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Introduction
Home Assignments (40%)

• #1 1 page summary of selected papers on numerical analysis

• #2 1D(or 2D) coding of FEM/FDM (use excel, matlab, or other codes)

• #3 Exercise with FEM code (comsol multiphysics)

• #4 Paper reading (DEM) – classical paper of your choice

• #5 Exercise with UDEC/PFC

 

10 m Body force 

0 1 2 3 4 5 6

0

1

2

3

4

5

6



Introduction
Term Project (20%)

– Select a subsurface engineering problem of your interest and conduct a 
numerical analysis using any available codes.

– Term paper must include;

 Clear objectives

 One or two verification cases

 Thorough formulation of the chosen numerical method

 Concise presentation and discussion on the results

– Timeline

 31 May Proposal (1 page) & 10 minutes presentation

 7 June Consultation with instructor

 14 June Presentation and submission of Term Paper



Introduction
Term Project

• A list of example topics

– Reproduction of published landmark papers

– Borehole Stability problem in Anisotropic Media (FEM or FDM)

– Fracture propagation in petroleum/geothermal reservoir (BEM or DEM)

– Calibration of micromechanical parameters for transversely isotropic rock rock (DEM)

– Coupled (thermo) hydromechanical analysis in porous medium

– CO2 injection in saline formation

– Thermomechanical analysis for geological repository of nuclear waste

– Slope Stability in fractured or continuum rock

– Reinforcement of tunnel  

– Determination of equivalent properties of fractured rock mass (DEM)



Introduction
Term Project

• Presentation

– Presentation is an extremely important part of your professional 
life. Therefore, you have a good reason to be serious about this.

– 10 minutes + 5 min (questions)



Introduction
Term Project

• Your term papers will be 
published as proceedings.

• Your term papers may be 
developed into journal papers 
in the future.



Explicit Discrete Element Method
Outline

• Introduction

• Solution techniques - Governing Equations

• Implementation issues – Numerical Stability, Damping, Contact 
Detection, 

• Explicit DEM

– Unbonded particulate system

– Bonded particulate system

– Blocky system

• Hydraulic processes – fluid flow in fractured rock

• Examples



Explicit Discrete Element Method
Introduction

• Up to this point, we were able to model various physical 
problems using FEM and FDM. Essentially we solved a 
single or a coupled set of partial differential equation in 
continuum.

• Can we solve following problem using FEM or FDM? – a 
system of particles interacting each other.

example(1)-billiards.avi
example(1)-billiards.avi


Explicit Discrete Element Method
Introduction – particulate system

And, of course, billiards…
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Grains composing rock/soil

Powder or gravels in a 

hopper. Thickness of lines 

indicate forces.

Molecular dynamics
Geomechanics

Powder technology, 

chemical engineering
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Explicit Discrete Element Method
Introduction – blocky system

Continuum

Discontinuum

Rock Fall Analysis



Discrete Element Method

• The name ‘discrete element method’ can be used only if it

– Allows finite displacements and rotations of discrete bodies; including complete 
detachment

– Recognizes new interactions (contact) automatically as calculation progresses

• A DEM code will embody an efficient algorithm for detecting and 
classifying contacts. It will maintain a data structure and memory 
allocation scheme that an handle many discontinuities or contacts.

• Two types of DEM

– Explicit DEM (often called distinct element method): use explicit 
FDM for solution.  Ex) PFC, UDEC, FLOBALL

– Implicit DEM: similar to FEM solution technique. Matrix is formed. 
Ex) DDA



Explicit Discrete Element Method
Introduction

• Explicit Discrete Element Method (DEM) solves a motion of interacting 
particles or blocks (in bonded or unbonded form). 

– DEM recognize new contacts within internal algorithm.

– Applications - rock mechanics, powder mechanics, granular materials.

– Finite Difference Method is used to integrate the equation – we replace the time 
derivative with difference equation in finite time interval.

