$$

- Shear stiffness
 - Unit: Stress/length (MPa/m)

- Linear model
$$\sigma_s = K_s \delta_s$$


Non-linear model: e.g., Barton's equation (strength + full path)

• Patton's law (1966) for fracture friction angle

$$\tau = \sigma_n \tan(\phi_b + i)$$

where ϕ_b is the basic friction angle of the surface and *i* is the angle of the saw-tooth face.

Barton's equation (1977)

$$\tau = \sigma_n \tan \left[JRC \log_{10} (JCS / \sigma_n) + \phi_r \right]$$

- $\tau:$ Shear Strength of a fracture
- JRC: Joint Roughness Coefficient
- JCS : Joint Wall Compressive Strength
- ϕ_r : residual friction angle

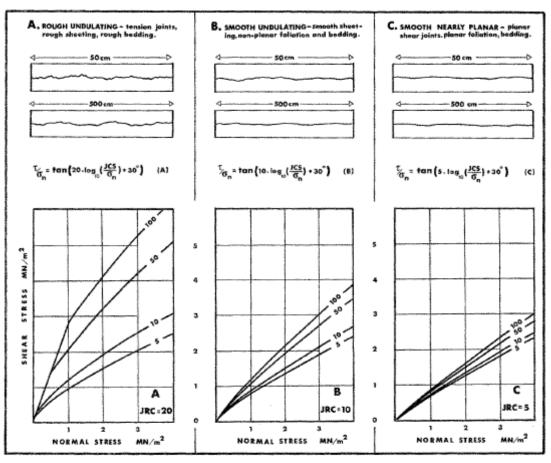
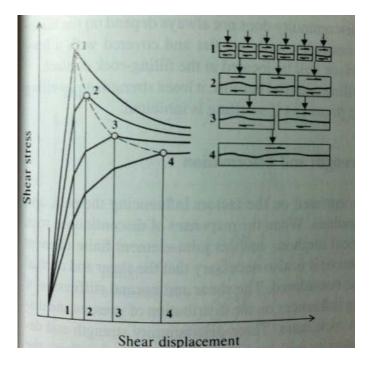



Fig. 1. Empirical law of friction in graphical form. Each curve is numbered with the appropriate JCS value (units of MN/m^2). The roughness profiles are intended as an approximate guide to the appropriate JRC values 20, 10 and 5. Completely smooth planar joints have JRC = 0

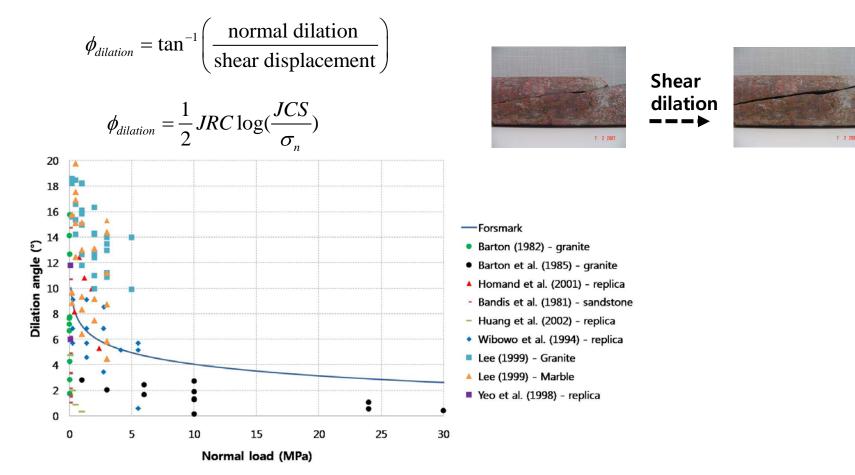
Barton & Choubey, 1977, The shear strength of rock joints in theory and practice, Rock Mech Rock Eng, 10(1-2):1-54

• Size dependent behavior of a fracture

$$JRC_{n} = JRC_{o} \left(\frac{L_{n}}{L_{o}}\right)^{-0.02JRC_{o}}$$
(8)

where JRC_o , and L_o (length) refer to 100 mm laboratory scale samples and JRC_n , and L_n refer to in situ block sizes.

