
0-1 Knapsack Problem

 A thief robbing a store finds n items.

 The i-th item is worth vi dollars and weighs wi pounds, where vi and wi

are integers.

 The thief wants to take as valuable a load as possible, but he can carry
at most W pounds in his knapsack, for some integer W.

 Which items should he take?

 We call this the 0-1 knapsack problem because for each item, the thief
must either take it or leave it behind.

Fractional Knapsack Problem

 The thief can take fractions of items, rather than having to
make a binary (0-1) choice for each item.

 You can think of an item in the 0-1 knapsack problem as being
like a gold ingot and an item in the fractional knapsack problem
as more like gold dust.

Knapsack Problems

 Both 0-1 and fractional knapsack problems exhibit the optimal-
substructure property.

 The fractional knapsack problem is solvable by a greedy
strategy.

 The 0-1 knapsack problem is not solvable by a greedy strategy.

 The dynamic-programming is needed to find optimal solution for
the 0-1 knapsack problem.

Optimal Substructure Property

 0-1 knapsack problem

 Consider the most valuable load that weighs at most W pounds.

 If we remove item j from this load, the remaining load must be the
most valuable load weighing at most W-wj that the thief can take
from the n-1 original items excluding j.

 Fractional knapsack problem

 If we remove a weight w of one item j from the optimal load, the
remaining load must be the most valuable load weighing at most W
- w that the thief can take from the n-1 original items plus wj-w
pounds of item j.

Greedy Choice Property

 To solve the fractional problem, we first compute the value per
pound vi/wi for each item.

 Obeying a greedy strategy, the thief begins by taking as much
as possible of the item with the greatest value per pound.

 If the supply of that item is exhausted and he can still carry
more, he takes as much as possible of the item with the next
greatest value per pound, and so forth, until he reaches his
weight limit W .

 Thus, by sorting the items by value per pound, the greedy
algorithm runs in O(n lg n) time.

0-1 Knapsack Problem

10

20

30

50

$60 $120 knapsack$100

The value per pound 6 5 4

0-1 Knapsack Problem

50

30

20

$120

$100

+

=$220

50

20

10

$100

$60

+

=$160

50

10

30 $120

$60

+

=$180

Fractional Knapsack Problem

30

20 50

10

20

$80

$100

$60

=$240

Dynamic Programming for 0-1
Knapsack Problem

 Let c[i,w]=value of solution for items 1…i and
maximum weight w

iii

i

wwandiifwicwwicv

wwifwic

woriif

wic

0]),1[],,1[max(

],1[

000

],[

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

Dynamic Programming for 0-1
Knapsack Problem

iii

i

wwandiifwicwwicv

wwifwic

woriif

wic

0]),1[],,1[max(

],1[

000

],[

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0

1

2

3

W
i

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1

2

3

W
i

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1

2

3

W
i

i = 1
w = 0

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0

2

3

W
i

i = 1
w = 0

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60

2

3

W
i

i = 1
w = 1

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60

2

3

W
i

i = 1
w = 2

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60

2

3

W
i

i = 1
w = 3

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60

2

3

W
i

i = 1
w = 4

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2

3

W
i

i = 1
w = 5

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2

3

W
i

i = 2
w = 0

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0

3

W
i

i = 2
w = 0

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0

3

W
i

i = 2
w = 1

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60

3

W
i

i = 2
w = 1

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100

3

W
i

i = 2
w = 2

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160

3

W
i

i = 2
w = 3

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160

3

W
i

i = 2
w = 4

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3

W
i

i = 2
w = 5

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0

W
i

i = 3
w = 0

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0

W
i

i = 3
w = 0

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0

W
i

i = 3
w = 1

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60

W
i

i = 3
w = 1

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60

W
i

i = 3
w = 2

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60 100

W
i

i = 3
w = 2

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60 100 160

W
i

i = 3
w = 3

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60 100 160 180

W
i

i = 3
w = 4

Dynamic Programming for 0-1
Knapsack Problem

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60 100 160 180 220

W
i

i = 3
w = 5

Dynamic Programming for 0-1
Knapsack Problem

DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else

8. C[i,w] = C[i-1,w]

9. return C[n,W]

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 60 60 60 60 60

2 0 60 100 160 160 160

3 0 60 100 160 180 220

W
i

index 1 2 3

w 1 2 3

v 60 100 120

1 2
3

5

$60 $120 knapsack$100

Dynamic Programming for 0-1
Knapsack Problem

Huffman Codes

Huffman Codes

 Huffman codes compress data very effectively – typically savings of
20% to 90%.