• DEM is very similar to Molecular Dynamics (MD) which has applications 
in biophysics, material science and biochemistry - atoms and molecule 
are used for particles. MD simulate material properties, for examples. 

• This lecture is focused on DEM, however, large portions of DEM 
principle is directly applicable for MD.  



9,355 citations (925 in 2020) in 

Science Citation Index papers 

in > 593 Journals (as of 25 

April 2021)

Cundall, P.A. and O.D.L. Strack, Discrete Numerical Model for Granular Assemblies. 

Geotechnique, 1979. 29(1): p. 47-65

Explicit Discrete Element Method
Introduction – a seminal paper



citations
1. POWDER TECHNOLOGY (798)
2. GRANULAR MATTER (353)
3. CHEMICAL ENGINEERING SCIENCE (275)
4. PHYSICAL REVIEW E (272)
5. computer and Geotechnics (195)
…
13. Int J Rock Mech Min Sci (80)
16. Geotechnique (71)

• Drastic increase of citations in the 

past 25 years

• Appreciation in various fields - proves 

DEM is a truly interdisciplinary 

science!

• What is going to happen in the next 

10-20 years???

Explicit Discrete Element Method
Introduction – a seminal paper



Explicit DEM
Introduction – a seminal paper

• …rock mechanics has traditionally attempted to use procedures from 
other branches of mechanics; however, the developments by Dr 
Cundall and his colleagues in the modelling of the deformation 
behaviour of blocky or particulate systems are now attracting interest 
from these other branches. It appears that there are many fields of 
study where a discrete or discontinuum approach can provide 
illuminating insights into the mechanics of deformation--insights and 
behaviours that may be obscured by classical continuum analyses. 
(Charles Fairhurst, 1988, IJRMMS foreword)

• DEM is probably the first export product from rock mechanics 
community to other branches of science/engineering



Explicit DEM
Introduction – overview

Distinct Element Method

-Theory (F=ma, F=Kδ)

-Contact detection

-Time-step

-damping

Particulate system – PFC2D/3D, FLOBALL

- Rigid particle

- bonded material

- fluid flow/heat transfer

- frictional material, mineral processing 

Blocky system – UDEC/3DEC, LDEC

- Rigid/Deformable block (elastic, elastoplastic) 

- Joint model (linear, nonlinear, Barton-Bandis)

- fluid flow through joint/heat transfer 

- jointed (fractured) rock

Molecular dynamics

-Theory (F=ma, )

-Contact detection

-Time-step, damping

-…

f V 

Very similar

Search through ‘molecular dynamics’!

www.ks.uiuc.edu/Research/vmd/



Explicit DEM
Introduction

• Damage, and its evolution, is explicitly represented in the model; no empirical 
relations are needed to define damage or quantify its effect upon material 
behavior.

• Microcracks form and coalesce “automatically” without the need for grid 
reformulation.

• Complex nonlinear behaviors arise as emergent features, given simple 
behavior at particle level.

– dependence of strength on confining stress

– Dilatancy

– evolution of material anisotropy

• Secondary phenomena, such as acoustic emission, occur in the DEM model 
without additional assumptions.
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• How do we model this system?

– Equation of motion and interacting force

Explicit DEM
Equation of motion – a governing equation



Hart R, IJRMMS 2003;40:1089-1097

Explicit Finite Difference Method (such as FLAC) and Explicit DEM (such as PFC 

and UDEC) essentially have the same calculation scheme – i.e., FDM

Explicit DEM
Equation of motion – a governing equation



• Let’s now talk about the technique to integrate the equation of 
motions and calculate forces.

– For integration two methods will be explained – interlaced central 
difference method (leapfrog method) and Verlet algorithm.

