
0-1 Knapsack Problem

 A thief robbing a store finds n items. 

 The i-th item is worth vi dollars and weighs wi pounds, where vi and wi

are integers. 

 The thief wants to take as valuable a load as possible, but he can carry 
at most W pounds in his knapsack, for some integer W. 

 Which items should he take?

 We call this the 0-1 knapsack problem because for each item, the thief 
must either take it or leave it behind.



Fractional Knapsack Problem

 The thief can take fractions of items, rather than having to 
make a binary (0-1) choice for each item.

 You can think of an item in the 0-1 knapsack problem as being 
like a gold ingot and an item in the fractional knapsack problem 
as more like gold dust.



Knapsack Problems

 Both 0-1 and fractional knapsack problems exhibit the optimal-
substructure property.

 The fractional knapsack problem is solvable by a greedy 
strategy.

 The 0-1 knapsack problem is not solvable by a greedy strategy.

 The dynamic-programming is needed to find optimal solution for 
the 0-1 knapsack problem.



Optimal Substructure Property

 0-1 knapsack problem

 Consider the most valuable load that weighs at most W pounds. 

 If we remove item j from this load, the remaining load must be the 
most valuable load weighing at most W-wj that the thief can take 
from the n-1 original items excluding j.

 Fractional knapsack problem

 If we remove a weight w of one item j from the optimal load, the 
remaining load must be the most valuable load weighing at most W 
- w that the thief can take from the n-1 original items plus wj-w 
pounds of item j.



Greedy Choice Property

 To solve the fractional problem, we first compute the value per 
pound vi/wi for each item. 

 Obeying a greedy strategy, the thief begins by taking as much 
as possible of the item with the greatest value per pound. 

 If the supply of that item is exhausted and he can still carry 
more, he takes as much as possible of the item with the next 
greatest value per pound, and so forth, until he reaches his 
weight limit W . 

 Thus, by sorting the items by value per pound, the greedy 
algorithm runs in O(n lg n) time.
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Dynamic Programming for 0-1 
Knapsack Problem

 Let c[i,w]=value of solution for items 1…i and 
maximum weight w

















iii

i

wwandiifwicwwicv

wwifwic

woriif

wic

0]),1[],,1[max(

],1[

000

],[



DP-KNAPSACK(n, W)

1. for w = 0 to W

2. C[0,w] = 0

3. for i = 1 to n

4. for w = 0 to W

5. if (w[i] ≤ w)

6. C[i,w] = max{C[i-1,w], v[i]+C[i-1,w-w[i]]}

7. else 

8. C[i,w] = C[i-1,w]

9. return C[n,W]
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Huffman Codes

 Huffman codes compress data very effectively – typically savings of 
20% to 90%.

 We consider the data to be a sequence of characters. 

 Huffman’s greedy algorithm uses a table giving how often each 
character occurs to build up an optimal way of representing each 
character as a binary string.

 Suppose we have a 100 character data file that we wish to store 
compactly.

 We observe that the characters in the file occur with the frequencies 
below. That is, only 6 different characters appear, and the character a 
occurs 45 times.

a b c d e f

Frequency 45 13 12 16 9 5



Huffman Codes

 We have many options for how to represent such a file of 
information. 

 Here, we consider the problem of designing a binary character 
code (or code for short) in which each character is represented 
by a unique binary string, which we call a codeword.

 If we use a fixed-length code, we need 3 bits to represent 6 
characters: a = 000, b = 001, . . . , f = 101. 

 This method requires 300 bits to code the entire file with 100 
characters.

 Can we do better?



Huffman Codes

 A variable-length code can do considerably better than a fixed-
length code, by giving frequent characters short codewords and 
infrequent characters long codewords.

 Figure below shows such a code. 

 This code requires 
(45*1+13*3+12*3+16*3+9*4+5*4) = 224 bits (savings of 
approximately 25%). 

 In fact, this is an optimal character code for this file, as we shall 
see.

a b c d e f

Frequency 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101

Variable-length codeword 0 101 100 111 1101 1100



Prefix Codes
 We consider here only codes in which no codeword is also a prefix of some 

other codeword. 

 Since no codeword is a prefix of any other, the codeword that begins an 
encoded file is unambiguous.