 We consider the data to be a sequence of characters.

 Huffman’s greedy algorithm uses a table giving how often each
character occurs to build up an optimal way of representing each
character as a binary string.

 Suppose we have a 100 character data file that we wish to store
compactly.

 We observe that the characters in the file occur with the frequencies
below. That is, only 6 different characters appear, and the character a
occurs 45 times.

a b c d e f

Frequency 45 13 12 16 9 5

Huffman Codes

 We have many options for how to represent such a file of
information.

 Here, we consider the problem of designing a binary character
code (or code for short) in which each character is represented
by a unique binary string, which we call a codeword.

 If we use a fixed-length code, we need 3 bits to represent 6
characters: a = 000, b = 001, . . . , f = 101.

 This method requires 300 bits to code the entire file with 100
characters.

 Can we do better?

Huffman Codes

 A variable-length code can do considerably better than a fixed-
length code, by giving frequent characters short codewords and
infrequent characters long codewords.

 Figure below shows such a code.

 This code requires
(45*1+13*3+12*3+16*3+9*4+5*4) = 224 bits (savings of
approximately 25%).

 In fact, this is an optimal character code for this file, as we shall
see.

a b c d e f

Frequency 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101

Variable-length codeword 0 101 100 111 1101 1100

Prefix Codes
 We consider here only codes in which no codeword is also a prefix of some

other codeword.

 Since no codeword is a prefix of any other, the codeword that begins an
encoded file is unambiguous.

 We can simply identify the initial codeword, translate it back to the original
character, and repeat the decoding process on the remainder of the encoded
file.

 In our example, the string 001011101 parses uniquely as 0 0 101 1101, which
decodes to aabe.

 Although we won’t prove it here, a prefix code can always achieve the optimal
data compression among any character code, and so we suffer no loss of
generality by restricting our attention to prefix codes.

a b c d e f

Frequency 45 13 12 16 9 5

Variable-length codeword 0 101 100 111 1101 1100

Prefix Codes

 The decoding process needs a convenient representation for the
prefix code so that we can easily pick off the initial codeword.

 A binary tree whose leaves are the given characters provides
one such representation.

 We interpret the binary codeword for a character as the simple
path from the root to that character, where 0 means “go to the
left child” and 1 means “go to the right child.”

A Tree Corresponding to the
Fixed-length Code

100

86 14

58 28 14

0

0

0 0

0

0

1

111

f:5e:9c:12b:13 d:16a:45

1

25

55

30

100

A Tree Corresponding to the Variable-
length Code

0

0

0

0

0

1

1 1

1

1

f:5 e:9

c:12 b:13 d:16

a:45

14

Prefix Codes

 An optimal code for a file is always represented by a full binary
tree, in which every non-leaf node has two children (see
Exercise 16.3-2).

 The fixed-length code in our example is not optimal since its
tree, shown previously, is not a full binary tree.

 Since we can now restrict to full binary trees, if C is the
alphabet from which the characters are drawn and all character
frequencies are positive, the tree for an optimal prefix code has
exactly |C| leaves, one for each letter of the alphabet, and
exactly |C|-1 internal nodes.

Prefix Codes

 Given a tree T corresponding to a prefix code, we can easily
compute the number of bits required to encode a file.

 For each character c in the alphabet C, let the attribute c.freq
denote the frequency of c in the file and let dT(c) denote the
depth of c’s leaf in the tree (i.e. length of the codeword for
character c).