– For force calculation, spring model will be used

Explicit DEM
Equation of motion – a governing equation



You may start from here

UDEC manual

t t+Δt

Stress 

or 

Force

Explicit DEM
Equation of motion – a governing equation



• From central difference scheme

• the same as Leapfrog algorithm 
(Frenken & Smith, 2002)
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Explicit DEM
Equation of motion – a governing equation
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Verlet does not use the velocity to compute the new position. 

However, velocity can be calculated as follows,

Taylor expansion

Verlet algorithm is the most 

widely used in MD simulations

*Verlet L, 1967, Computer ‘experiemtns’ on classical fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys 

Rev 159(1), 98-103, 

Governing Equation
Time integration of equation of motion (2) – Verlet algorithm 
(Verlet, 1967*)



Governing Equation
Contact Force
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3 microproperties:

kn, ks, μ

From  translation & rotation

From HCItasca.com

Governing Equation
Contact Force



• tangential force (Fs)

• Slip condition
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Explicit DEM
Calculation Cycle – rotation, angular velocity, acceleration
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Explicit DEM
Calculation Cycles

two-ball system.avi
two-ball system.avi
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Explicit DEM
Implementing issues

• We covered the 1) solution method of equation of motion and 
2) force calculation

• There are a couple of implementing issues

– Stability of solution

– Contact detection

– Extension to 2D, 3D

– Damping scheme



Implementation issues for explicit DEM
Stability of solution

• There are two important considerations with dynamic 
relaxation:

– Choice of time step

– Effect of damping 



Implementation issues for explicit DEM
Stability of solution

• Explicit schemes are only conditionally stable – have to use 
small enough time step (Δt)

• Stable condition for explicit FDM for a single degree of 
freedom (Cundall and Strack, 1979), 
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•Time step must be lower than the period of the system by 

some amount

•This ∆t is called critical ∆t

•DEM code can automatically determine the ∆t but this can 

also be specified.

Implementation issues for explicit DEM
Stability of solution



•Time step must be lower than the period of the 

system by some amount.

c

m
t

k
  α = 0.1 usually gives a stable 

results

Implementation issues for explicit DEM
Stability of solution



dF F mu 

dF F sign u 

Implementation issues for explicit DEM
Dynamic Relaxation – Effect of Damping

• Damping  is necessary to dissipate the kinetic energy, 
e.g., static problem

• damping force acts opposite to current velocity

• damping force magnitude proportional to out-of-
balance force – there are other way of applying 
damping force, e.g., proportional to velocity magnitude



Implementation issues for explicit DEM
Dynamic Relaxation – Effect of Damping

– Velocity-proportional damping introduces body forces that can 
affect the solution.

– Local damping is used in FLAC --- The damping force at a 
gridpoint is proportional to the magnitude of the unbalanced force 
with the sign set to ensure that vibrational modes are damped:

– Damping forces are introduced to the equations of motion:

– In FLAC the unbalanced force ratio (ratio of unbalanced force, Fi

, to the applied force magnitude, Fm) is monitored  to determine 
the static state. 

– By default, when  Fi / Fm <  0.001, then the model is considered 
to be in an equilibrium state.
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Mass = 1 kg 

Stiffness, k =  1 N/m 

g = 10 m/sec2

gravity

- Step-by-step calculation of velocity, displacement, Force and acceleration

- Implementation of gravity and damping

- Appreciation of the ability to model the dissipation of kinetic energy

Explicit DEM
Examples (1) – Falling Ball under gravity



V=0.5 m/sec

1.0 m

Mass = 1 kg

Radius = 0.3 m 

Stiffness, k =  1 N/m

- Contact detection between two balls

Explicit DEM
Examples (2) – Colliding two balls



Governing Equation
Extension of model to 2D & 3D

• 2D, 3D extension and inclusion of gravity

– Can be achieved straightforwardly
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• Static problem using dynamic formulations

• Biaxial loading with constant velocity, 0.001 m/s

• Loading stopped after 300 cycles

• Ball & Wall stiffness: 1e5 N/m

• Friction coefficient 0.5, damping coefficient 0.7

 