 We can simply identify the initial codeword, translate it back to the original 
character, and repeat the decoding process on the remainder of the encoded 
file.

 In our example, the string 001011101 parses uniquely as 0  0  101  1101, which 
decodes to aabe.

 Although we won’t prove it here, a prefix code can always achieve the optimal 
data compression among any character code, and so we suffer no loss of 
generality by restricting our attention to prefix codes.

a b c d e f

Frequency 45 13 12 16 9 5

Variable-length codeword 0 101 100 111 1101 1100



Prefix Codes

 The decoding process needs a convenient representation for the 
prefix code so that we can easily pick off the initial codeword. 

 A binary tree whose leaves are the given characters provides 
one such representation. 

 We interpret the binary codeword for a character as the simple 
path from the root to that character, where 0 means “go to the 
left child” and 1 means “go to the right child.”
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Prefix Codes

 An optimal code for a file is always represented by a full binary 
tree, in which every non-leaf node has two children (see 
Exercise 16.3-2).

 The fixed-length code in our example is not optimal since its 
tree, shown previously, is not a full binary tree.

 Since we can now restrict to full binary trees, if C is the 
alphabet from which the characters are drawn and all character 
frequencies are positive, the tree for an optimal prefix code has 
exactly |C| leaves, one for each letter of the alphabet, and 
exactly |C|-1 internal nodes.



Prefix Codes

 Given a tree T corresponding to a prefix code, we can easily 
compute the number of bits required to encode a file. 

 For each character c in the alphabet C, let the attribute c.freq
denote the frequency of c in the file and let dT(c) denote the 
depth of c’s leaf in the tree (i.e. length of the codeword for 
character c).

 The number of bits required to encode a file is

𝐵 𝑇 = 

c∈C
f(c)∗dT(c)



Greedily Constructing a 
Huffman Code

f:5 e:9 c:12 b:13 d:16 a:45

Step1: Make frequency table and sort it.



Greedily Constructing a 
Huffman Code

c:12 b:13 d:16 a:45

f:5 e:9

14

0 1

Step2: Extract top-two element and merge into one node.



Greedily Constructing a 
Huffman Code

c:12 b:13

25

0 1

d:16 a:45

f:5 e:9

14

0 1

Step3: Back to Step 1 until there’s only one element in the Queue.



Greedily Constructing a 
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Greedily Constructing a 
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Greedily Constructing a 
Huffman Code
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Constructing a Huffman Code
HUFFMAN(C)
1. n = |C|

2. Q = C
3. for i = 1 to n – 1
4. allocate a new node z
5. z.left = x = EXTRACT-MIN(Q)

6. z.right = y = EXTRACT-MIN(Q)

7. z.freq = x.freq + y.freq

8. INSERT(Q, z)
9. return EXTRACT-MIN(Q)

 For a set C of n characters, we can initialize Q in line 2 in O(n) time using the 
BUILD-MIN-HEAP procedure.

 The for loop in lines 3–8 executes exactly n-1 times, and since each heap 
operation requires time O(lg n), the loop contributes O(n lg n) to the running 
time.

 Thus, total running time on a file with n characters is  O(n lg n).



Correctness of Huffman’s 

Algorithm

 Greedy Choice
 In each step, we select and extract two minimum elements in the 

queue, merge them into one node and insert the node in the queue 
again.

 We can prove that this greedy choice yields globally optimal 
solution.

 Optimal Substructure
 After greedy choice, the sub-solution must be optimal solution.

 In this case, the sub-tree T’ of T, T’ = T – {x,y}, represents an 
optimal prefix code for the alphabet C’ = C – {x,y} ∪ {z}.

 Let z be the parent of x and y, and f(z) = f(x) + f(y).

 Huffman’s Algorithm produces an optimal prefix code because it 
satisfies above two properties.



Greedy Choice Property

 Lemma

 Let C be an alphabet in which each character c ∈ C has frequency 
c.freq. 

 Let x and y be two characters in C having the lowest frequencies. 

 Then, there exists an optimal prefix code for C in which the 
codewords for x and y have the same length and differ only in the 
last bit.

 Proof

 The idea of the proof is to take the tree T representing an arbitrary 
optimal prefix code and modify it to make a tree representing 
another optimal prefix code such that the characters x and y 
appear as sibling leaves of maximum depth in the new tree.