 The number of bits required to encode a file is

𝐵 𝑇 =

c∈C
f(c)∗dT(c)

Greedily Constructing a
Huffman Code

f:5 e:9 c:12 b:13 d:16 a:45

Step1: Make frequency table and sort it.

Greedily Constructing a
Huffman Code

c:12 b:13 d:16 a:45

f:5 e:9

14

0 1

Step2: Extract top-two element and merge into one node.

Greedily Constructing a
Huffman Code

c:12 b:13

25

0 1

d:16 a:45

f:5 e:9

14

0 1

Step3: Back to Step 1 until there’s only one element in the Queue.

Greedily Constructing a
Huffman Code

c:12 b:13

25

0 1

d:16

a:45

f:5 e:9

14

0 1

30

0 1

Greedily Constructing a
Huffman Code

c:12 b:13

25

0 1

d:16

a:45

f:5 e:9

14

0 1

30

55

0 1

0 1

Greedily Constructing a
Huffman Code

100

c:12 b:13

25

0 1

d:16

a:45

f:5 e:9

14

0 1

30

0 1

55

0 1

0 1

Constructing a Huffman Code
HUFFMAN(C)
1. n = |C|

2. Q = C
3. for i = 1 to n – 1
4. allocate a new node z
5. z.left = x = EXTRACT-MIN(Q)

6. z.right = y = EXTRACT-MIN(Q)

7. z.freq = x.freq + y.freq

8. INSERT(Q, z)
9. return EXTRACT-MIN(Q)

 For a set C of n characters, we can initialize Q in line 2 in O(n) time using the
BUILD-MIN-HEAP procedure.

 The for loop in lines 3–8 executes exactly n-1 times, and since each heap
operation requires time O(lg n), the loop contributes O(n lg n) to the running
time.

 Thus, total running time on a file with n characters is O(n lg n).

Correctness of Huffman’s

Algorithm

 Greedy Choice
 In each step, we select and extract two minimum elements in the

queue, merge them into one node and insert the node in the queue
again.

 We can prove that this greedy choice yields globally optimal
solution.

 Optimal Substructure
 After greedy choice, the sub-solution must be optimal solution.

 In this case, the sub-tree T’ of T, T’ = T – {x,y}, represents an
optimal prefix code for the alphabet C’ = C – {x,y} ∪ {z}.

 Let z be the parent of x and y, and f(z) = f(x) + f(y).

 Huffman’s Algorithm produces an optimal prefix code because it
satisfies above two properties.

Greedy Choice Property

 Lemma

 Let C be an alphabet in which each character c ∈ C has frequency
c.freq.

 Let x and y be two characters in C having the lowest frequencies.

 Then, there exists an optimal prefix code for C in which the
codewords for x and y have the same length and differ only in the
last bit.

 Proof

 The idea of the proof is to take the tree T representing an arbitrary
optimal prefix code and modify it to make a tree representing
another optimal prefix code such that the characters x and y
appear as sibling leaves of maximum depth in the new tree.

 If we can construct such a tree, then the codewords for x and y will
have the same length and differ only in the last bit.

An Illustration of the Key Step
in the Proof

𝑇

y

x

a b

𝑇′

y

a

x b

𝑇′′

b

a

x y

Greedy Choice Property
 Lemma

 Let C be an alphabet in which each character c ∈ C has frequency c.freq.

 Let x and y be two characters in C having the lowest frequencies.

 Then, there exists an optimal prefix code for C in which the codewords for x
and y have the same length and differ only in the last bit.

 Proof

 Let a and b be two characters that are sibling leaves of maximum depth in
T

 Without loss of generality, we assume that a.freq ≤b.freq and x.freq ≤
y.freq.

 Since x.freq and y,freq are the two lowest leaf frequencies, in order, and
a.freq and b.freq are two arbitrary frequencies, in order, we have x.freq≤
a.freq and y.freq ≤ b.freq.

Greedy Choice Property

 Lemma

 Let C be an alphabet in which each character c ∈ C has frequency
c.freq.

 Let x and y be two characters in C having the lowest frequencies.