6 m 

6 m 

*Cundall PA, Strack ODL, discrete numerical model for granular assemblies, Geotechnique 29 (1):47-65, 1979

Explicit DEM
Examples (3) – Cundall’s nine disc test

nineball test.avi
nineball test.avi


Explicit DEM
Examples (3) – Cundall’s nine disc test

• Original presentation (Cundall & Strack, 1979)

*Cundall PA, Strack ODL, discrete numerical model for granular assemblies, Geotechnique 29 (1):47-65, 1979



• Static analysis possible by solving dynamic equations with 
damping
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Explicit DEM
Examples (3) – Cundall’s nine disc test



Implementation issues 
Contact detection - Cell-mapping

• Calculation time: Naïve calculation of all contacts, nC2 ~ n2

• Mapping cell logic ~ αn
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Implementation issues 
Contact detection - Cell-mapping



Explicit DEM
Examples (4) – Granular flow in a hopper

• Servo-controlled wall implemented

• Kn=Ks=1e8 N/m, μ=2.5

• Can complement expensive large scale physical test
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Physical model for 2D DEM

unit thickness

- Conceptually, 2D DEM can be said 

to be ‘plane stress’ on ‘rigid’ 

‘cylindrical’ particle with unit 

thickness (hence, disc) as shown 

here.

- Stress (actually force) is in 2D and 

there is no third directional 

deformation due to Poisson’s effect.



• Rock behaves like a cemented 

granular material of complex-

shaped grains in which both the 

grains and the cement are 

deformable and may break.

• Bonded-particle model

– Fundamental particle is circular or 

spherical, but complex “grains” 

produced by bonding particles.

– Damage occurs by bond breakages, 

material evolves from solid to 

granular.

– Exhibits rich set of emergent 

behaviors similar to crystalline rock.

 

0.29 mm 

HCItasca.com

Explicit DEM – Bonded Particulate system
Motivation



2 microproperties:

normal & shear strengths

5 microproperties:

bond radius

normal & shear stiffnesses

normal & shear strengths

from www.HCItasca.com

 

0.29 mm 

This is definitely not for billiards balls!

Explicit DEM – Bonded Particulate system
Bonding logic
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Explicit DEM – Bonded Particulate system
Grain-cement microproperties



• System behavior affected by:

– grain shape

– grain size distribution

– grain packing

– grain-cement microproperties

– material-genesis procedure

 

0.29 mm From HCItasca.com

Explicit DEM – Bonded Particulate system
Overall behavior of bonded system

bonded three balls.avi
bonded three balls.avi


• System behavior affected by:

– grain shape circular disks in 2D

– grain size distribution uniform 

– grain packing arbitrary & isotropic

– grain-cement microproperties deformability & strength

– material-genesis procedure material vessel

 min max,D D

cement

grain

contact

 

0.29 mm 

From CItasca.com

Explicit DEM – Bonded Particulate system
Overall behavior of bonded system



Explicit DEM – Bonded Particulate system
Calibration – determination of microparameter

micro-properties = ? macro-response = ?
perform simulation

to predict

grains & 

glue

grain 

shape

grain 

packing

lab scale

(properties)

field scale

(bulk behavior & 

relevant 

mechanisms)
represent microstructure

anisotropic properties

biaxial tests
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strength

Weaker and less stiff biotite bands 
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• strength
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• porosify

HCItasca.com
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Explicit DEM – Bonded Particulate system
Calibration – determination of microparameter



Macroproperty characterization

Biaxial-test environment Brazilian-test environment

• elastic constants E and 

• unconfined compressive strength 

• crack-initiation stress 

• strength envelope: 
linearize by: friction angle 

cohesion 

• Brazilian tensile strength 

HCItasca.com



material-genesis procedure

1. Compact initial assembly. 2. Install isotropic stress, 

sig0.