Table 1: Shear strength of filled discontinuities and filling materials (After Barton 1974)

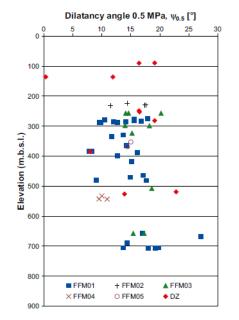

Rock	Description	Peak	Peak	Residual	Residual
	·	<i>c'</i> (MPa)	¢°	<i>c</i> ' (MPa)	
Basalt	Clayey basaltic breccia, wide variation from clay to basalt content	0.24	42		
Bentonite	Bentonite seam in chalk	0.015	7.5		
	Thin layers	0.09-0.12	12-17		
	Triaxial tests	0.06-0.1	9-13		
Bentonitic shale	Triaxial tests	0-0.27	8.5-29		
	Direct shear tests			0.03	8.5
Clays	Over-consolidated, slips, joints and minor shears	0-0.18	12-18.5	0-0.003	10.5-16
Clay shale	Triaxial tests	0.06	32		
2	Stratification surfaces			0	19-25
Coal measure rocks	Clay mylonite seams, 10 to 25 mm	0.012	16	0	11-11.5
Dolomite	Altered shale bed, $\pm150~\mathrm{mm}$ thick	0.04	1(5)	0.02	17
Diorite, granodiorite and porphyry	Clay gouge (2% clay, PI = 17%)	0	26.5		
Granite	Clay filled faults	0-0.1	24-45		
	Sandy loam fault filling	0.05	40		
	Tectonic shear zone, schistose and broken granites, disintegrated rock and gouge	0.24	42		
Greywacke	1-2 mm clay in bedding planes			0	21
Limestone	6 mm clay layer			0	13
	10-20 mm clay fillings	0.1	13-14		
	<1 mm clay filling	0.05-0.2	17-21		
Limestone, marl and	Interbedded lignite layers	0.08	38		
lignites	Lignite/marl contact	0.1	10		
Limestone	Marlaceous joints, 20 mm thick	0	25	0	15-24
Lignite	Layer between lignite and clay	0.01403	15-17.5		
Montmorillonite	80 mm seams of bentonite (mont-	0.36	14	0.08	11
Bentonite clay	morillonite) clay in chalk	0.01602	7.5-11.5		
Schists, quartzites	100-15- mm thick clay filling	0.03-0.08	32		
and siliceous schists	Stratification with thin clay	0.61-0.74	41		
	Stratification with thick clay	0.38	31		
Slates	Finely laminated and altered	0.05	33		
Quartz / kaolin / pyrolusite	Remoulded triaxial tests	0.04209	36-38		

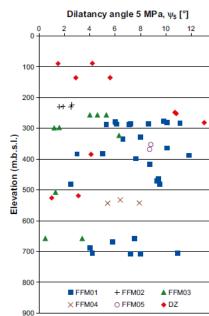
Hoek E, 2007, Practical Rock Engineering, ,https://www.rocscience.com/learning/hoek-s-corner/books

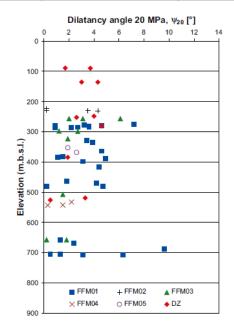
Mechanical properties Strength - dilation

- Fracture dilation during fracture shearing
 - Great implication for geo-environmental engineering

Mechanical properties Strength-dilation


– Aperture change due to shear dilation (SKB, 2007)


a 3.2° dilation angle under 20 MPa


 $\boldsymbol{\aleph}$ Dilation angles from direct shear tests for the FFM01 fracture domain

Normal load (MPa)	Mean (°)	Std. dev. (°)	Minimum (°)	Maximum (°)	Uncertainty of mean (%)
0.5	14.6	4.1	7.8	27.1	±10.2
5	7.7	2.7	2.5	13.7	±12.8
20	3.2	2.1	0.2	9.6	±23.9

14



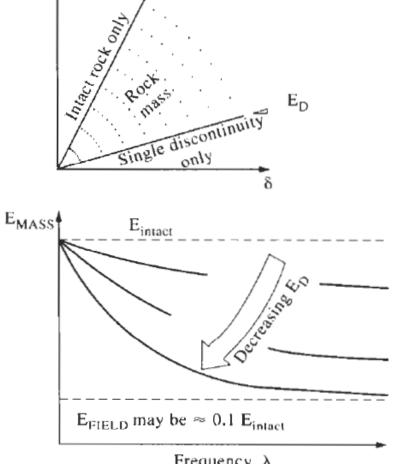
SKB R-7-31

Fractured Rock Masses Elastic modulus (deformation modulus)