 Then, there exists an optimal prefix code for C in which the
codewords for x and y have the same length and differ only in the
last bit.

 Proof

 It is possible that we could have x.freq = a.freq or y.freq = b.freq.

 However, if we had x.freq = b.freq, then we would also have a.freq
= b.freq = x.freq = y.freq and and the lemma would be trivially
true.

 Thus, we will assume that x.freq ≠ b.freq (i.e., x ≠ b).

An Illustration of the Key Step
in the Proof

𝑇

y

x

a b

𝑇′

y

a

x b

𝑇′′

b

a

x y

Greedy Choice Property

 Lemma 16.2

 Let C be an alphabet in which each character c ∈ C has frequency c.freq.

 Let x and y be two characters in C having the lowest frequencies.

 Then, there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ only in the last bit.

 Proof

 We exchange the positions in T of a and x to produce a tree T’, and then
we exchange the positions in T’ of b and y to produce a tree T’’ in which
x and y are sibling leaves of maximum depth.

 The difference in cost between T and T’ is

 B(T) – B(T’) = σ
c∈C

c.freq∗dT(c) – σ
c∈C

c.freq∗dT′(c)

= x.freq*dT(x) + a.freq*dT(a) – x.freq*dT’(x) – a.freq*dT’(a)

= x.freq*dT(x) + a.freq*dT(a) – x.freq*dT(a) – a.freq*dT(x)

= (a.freq–x.freq)(dT(a)-dT(x))≥0.

An Illustration of the Key Step
in the Proof

𝑇

y

x

a b

𝑇′

y

a

x b

𝑇′′

b

a

x y

Greedy Choice Property

 Lemma 16.2

 Let C be an alphabet in which each character c ∈ C has frequency c:freq.

 Let x and y be two characters in C having the lowest frequencies.

 Then, there exists an optimal prefix code for C in which the codewords for x
and y have the same length and differ only in the last bit.

 Proof

 We exchange the positions in T of a and x to produce a tree T’, and then we
exchange the positions in T’ of b and y to produce a tree T’’ in which x and
y are sibling leaves of maximum depth.

 Similarly, the difference in cost between T’ and T’’ is B(T’) – B(T’’) ≥0. (i.e.,
B(T’’) ≤ B(T)).

 Since T is optimal, we also have B(T) ≤ B(T’’).

 Both conditions imply B(T) = B(T’’).

 Thus, T’’ is an optimal tree in which x and y appear as sibling leaves of
maximum depth.

Optimal Substructure

 Lemma 16.3
 Let C be a given alphabet with frequency c.freq defined for each

character c∈C.

 Let x and y be two characters in C with minimum frequency.

 Let C’ be the alphabet C with characters x,y removed and (new)
character z added, so that C’ = C – {x,y}∪{z}.

 Define f for C’ as for C, except that z.freq=x.freq+y.freq.

 Let T’ be any tree representing an optimal prefix code for the
alphabet C’.

 Then the tree T, obtained from T’ by replacing the leaf node for z
with an internal node having x and y as children, represents an
optimal prefix code for the alphabet C.

Optimal Substructure

 We first show how to express the cost B(T) of tree T in terms of the
cost B(T’) of tree T’.

 For each character c ∈ C – {x, y}, we have that dT(c) = dT’(c), and
hence c.freq*dT(c)=c.freq*dT’ (c).

 Since dT(x) = dT(y) = dT’(z)+1, we have

x.freq * dT(x) + y.freq *dT(y)

= (x.freq + y.freq)(dT’(z)+1)

= z.freq * dT’(z)+ (x.freq + y.freq).

 Thus, we have B(T) = B(T’) + x.freq + y.freq.

Optimal Substructure

Z

YX

T
T’

B(T) = B(T’) + x.freq + y.freq.

Optimal Substructure

 Suppose that T does not represent
an optimal prefix code for C.

 Then, there exists an optimal tree
T’’ such that B(T’’) < B(T).

 Without loss of generality (by
Lemma 16.2), T’’ has x and y as
siblings.