3. Remove “floating” particles.

4. Install parallel bonds. 5. Remove from material vessel.

Locked-in forces

(red-tension,

blue-compression).

Magnitude is small 

relative to UCS.

HCItasca.com



Example of initial packing

• Initial packing is an important issue for PFC type modeling

• In this example, radius of balls are fixed and random locations are selected via a 
method similar to Monte Carlo Method.
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Explicit DEM
Examples

• Implementation examples

1) Falling ball under gravity

2) Colliding two balls

3) Static loading of a nine disc system

• Application examples

4) Gravel or powder in a hopper

5) Uniaxial strength test of a material

6) Uniaxial strength test of a material with a crack

7) Modeling of transversely isotropic rock



Explicit DEM
Examples (5) – Uniaxial Strength Test

• Samples were generated through genesis scheme

• Stress and strain were monitored in the sample

• Elastic modulus, Poisson’s ratio and strength can be measured by numerical 
experiment - this needs to be compared with actual(real) measurement.

• Different resolution (av. # of balls/section)

• Min. ball D ≈ 2 cm (L40) ~ 15 cm (L5), Dmax/Dmin=1.66
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2 m 

L5 L40 L20 L10  

1 m 

2 m 

L5 L20 L10 

500crack_with_disp_4mL20_3.avi
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Explicit DEM
Examples (5) – Uniaxial Strength Test

Displacement + cracking Parallel bond force + cracking



Explicit DEM
Examples (5) – Uniaxial Strength Test Obtained σ-ε
(stress-strain) curve

• Very similar observation to actual experiments can be 
obtained.
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Explicit DEM Examples (6) - Rock Mass Strength
– Uniaxial Strength Test (with a internal fracture)

• To understand the nature of fracturing around a cave

• Use numerically based analysis for caving prediction

cave

Progressing

σij ?

Hustrulid & Bullock, 2001 Hendersen Mine, 2006 (Min)



Explicit DEM Examples (6) - Rock Mass Strength
– Uniaxial Strength Test (with a internal fracture)

Ivars et al., 2011, IJRMMS



Explicit DEM Examples (6) - Rock Mass Strength
– Uniaxial Strength Test (with a internal fracture)

Ivars et al., 2011, IJRMMS



Explicit DEM Examples (6) - Rock Mass Strength 
Motivation

 

σ 

ε 

? 

 

σc of intact rock ≠ σc of fractured rock mass.

→ Numerical experiment can be an alternative

To understand the nature of fracturing around a cave

Use numerically based analysis for caving prediction

cave

Progressing

σij ?



Explicit DEM Examples (6) - Rock Mass Strength
Sliding Joint Model

• Identify all contacts between balls that lie upon opposite side of a plane, remove 
bond

• Kn, Ks defined, Failure - Coulomb failure 

• Special command (fishcall in case of PFC) that automatically detect new contact lie 
in joint

PFC2D 4.00

Itasca Consulting Group, Inc.
Minneapolis, MN  USA

Step 19691  14:18:21 Thu Sep 29 2005

View Size:
  X: -2.902e-002 <=> 2.902e-002
  Y: -3.348e-002 <=> 3.348e-002

Ball

Wall

Sliding Joint

PFC2D 4.00

Itasca Consulting Group, Inc.
Minneapolis, MN  USA

Job Title: sW_mL10_f1_0

Step 12578  10:44:31 Thu Sep 29 2005

View Size:
  X: -3.025e-002 <=> 3.025e-002
  Y: -3.348e-002 <=> 3.348e-002

Ball

Wall

Sliding Joint



Explicit DEM Examples (6) - Rock Mass Strength –
Uniaxial Strength Test (with a internal fracture)

Distribution of forcePropagation of crack
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PFC2D with Smooth Joint Model

(a) Bonded Particle 

Model

(c) BPM Embeds 

Weak Planes

(b-2) Smooth 

Joint Model 

(b-1) Standard Contact 

Model

( Mas Ivars et al., 2011 )