 $\delta = 1 / \lambda =$ spacing of fractures

Frequency, λ

Fractured Rock Masses Elastic modulus (deformation modulus)


Elastic (deformation) modulus of fractured rock mass

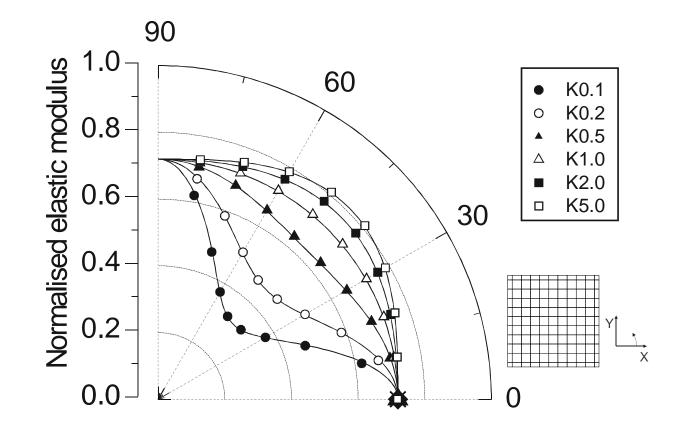
$$\frac{1}{E_m} = \left(\frac{1}{E_i} + \frac{1}{k_n \cdot S}\right) \qquad \qquad \frac{1}{E_m} = \left(\frac{1}{E_i} + \frac{\lambda}{E_p}\right)$$

 E_m : Elastic modulus of rock mass k_n : normal stiffness of a fracture S: spacing of fractures

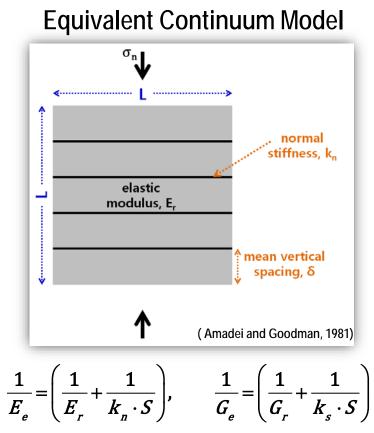
$$\frac{1}{G_m} = \left(\frac{1}{G_i} + \frac{1}{k_s \cdot S}\right)$$

 G_m : Shear modulus of rock mass k_{s} : shear stiffness of a fracture S: spacing of fractures

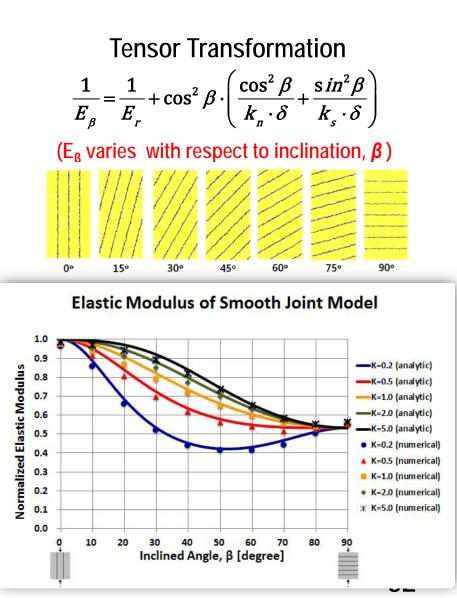
E/L


Fractured Rock Masses Elastic modulus (deformation modulus)

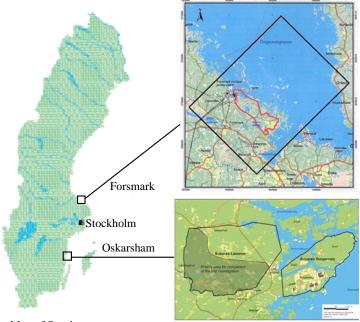
• Derivation


Gn E: : elastic modulus of intact nek Fractured Emo S: spacing rock mag -Ton Gn=Kn.S number of fracture normal displacement of a single fracture multiple tractine 6n Kn total displayment of tractured ruck mass displ of intact total strain (EE) = Ei + Ef 1 Gn On L. On 6n Kn 6n + 1 F: + 5 S Kn Em or Kn