 Let T’’’ be the tree T’’ with the
common parent of x and y
replaced by a leaf z with
frequency z.freq = x.freq + y.freq.

Z

YX

T’’
T’’’

B(T’’) = B(T’’’) + x.freq + y.freq

Optimal Substructure

Z

YX

Z

YX

T
T’

T’’
T’’’B(T) = B(T’) + x.freq + y.freq.

B(T’’) = B(T’’’) + x.freq + y.freq.

B(T’’) < B(T)

Optimal Substructure

 We have

 B(T) = B(T’) + x.freq + y.freq

 B(T’’) = B(T’’’) + x.freq + y.freq

 B(T’’) < B(T)

 We now prove by contradiction.

 Suppose that T does not represent an optimal prefix code for C.

 Then, there exists an optimal tree T’’ such that B(T’’) < B(T).

 Without loss of generality (by Lemma 16.2), T’’ has x and y as siblings.

 Let T’’’ be the tree T’’ with the common parent of x and y replaced by a leaf
z with frequency z.freq = x.freq + y.freq.

 B(T’’’) = B(T’’) - x.freq - y.freq < B(T) - x.freq - y.freq = B(T’) yielding a
contradiction to the assumption that T’ represents an optimal prefix code
for C’.

 Thus, T must be optimal for the alphabet C.

Optimality of the Huffman

 Then we can get the optimal prefix code for C using
Huffman.
 The greedy choice property

 There must be an optimal code for two least frequent elements
that have the same length and differ only in the last 1 bit.

 So we build one node using the two least frequent elements,
and instead of the two elements, insert the new node with the
frequency that’s the sum of the two elements.

 The optimal substructure property
 A tree that’s constructed using the remaining elements, must

be optimal, too.

 So if we do this step repeatedly, we can get the optimal
prefix code.

Optimality of the Huffman
Code

 Theorem 16.4

 Procedure HUFFAN produces an optimal prefix code.

 Proof

 Immediate from Lemmas 16.2 and 16.3.

Any Question?

Introduction to Algorithms
(Chapter 21: Data Structures
for Disjoint Sets)

Kyuseok Shim

Electrical and Computer Engineering
Seoul National University

Outline

 In this chapter, we shall describes the operations supported by a
disjoint-set data structure and we present efficient implementations for
disjoint sets.

Disjoint Sets Data Structure

 Some applications involve grouping n distinct elements into a collection
of disjoint sets.

 These applications often need to perform two operations in particular:
finding the unique set that contains a given element and uniting two
sets.

 A disjoint-set is a collection S={S1, S2,…, Sk} of distinct dynamic sets.

 Each set is identified by a member of the set, called representative
which is some member of the set.

Disjoint Sets Data Structure

 We represent each element of a set by an object.

 Letting x denote an object, we wish to support the following
operations:
 MAKE-SET(x): Creates a new set with only x.

 Since the sets are disjoint, we require that x not already be in some
other set.

 UNION(x, y): Combines the two sets Sx and Sy, containing x and y
respectively, into a new set that is the union of these two sets.

 Assume that the two sets are disjoint prior to the operation

 The representative of the resulting set is any member of Sx∪Sy.

 Since we require the sets in the collection to be disjoint, conceptually
we destroy sets Sx and Sy.

 In practice, we often absorb the elements of one of the sets into the
other set.

 FIND-SET(x): Returns the representative of the set containing x.

Disjoint-set Operations

 We shall analyze the running times of disjoint-set data
structures in terms of two parameters.

 n: the number of MAKE-SET operations

 m: the total number of MAKE-SET, UNION, and FIND-SET
operations

 We assume that the n MAKE-SET operations are the first n
operations performed.

 Since the sets are disjoint, each UNION operation reduces the
number of sets by one.

 The number of UNION operations is thus at most n-1.

 Note also that since the MAKE-SET operations are included in
the total number of operations m, we have mn.

An Application of Disjoint-set
Data Structures

 One of the many applications of disjoint-set data
structures arises in determining the connected
components of an undirected graph.