15600

Particles

38 mm

76 m
m

Original local

contact orientations

Smooth

Joint

Explicit DEM Examples (7)
Transversely Isotropic Rock



(Eβ varies with respect to inclination, β )

66

( Amadei and Goodman, 1981)

Equivalent Continuum Model Tensor Transformation

1 1 1 1 1 1
,

e r n e r s
E E k G G k 

  
           

Ee , Ge : equivalent elastic & shear modulus,

Er , Gr : intact rock elastic & shear modulus,

kn , ks : normal & shear stiffness

on weak planes,

δ : mean vertical spacing

2 2
21 1 cos s

cos
r n s

in

E E k k


 


 

 
       

K is stiffness ratio

Explicit DEM Examples (7)
Transversely Isotropic Rock



 Fixed Cohesion (C ) : 10 MPa

 Various Friction Angle (φ) : 0o – 30o

 Mechanical Behaviors

-> Smoothly Change

 Strength of Fractured Rock

σ1 : axial strength,  σ3 : confining stress,

C : cohesion,  φ : friction angle,

β : inclination

(Jaeger and Cook, 2007)

Strength Anisotropy with respect to Weak Planes

  
 

  

  
 

  

3

1 3

2 tan

(1 tan tan ) sin2

C

Explicit DEM Examples (7)
Transversely Isotropic Rock
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(a) Step 1 (Intact Rock Part)

(b) Step 2 (Weak Plane Part)

Microproperties of Bonded Particle Model

Grain Cement

Elastic modulus = 38 Gpa Elastic modulus = 38 Gpa

Stiffness ratio = 3.5 Stiffness Ratio = 3.5

Friction coefficient = 0.839 Tensile stress = 75 Mpa

Microproperties of Smooth Joint Model

Normal stiffness = 33700 Gpa/m Dilation angle = 0o

Shear stiffness = 960 Gpa/m Tensile strength = 3 Mpa

Friction coefficient = 0.364 (20o) Cohesion = 15

BPM

SJM

Explicit DEM Examples (7)
Transversely Isotropic Rock
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(a) Elastic Modulus (b) UCS (c) BTS

(Cho et al., 2012)

Boryeong Shale vs. Numerical Model

▲ : Lab Experiments / : Numerical Results

 E, UCS and BTS with respect to the smooth joints orientation

 Capture the overall trend of anisotropic mechanical behaviors

Explicit DEM Examples (7)
Transversely Isotropic Rock



 Red: Tensile Cracks on Contact/Parallel Bond

 Blue: Shear Cracks on Contact/Parallel Bond

 Magenta: Tensile Cracks on Smooth Joint

 Black: Shear Cracks on Smooth Joint 70

Fracture Propagation

&

Failure Mechanism

Shear Failure 

along the Weak 

Planes

Tensile Failure 

along the Weak 

Planes
15600 Particles

(Cho et al., 2012)

Explicit DEM Examples (7)
Transversely Isotropic Rock



Dominated by Layers 

(Smooth Joint Model)

Dominated by

Intact Rock (BPM)

6158 Particles

(Lab Results Obtained from Cho et al., 2012)

Explicit DEM Examples (7)
Transversely Isotropic Rock



• Explicit DEM  in blocky 
system (such as UDEC) 
essentially have the same 
calculation scheme – i.e., 
FDM – for both contact 
and blocks

UDEC manual, 2011

Similar to 

continuum based 

explicit FDM

Explicit DEM in Blocky System
Introduction



Explicit DEM in Blocky System
Contact

Identification of contact character between 2 blocks

We need to know:

1) type of contact (e.g. corner-to-corner, corner-to-edge, etc.)

2) direction of normal to sliding direction

3) gap between blocks, or contact overlap



Initial Position

of block 2

x

y

block centroid

Contact Between two Rigid Blocks

A contact is created at each corner 

interacting with a corner or edge of an opposing block.