 If we can construct such a tree, then the codewords for x and y will 
have the same length and differ only in the last bit.



An Illustration of the Key Step 
in the Proof
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Greedy Choice Property
 Lemma

 Let C be an alphabet in which each character c ∈ C has frequency c.freq. 

 Let x and y be two characters in C having the lowest frequencies. 

 Then, there exists an optimal prefix code for C in which the codewords for x 
and y have the same length and differ only in the last bit.

 Proof

 Let a and b be two characters that are sibling leaves of maximum depth in 
T

 Without loss of generality, we assume that a.freq ≤b.freq and x.freq ≤
y.freq.

 Since x.freq and y,freq are the two lowest leaf frequencies, in order, and 
a.freq and b.freq are two arbitrary frequencies, in order, we have x.freq≤
a.freq and y.freq ≤ b.freq.



Greedy Choice Property

 Lemma

 Let C be an alphabet in which each character c ∈ C has frequency 
c.freq. 

 Let x and y be two characters in C having the lowest frequencies. 

 Then, there exists an optimal prefix code for C in which the 
codewords for x and y have the same length and differ only in the 
last bit.

 Proof

 It is possible that we could have x.freq = a.freq or y.freq = b.freq.

 However, if we had x.freq = b.freq, then we would also have a.freq
= b.freq = x.freq = y.freq and  and the lemma would be trivially 
true.

 Thus, we will assume that x.freq ≠ b.freq (i.e., x ≠ b).



An Illustration of the Key Step 
in the Proof
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Greedy Choice Property

 Lemma 16.2

 Let C be an alphabet in which each character c ∈ C has frequency c.freq. 

 Let x and y be two characters in C having the lowest frequencies. 

 Then, there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ only in the last bit.

 Proof

 We exchange the positions in T of a and x to produce a tree T’, and then 
we exchange the positions in T’ of b and y to produce a tree T’’ in which 
x and y are sibling leaves of maximum depth.

 The difference in cost between T and T’ is

 B(T) – B(T’) = σ
c∈C

c.freq∗dT(c) – σ
c∈C

c.freq∗dT′(c)

= x.freq*dT(x) + a.freq*dT(a) – x.freq*dT’(x) – a.freq*dT’(a)

= x.freq*dT(x) + a.freq*dT(a) – x.freq*dT(a) – a.freq*dT(x) 

= (a.freq–x.freq)(dT(a)-dT(x))≥0.



An Illustration of the Key Step 
in the Proof
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Greedy Choice Property

 Lemma 16.2

 Let C be an alphabet in which each character c ∈ C has frequency c:freq. 

 Let x and y be two characters in C having the lowest frequencies. 

 Then, there exists an optimal prefix code for C in which the codewords for x 
and y have the same length and differ only in the last bit.

 Proof

 We exchange the positions in T of a and x to produce a tree T’, and then we 
exchange the positions in T’ of b and y to produce a tree T’’ in which x and 
y are sibling leaves of maximum depth.

 Similarly, the difference in cost between T’ and T’’ is B(T’) – B(T’’) ≥0. (i.e., 
B(T’’) ≤ B(T)).

 Since T is optimal, we also have B(T) ≤ B(T’’).

 Both conditions imply B(T) = B(T’’).

 Thus, T’’ is an optimal tree in which x and y appear as sibling leaves of 
maximum depth. 



Optimal Substructure

 Lemma 16.3
 Let C be a given alphabet with frequency c.freq defined for each 

character c∈C. 

 Let x and y be two characters in C with minimum frequency. 

 Let C’ be the alphabet C with characters x,y removed and (new) 
character z added, so that C’ = C – {x,y}∪{z}.

 Define f for C’ as for C, except that z.freq=x.freq+y.freq. 

 Let T’ be any tree representing an optimal prefix code for the 
alphabet C’. 

 Then the tree T, obtained from T’ by replacing the leaf node for z 
with an internal node having x and y as children, represents an 
optimal prefix code for the alphabet C.



Optimal Substructure

 We first show how to express the cost B(T) of tree T in terms of the 
cost B(T’) of tree T’.

 For each character c ∈ C – {x, y}, we have that dT(c) = dT’(c), and 
hence c.freq*dT(c)=c.freq*dT’ (c).