 An undirected graph is connected if there is a path from
every vertex to every other vertex.

c d

a b fe

g i

h j

An Example of a Graph with 4 Connected Components

Finding Connected Component
of an Undirected Graph

 The procedure CONNECTED-COMPONENTS uses the disjoint-set
operations to compute the connected components of a graph.

 In pseudocode, we denote the set of vertices of a graph G by G.V and
the set of edges by G.E.

CONNECTED-COMPONENTS(G)

1. for each vertex v ∈ G.V

2. MAKE-SET(v)

3. for each edge (u, v) in G.E

4. if FIND-SET(u) ≠ FIND-SET(v)

5. UNION(u,v)

Finding Connected Component
of an Undirected Graph

 The procedure CONNECTED-COMPONENTS uses the disjoint-set
operations to compute the connected components of a graph.

 In pseudocode, we denote the set of vertices of a graph G by G.V and
the set of edges by G.E.

 Once CONNECTED COMPONENTS has preprocessed the graph, the
procedure SAME-COMPONENT answers queries about whether two
vertices are in the same connected component.

SAME-COMPONENT(u, v)

1. if FIND-SET(u) == FIND-SET(v)

2. return TRUE

3. else return FALSE

Finding Connected Component
of an Undirected Graph

 The procedure CONNECTED-COMPONENTS initially
places each vertex v in its own set.

 Then, for each edge (u, v), it unites the sets
containing u and v.

 After processing all the edges, two vertices are in the
same connected component if and only if the
corresponding objects are in the same set.

 Thus, CONNECTED-COMPONENTS computes sets in
such a way that the procedure SAME-COMPONENT
can determine whether two vertices are in the same
connected component.

An Example of a Graph with 4
Connected Components

 Initially, each element is a set in itself:

 {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (b,d)

 {a}, {b, d}, {c}, {e}, {f}, {g}, {h}, {i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (e,g)

 {a}, {b, d}, {c}, {e, g}, {f}, {h}, {i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (a,c)

 {a, c}, {b, d}, {e, g}, {f}, {h}, {i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (h,i)

 {a, c}, {b, d}, {e, g}, {f}, {h, i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (a,b)

 {a, b, c, d}, {e, g}, {f}, {h, i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (e,f)

 {a, b, c, d}, {e, f, g}, {h, i}, {j}

c d

a b fe

g i

h j

Collection of Disjoint Sets
After Processing Each Edge

 Edge processed: (b,c)

 {a, b, c, d}, {e, f, g}, {h, i}, {j}

c d

a b fe

g i

h j

Forest for Disjoint Sets

1 2 3 4 5 6 7

1

2

3

45

6

7

Initial state

Intermediate
state

Roots are the representatives of each set.

Find Operation

 FIND-SET(6) = 7

1

2

3

45

6

7

Union Operation

 UNION(1, 7)

1

2
3

45

6

7

A Worst Case

1 2 3 n

2

1 3 n

UNION(1,2)

3

2

1 n

UNION(2,3)

UNION(n-1, n)

…

…

n

n-1

n-2

1

:
:

FIND-SET(n) - n steps!!

:

Linked-List Implementation

 Each set is represented by its own linked list.

 The object for each set has the following attributes
 Head: pointing to the first object in the list

 Tail: pointing to the last object in the list

 Each object in the list contains
 A set member

 A pointer to the next object in the list

 A pointer back to the set object

 Within each linked list, the objects may appear in any
order.

 The representative is the set member in the first
object in the list.

Linked-List Implementation

 MAKE-SET(x) creates a new linked list whose only object is x.
(O(1) time)

 FIND-SET(x) just follows the pointer from x back to its set
object and then return the member in the object that head
points to. (O(1) time)

 UNION(x, y) appends y’s list onto the end of x’s list.

 The representative of x’s list becomes the representative of the
resulting set.

 We use the tail pointer for x’s list to quickly find where to append
y’s list.

 Unfortunately, we must update the pointer to the set object for
each object originally on y’s list, which takes time linear in the
length of y’s list.