Explicit DEM in Blocky System
Contact



Corner rounding scheme with constant length d

r

d

d=r d >> r

rd

d =distance to the corner r=radius of the rounded corner

r

d

d=r

d
r

d >> r

Corner rounding scheme with constant radius r, showing
that small angles in the corner leads to large distances d

Explicit DEM in Blocky System
Corner handling



Definition of contact normal

Rounded corner-to-edge contact Rounded corner-to-corner contact

Explicit DEM in blocky system
Contact 



L1
L2 L3

1 2 3

Element

Nodes

1 2 3 Corner-Edge contacts

L1, L2, L3 Lengths associated

to the contacts

Contacts and Domains between Two Deformable Blocks

D1 D2

D1 D2 Domains

BLOCK
1

BLOCK
2

Explicit DEM in blocky system
Contacts and Domains



Explicit DEM in blocky system
Blocks

• Two formulations for Solid 
body mechanics

- Rigid body translation and 

rotation

- Deformable body mechanics



Explicit DEM in blocky system
Joint Model

• Geometry
- joint set assigned with orientation/length/spacing…
- complete Discrete Fracture Network (DFN) not implemented but 
easily combined via FISH or separate program
- dead-end joint cannot be generated 
- continuum model  use of fictitious joint with high stiffness 
values (UDEC) or glue (3DEC)

• Constitutive model
- Linear model
- Nonlinear model

step-wise nonlinear
continuously yielding model
Barton-Bandis model

n nF K 
s sF K 



Explicit DEM in blocky system
Joint Model (Barton-Bandis model)

• Normal - nonlinear

• Shear - Affected by the magnitude of normal stress and JRC
(Min & Jing, 2004)

Mechanical aperture (mm)

Normal stiffness of fracture (GPa/m)

N
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)
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0 20000 40000 60000 80000 100000

0
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40
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Mechanical aperture

Normal stiffness

1st cycle

4th cycle

1st cycle 4th cycle

 



Explicit DEM in blocky system
Joint Model (Barton-Bandis model)

• More prominent peak with the increase of JRC

dependency of shear behavior on JRC

0

5
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0 0.002 0.004 0.006 0.008 0.01

Shear displacement(m)
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r 

s
tr

e
s
s
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M
P
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sigma_n=5

sigma_n=10

sigma_n=15

sigma_n=20



Explicit DEM in blocky system
Fluid flow

e

Real rock fracture Idealized rock fracture

Idealization

Conceptual model

3

12

e p
Q

x


 


0

0

0

0

:domain pressure in the preceding timestep

:sum of flowrate into the domain

:bulk modulus of fluid

( ) / 2

w w

m

w

m

t V
p p K Q K

V V

p

Q

K

V V V

V V V

 
  

  

 

min
/

f

w i i

V
t

K Q p

 
   

  

For edge-to-edge contact



Explicit DEM in blocky system
Fluid flow and coupled hydromechanical calculation

From UDEC manual



Explicit DEM in blocky system
Fluid flow and coupled hydromechanical calculation

• Relation between hydraulic aperture, a, and joint normal 
stress in UDEC (from UDEC manual)

0 na a u 



Explicit DEM in blocky system
Convective Heat Transfer

Jing and Stephansson, 2007



Explicit DEM in Blocky System
Examples

• 2D Explicit DEM in blocky system
- Stability analysis of fractured rock for low and intermediate 
level nuclear waste underground repository 
- determination of rock mass elastic properties (E, ν)
(Min & Jing, 2003), (Min et al., 2005)

• 3D Explicit DEM in blocky system
- effect of fracture zones on stress distribution (Min, 2009)

• Coupled Hydromechanical Analysis

– effect of stress on permeability (Min et al., 2004)



Explicit DEM in Blocky System

Example - Rock mass E and ν (Min and Jing, 2003)