 Since dT(x) = dT(y) = dT’(z)+1, we have

x.freq * dT(x) + y.freq *dT(y) 

= (x.freq + y.freq)(dT’(z)+1) 

=  z.freq * dT’(z)+ (x.freq + y.freq).

 Thus, we have B(T) = B(T’) + x.freq + y.freq.



Optimal Substructure
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Optimal Substructure

 Suppose that T does not represent 
an optimal prefix code for C. 

 Then, there exists an optimal tree 
T’’ such that B(T’’) < B(T). 

 Without loss of generality (by 
Lemma 16.2), T’’ has x and y as 
siblings.

 Let T’’’ be the tree T’’ with the 
common parent of x and y 
replaced by a leaf  z with 
frequency z.freq = x.freq + y.freq. 

Z

YX

T’’
T’’’

B(T’’) = B(T’’’) + x.freq + y.freq



Optimal Substructure

Z

YX

Z

YX

T
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T’’
T’’’B(T) = B(T’) + x.freq + y.freq.

B(T’’) = B(T’’’) + x.freq + y.freq.

B(T’’) < B(T)



Optimal Substructure

 We have 

 B(T) = B(T’) + x.freq + y.freq

 B(T’’) = B(T’’’) + x.freq + y.freq

 B(T’’) < B(T)

 We now prove by contradiction.

 Suppose that T does not represent an optimal prefix code for C. 

 Then, there exists an optimal tree T’’ such that B(T’’) < B(T). 

 Without loss of generality (by Lemma 16.2), T’’ has x and y as siblings.

 Let T’’’ be the tree T’’ with the common parent of x and y replaced by a leaf  
z with frequency z.freq = x.freq + y.freq. 

 B(T’’’) = B(T’’) - x.freq - y.freq < B(T) - x.freq - y.freq = B(T’) yielding a 
contradiction to the assumption that T’ represents an optimal prefix code 
for C’.

 Thus, T must be optimal for the alphabet C.



Optimality of the Huffman

 Then we can get the optimal prefix code for C using 
Huffman.
 The greedy choice property

 There must be an optimal code for two least frequent elements 
that have the same length and differ only in the last 1 bit. 

 So we build one node using the two least frequent elements, 
and instead of the two elements, insert the new node with the 
frequency that’s the sum of the two elements.

 The optimal substructure property
 A tree that’s constructed using the remaining elements, must 

be optimal, too.

 So if we do this step repeatedly, we can get the optimal 
prefix code.



Optimality of the Huffman 
Code

 Theorem 16.4

 Procedure HUFFAN produces an optimal prefix code.

 Proof 

 Immediate from Lemmas 16.2 and 16.3.



Any Question?
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Outline

 In this chapter, we shall describes the operations supported by a 
disjoint-set data structure and we present efficient implementations for 
disjoint sets.



Disjoint Sets Data Structure

 Some applications involve grouping n distinct elements into a collection 
of disjoint sets. 

 These applications often need to perform two operations in particular: 
finding the unique set that contains a given element and uniting two 
sets.

 A disjoint-set is a collection S={S1, S2,…, Sk} of distinct dynamic sets.

 Each set is identified by a member of the set, called representative 
which is some member of the set.



Disjoint Sets Data Structure

 We represent each element of a set by an object. 

 Letting x denote an object, we wish to support the following 
operations:
 MAKE-SET(x): Creates a new set with only x. 

 Since the sets are disjoint, we require that x not already be in some 
other set.

 UNION(x, y): Combines the two sets Sx and Sy, containing x and y 
respectively, into a new set that is the union of these two sets. 

 Assume that the two sets are disjoint prior to the operation

 The representative of the resulting set is any member of  Sx∪Sy. 

 Since we require the sets in the collection to be disjoint, conceptually 
we destroy sets Sx and Sy.

 In practice, we often absorb the elements of one of the sets into the 
other set.

 FIND-SET(x): Returns the representative of the set containing x.



Disjoint-set Operations

 We shall analyze the running times of disjoint-set data 
structures in terms of two parameters.

 n: the number of MAKE-SET operations

 m: the total number of MAKE-SET, UNION, and FIND-SET 
operations

 We assume that the n MAKE-SET operations are the first n 
operations performed.