Linked-lists for Two Sets

f
head

tail

g d c
head

tail

h

s1
s2

f
head

tail

g d

s1

c h

UNION(f, c)

UNION Implementation

 Suppose that we have objects 𝑥1, 𝑥2,…,𝑥𝑛.

 Execute the sequence of n MAKE-SET
operations followed by n-1 UNION
operation.

 The total number of operations is m=2n-1.

 So 2n-1operations takes (n2) time. (i.e.,
(n) time per operation on average.)

 (𝑛) for 𝑛 MAKE-SET operation

 𝑛2 for n-1 UNION operations since the i-

th UNION operation updates i objects. (σ𝑖=1
𝑛−1 𝑖=

(n2))

Operation # of objects
updated

MAKE-SET(𝑥1) 1

MAKE-SET(𝑥2) 1

… …

MAKE-SET(𝑥𝑛) 1

UNION(𝑥2,𝑥1) 1

UNION(𝑥3,𝑥2) 2

… …

UNION(𝑥𝑛,𝑥𝑛−1) n-1

UNION Implementation

 In the worst case, the previous implementation of the UNION
procedure requires an average of (n) time per call.

 When we append a longer list onto a shorter list, we must update
the pointer to the set object for each member of the longer list.

 Weighted-Union Heuristic

 Instead that each list also includes the length of the list (which we
can easily maintain) and that we always append the shorter list
onto the longer one.

 With this simple weighted-union heuristic, a single UNION
operation can still take Ω(n) time if both sets have Ω(n) members.

Weighted-Union Heuristic

 Instead appending x to y, UNION(x, y) appends the
shorter list to the longer list.

 Associated a length with each list, which indicates
how many elements in the list.

 Theorem 21.1

 Using the linked-list representation of disjoint sets and the
weighted-union heuristic, a sequence of m MAKE-SET,
UNION, and FIND-SET operations, n of which are MAKE-SET
operations, takes O(m+n lg n) time.

A Weighted-Union Heuristic
 Proof of Theorem 21.1

 For an object x, each time x’s pointer was updated, x must have started in the smaller
set.

 The first time x’s pointer was updated, therefore, the resulting set must have had at
least 2 members.

 Similarly, the next time x’s pointer was updated, the resulting set must have had at
least 4 members.

 Since the largest set has at most n members, each object’s pointer is updated at most
⌈lg n⌉ times over all the UNION operations.

 Thus, the total time spent updating object pointers over all UNION operations is O(n lg
n).

 We must also account for updating the tail pointers and the list lengths, which take
only (1) time per UNION operation.

 The total time spent in all UNION operations is thus O(n lg n).

 Each MAKE-SET and FIND-SET operation takes O(1) time, and there are O(m) of
them.

 The total time for the entire sequence is thus O(m+n lg n).

A Faster Implementation of Disjoint-
set Forests

 We represent sets by rooted trees.

 Each member points only to its parent.

 The root of each tree contains the representative and is its own parent.

 The straightforward algorithms that use this representation are no
faster than ones that use the linked-list representation.

c

h e

b

f

d

Straightforward Solution

 Three operations

 MAKE-SET(x): Create a tree containing only x.

 FIND-SET(x): Follow the chain of parent pointers until to the
root. O(height of x’s tree)

 UNION(x, y): Let the root of one tree point to the root of the
other.

 It is possible that (n-1) UNION operations results in a
tree of height n-1. (just a linear chain of n nodes).

 So n FIND-SET operations cost O(n2).

Straightforward Solution

 A disjoint-set forest

c

h e

b

f

d

c

h e

b

f

d

UNION(e, d)

Disjoint-set Forests

 We can achieve an asymptotically optimal disjoint-set
data structure by using the following heuristics

 Union by rank

 Path compression

Union by Rank

 For each node, we maintain a rank, which is an upper bound on the
height of the node.