Fractured Rock Masses Elastic modulus (deformation modulus) - anisotropy

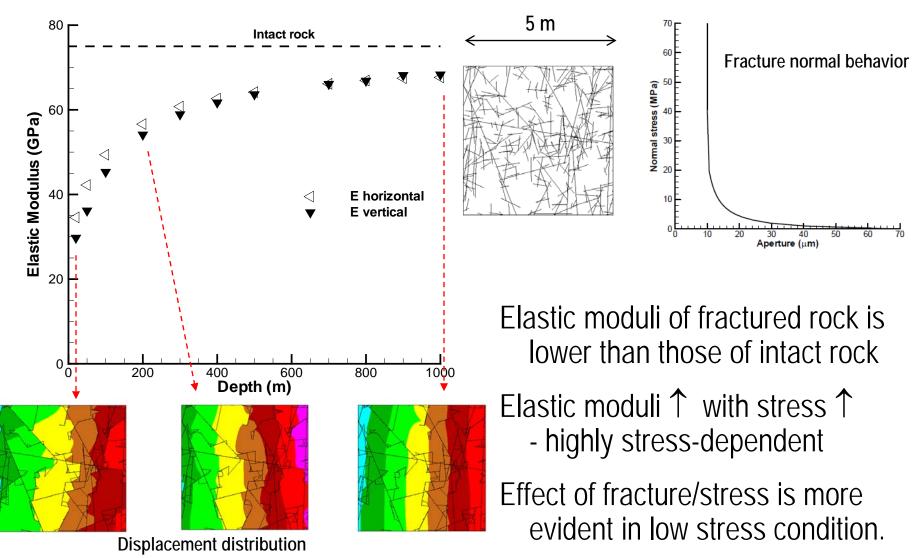


Fractured Rock Masses Data from Forsmark, Sweden



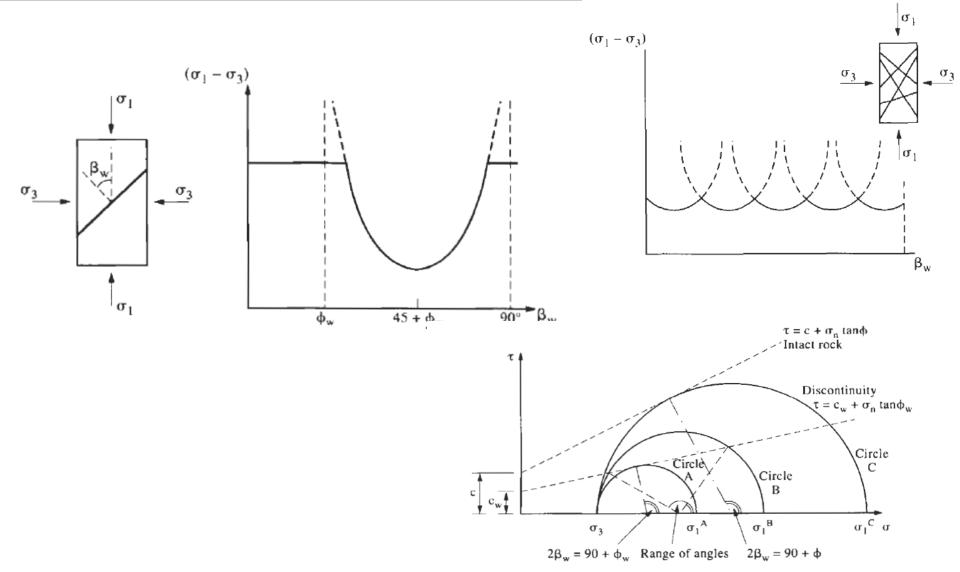
 E_e , G_e : equivalent elastic & shear modulus, E_r , G_r : intact rock elastic & shear modulus, k_n , k_s : normal & shear stiffness on weak planes,S: mean vertical spacingK: shear to normalstiffness ratio

Fractured Rock Masses Elastic modulus (example from Forsmark, Sweden)



Map of Sweden

- Swedish geological repository of nuclear waste
- Forsmark and Oskarshamn, two candidate sites for Swedish Program.
- 2002-2009: site investigation.
- 2009: Forsmark, as the final site
- 2011: License application
- 2015: decision (?)
- 2025: Operation


Fractured Rock Masses Elastic modulus (example from Forsmark, Sweden)

Min KB, Stephansson O, The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden, *Tunnel & Underground Space: Journal of Korean Society for Rock Mechanics*, 2011;21(2):117-127

Fractured Rock Masses Strength

Figure 8.5 Mohr's circle representation of the possible modes of failure for rock containing a single plane of weakness.