 Since the sets are disjoint, each UNION operation reduces the 
number of sets by one.

 The number of UNION operations is thus at most n-1.

 Note also that since the MAKE-SET operations are included in 
the total number of operations m, we have mn.



An Application of Disjoint-set 
Data Structures

 One of the many applications of disjoint-set data 
structures arises in determining the connected 
components of an undirected graph.

 An undirected graph is connected if there is a  path from 
every vertex to every other vertex.

c d

a b fe
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An Example of a Graph with 4 Connected Components



Finding Connected Component 
of an Undirected Graph

 The procedure CONNECTED-COMPONENTS uses the disjoint-set 
operations to compute the connected components of a graph. 

 In pseudocode, we denote the set of vertices of a graph G by G.V and 
the set of edges by G.E.

CONNECTED-COMPONENTS(G)

1. for each vertex v ∈ G.V

2. MAKE-SET(v)

3. for each edge (u, v) in G.E

4. if FIND-SET(u) ≠ FIND-SET(v)

5. UNION(u,v)



Finding Connected Component 
of an Undirected Graph

 The procedure CONNECTED-COMPONENTS uses the disjoint-set 
operations to compute the connected components of a graph. 

 In pseudocode, we denote the set of vertices of a graph G by G.V and 
the set of edges by G.E.

 Once CONNECTED COMPONENTS has preprocessed the graph, the 
procedure SAME-COMPONENT answers queries about whether two 
vertices are in the same connected component. 

SAME-COMPONENT(u, v)

1. if FIND-SET(u) == FIND-SET(v) 

2. return TRUE 

3. else return FALSE



Finding Connected Component 
of an Undirected Graph

 The procedure CONNECTED-COMPONENTS initially 
places each vertex v in its own set.

 Then, for each edge (u, v), it unites the sets 
containing u and v.

 After processing all the edges, two vertices are in the 
same connected component if and only if the 
corresponding objects are in the same set.

 Thus, CONNECTED-COMPONENTS computes sets in 
such a way that the procedure SAME-COMPONENT 
can determine whether two vertices are in the same 
connected component.



An Example of a Graph with 4 
Connected Components

 Initially, each element is a set in itself:

 {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}, {j}
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Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (b,d)

 {a}, {b, d}, {c}, {e}, {f}, {g}, {h}, {i}, {j}

c d

a b fe

g i

h j



Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (e,g)

 {a}, {b, d}, {c}, {e, g}, {f}, {h}, {i}, {j}

c d
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Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (a,c)

 {a, c}, {b, d}, {e, g}, {f}, {h}, {i}, {j}

c d
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Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (h,i)

 {a, c}, {b, d}, {e, g}, {f}, {h, i}, {j}
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Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (a,b)

 {a, b, c, d}, {e, g}, {f}, {h, i}, {j}

c d

a b fe
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h j



Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (e,f)

 {a, b, c, d}, {e, f, g}, {h, i}, {j}

c d

a b fe

g i

h j



Collection of Disjoint Sets 
After Processing Each Edge

 Edge processed: (b,c)

 {a, b, c, d}, {e, f, g}, {h, i}, {j}

c d

a b fe

g i

h j



Forest for Disjoint Sets
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Roots are the representatives of each set.



Find Operation

 FIND-SET(6) = 7
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Union Operation

 UNION(1, 7)
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A Worst Case
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Linked-List Implementation

 Each set is represented by its own linked list. 

 The object for each set has the following attributes 
 Head: pointing to the first object in the list

 Tail: pointing to the last object in the list

 Each object in the list contains 
 A set member

 A pointer to the next object in the list

 A pointer back to the set object

 Within each linked list, the objects may appear in any 
order. 

 The representative is the set member in the first 
object in the list.



Linked-List Implementation

 MAKE-SET(x) creates a new linked list whose only object is x. 
(O(1) time)

 FIND-SET(x) just follows the pointer from x back to its set 
object and then return the member in the object that head 
points to. (O(1) time)

 UNION(x, y) appends y’s list onto the end of x’s list.

 The representative of x’s list becomes the representative of the 
resulting set.

 We use the tail pointer for x’s list to quickly find where to append 
y’s list.