 In union by rank, we make the root with smaller rank point to the root
with larger rank during a UNION operation

c

h e

b

f

d

c

h
e

b

f

d

UNION(e,d)

Path Compression
 During FIND-SET operations, it makes each node on the find path to point directly to the

root.

 Path compression does not change any ranks.

f

e

d

c

f

edc

Before executing FIND-SET(c) After executing FIND-SET(c)

FIND-SET(x)

Path Compression
 During FIND-SET operations, it makes each node on the find path to point directly to the

root.

 Path compression does not change any ranks.

FIND-SET(x)

x

Pseudocodes for Disjoint-set
Forests

 To implement a disjoint-set forest with the union-by-rank heuristic, we must
keep track of ranks.

 With each node x, we maintain the integer value x.rank, which is an upper
bound on the height of x (the number of edges in the longest simple path
between x and a descendant leaf).

 When MAKE-SET creates a singleton set, the single node in the corresponding
tree has an initial rank of 0.

 Each FIND-SET operation leaves all ranks unchanged.

 The UNION operation has two cases, depending on whether the roots of the
trees have equal rank.

 If the roots have unequal rank, we make the root with higher rank the parent of the
root with lower rank, but the ranks themselves remain unchanged.

 If the roots have equal ranks, we arbitrarily choose one of the roots as the parent and
increment its rank.

 We designate the parent of node x by x.p.

Pseudocodes for Disjoint-set
Forests

MAKE-SET(x)

1. x.p = x

2. x.rank = 0

UNION(x,y)

1. LINK(FIND-SET(x), FIND-SET(y))

LINK(x,y)

1. if x.rank>y.rank

2. y.p = x

3. else x.p = y

4. if x.rank == y.rank

5. y.rank = y.rank + 1

FIND-SET(x)

1. if x ≠ x.p

2. x.p = FIND-SET(x.p)

3. return x.p

FIND-SET Procedure

 A two-pass method

 As it recurses, it makes one pass up the find path to find the root.

 As the recursion unwinds, it makes a second pass back down the find path
to update each node to point directly to the root.

 If x is the root, then FIND-SET skips line 2 and instead returns x.p,
which is x.

 Otherwise, line 2 executes, and the recursive call with parameter x.p
returns a pointer to the root.

 Line 2 updates node x to point directly to the root, and line 3
returns this pointer.

FIND-SET(x)

1. if x ≠ x.p

2. x.p = FIND-SET(x.p)

3. return x.p

Path Compression

 FIND-SET(3)

1

2

3

45

6

7

3 456

7

8 9

10
8 910

1

2

Effect of the Heuristics on the Running Time

 Separately, either union by rank or path compression improves
the running time of the operations on disjoint-set forests, and
the improvement is even greater when we use the two
heuristics together.

 The union by rank heuristic alone yields a running time of O(m
lg n) (see Exercise 21.4-4), and this bound is tight (see Exercise
21.3-3).

 Although we shall not prove it here, for a sequence of n MAKE-
SET operations (and hence at most n-1 UNION operations) and
f FIND-SET operations, the path-compression heuristic alone
gives a worst-case running time of (n + f(1 + log2+f/n n)).

Effect of the Heuristics on the Running Time

 The union by rank heuristic alone yields a running time of O(m lg n)
(see Exercise 21.4-4), and this bound is tight (see Exercise 21.3-3).

 For a sequence of n MAKE-SET operations (and hence at most n-1
UNION operations) and f FIND-SET operations, the path-compression
heuristic alone gives a worst-case running time of (n + f(1 + log2+f/n

n)).

 When we use both union by rank and path compression, for a
sequence of m MAKE-SET, UNION, FIND-SET operations with n MAKE-
SET operations, the worst-case running time is 𝑂(𝑚 𝛼 𝑛),

 𝛼(𝑛) is a very slowly growing function which we define in Section
21.4.

 In any conceivable application of a disjoint-set data structure, 𝛼(𝑛)
≤ 4.

 Thus, we can view the running time as linear in m in all practical
situations.

Any Question?

	WEEK-8-1-CH16 (part 2).pdf
	WEEK-8-2-CH21.pdf