• In situ experiments is difficult – scale, boundary condition, cost

• Numerical Experiments can be alternative and effective to handle all 
these difficult questions as long as……

• DFN-DEM approach
Discrete Fracture Network (DFN) – geometry of fractured rock mass
Distinct Element Method (DEM)   – solution technique

y

x x

y

x x

y+  y

y+  y

xy

xy

y+  y

x x

y+  y

B.C.(1) B.C.(2) B.C.(3)
 

  

P1
 

Y

    

P2

P2 P1

  



σ





Example - Rock Mass Determination
Methodology

• Three linearly independent B.C.s and consider full anisotropy

• This overcomes the difficulty in Stietel at al (1996)

y

x x

y

x x

y+  y

y+  y

xy

xy

y+  y

x x

y+  y

B.C.(1) B.C.(2) B.C.(3)
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Example - Rock Mass Determination
Methodology

• 6 linearly independent B.C. – 3D 

• 3 linearly independent B.C. – 2D
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Example - Rock Mass Determination
Methodology

• In 2D plane strain condition, 6 elastic constants are 
determined.
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2D DFN3 Boundary conditions

σij : BC

ε ij : measured

Sij :  pre-determined

S ij : ?
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Example - Rock Mass Determination
Methodology - Verification



Example - Rock Mass Determination
Data from Forsmark, Sweden

 

Stockholm 

 

Oskarsham

n 

Forsmark 

Map of Sweden 

• Forsmark and Oskarshamn, two 
candidate sites for Swedish 
Program.

• 2002-2009: site investigation.

• 2009: Forsmark, as the final site

• 2011: License application

• 2014: decision (?)

• 2025: Operation (?)
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Elastic moduli  with stress 
- highly stress-dependent

Stress induced anisotropy 
- Eh 20% higher than Ev in 
shallow depth

Effect of stress is more evident in 

low stress condition.

Displacement distribution

Example - Rock Mass Determination
E mass results (elastic modulus from Forsmark)

(Min, Jing & Stephansson, 2005)
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• A study at Laxemar(Oskarshamn), Sweden which was one 
of the two candidate sites for Swedish nuclear waste 
disposal

www.skb.se

Explicit DEM in Blocky System
Example – Stress state modeling (Min, 2009)



Example – Stress state modeling
Geometry

21 km

13 km

7.7 km

3.2 km



Example – Stress state modeling
Boundary Condition
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Example – Stress state modeling
Mesh generation

Average edge 

length 2,000 m
Average edge 

length 100 m



Example – Stress state modeling
Results – stress distribution near KLX04
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Example – Stress state modeling
Results - Predicted vs. Measured stress (KLX04)

Major Principal Stress Intermediate Principal Stress

Minor Principal Stress

Numerically predictions capture the 

dramatic change of in situ stress

■ Measured

x modeled

(Min, 2009)



(1)

Apply Stress

X

Y

Y

X

P1

P2

P1P2

Y

X

(2)

Measure permeability

impermeable

Repeat with different 

BCs

Explicit DEM in Blocky System
Example - Stress-dependent permeability (Min et al., 2004)
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reproduced.
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why fluid flow in a few 
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dominating the fluid 
behaviour
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Example - Stress-dependent permeability (Min et al., 2004) 
Results - Implications

Nuclear waste repository
Generation of thermal stress

CO2 Geosequestration Increase of injected CO2 pressure

Enhanced Geothermal System

Hydrofrac for shale gas reservoir

Increased hydraulic pressure  hydraulic stimulation

THERMOSHEARING

HYDROSHEARING



A few words for application of DEM

• Start from very very simple model when you do complicated modeling –
try to gain insight into the implemented physics & constitutive equation 
of code

• Modeler should be able to explain every bit of observation – numerical 
code is not a black box!

• There can be many many interesting applications - you are encouraged 
to apply DEM to novel applications

• There are much rooms for improvement in DEM development 
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