 Unfortunately, we must update the pointer to the set object for 
each object originally on y’s list, which takes time linear in the 
length of y’s list.



Linked-lists for Two Sets
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UNION Implementation

 Suppose that we have objects 𝑥1, 𝑥2,…,𝑥𝑛.

 Execute the sequence of n MAKE-SET 
operations followed by n-1 UNION 
operation. 

 The total number of operations is m=2n-1.

 So 2n-1operations takes (n2) time. (i.e., 
(n) time per operation on average.)

 (𝑛) for 𝑛 MAKE-SET operation

  𝑛2 for n-1 UNION  operations since the i-

th UNION operation updates i objects. (σ𝑖=1
𝑛−1 𝑖=

(n2))

Operation # of objects 
updated

MAKE-SET(𝑥1) 1

MAKE-SET(𝑥2) 1

… …

MAKE-SET(𝑥𝑛) 1

UNION(𝑥2,𝑥1) 1

UNION(𝑥3,𝑥2) 2

… …

UNION(𝑥𝑛,𝑥𝑛−1) n-1



UNION Implementation

 In the worst case, the previous implementation of the UNION 
procedure requires an average of (n) time per call. 

 When we append a longer list onto a shorter list, we must update 
the pointer to the set object for each member of the longer list. 

 Weighted-Union Heuristic

 Instead that each list also includes the length of the list (which we 
can easily maintain) and that we always append the shorter list 
onto the longer one. 

 With this simple weighted-union heuristic, a single UNION 
operation can still take Ω(n) time if both sets have Ω(n) members. 



Weighted-Union Heuristic

 Instead appending x to y, UNION(x, y) appends the 
shorter list to the longer list.

 Associated a length with each list, which indicates 
how many elements in the list.

 Theorem 21.1

 Using the linked-list representation of disjoint sets and the 
weighted-union heuristic, a sequence of m MAKE-SET, 
UNION, and FIND-SET operations, n of which are MAKE-SET 
operations, takes O(m+n lg n) time.



A Weighted-Union Heuristic
 Proof of Theorem 21.1

 For an object x, each time x’s pointer was updated, x must have started in the smaller 
set. 

 The first time x’s pointer was updated, therefore, the resulting set must have had at 
least 2 members. 

 Similarly, the next time x’s pointer was updated, the resulting set must have had at 
least 4 members.

 Since the largest set has at most n members, each object’s pointer is updated at most 
⌈lg n⌉ times over all the UNION operations.

 Thus, the total time spent updating object pointers over all UNION operations is O(n lg 
n).

 We must also account for updating the tail pointers and the list lengths, which take 
only (1) time per UNION operation.

 The total time spent in all UNION operations is thus O(n lg n).

 Each MAKE-SET and FIND-SET operation takes O(1) time, and there are O(m) of 
them. 

 The total time for the entire sequence is thus O(m+n lg n).



A Faster Implementation of Disjoint-
set Forests

 We represent sets by rooted trees.

 Each member points only to its parent.

 The root of each tree contains the representative and is its own parent.

 The straightforward algorithms that use this representation are no 
faster than ones that use the linked-list representation. 
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Straightforward Solution

 Three operations

 MAKE-SET(x): Create a tree containing only x.

 FIND-SET(x): Follow the chain of parent pointers until to the 
root. O(height of x’s tree) 

 UNION(x, y): Let the root of one tree point to the root of the 
other.

 It is possible that (n-1) UNION operations results in a 
tree of height n-1. (just a linear chain of n nodes).

 So n FIND-SET operations cost O(n2).



Straightforward Solution

 A disjoint-set forest
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Disjoint-set Forests

 We can achieve an asymptotically optimal disjoint-set 
data structure by using the following heuristics

 Union by rank

 Path compression



Union by Rank

 For each node, we maintain a rank, which is an upper bound on the 
height of the node.

 In union by rank, we make the root with smaller rank point to the root 
with larger rank during a UNION operation
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Path Compression
 During FIND-SET operations, it makes each node on the find path to point directly to the 

root.

 Path compression does not change any ranks.
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Path Compression
 During FIND-SET operations, it makes each node on the find path to point directly to the 

root.

 Path compression does not change any ranks.

FIND-SET(x)

x



Pseudocodes for Disjoint-set 
Forests

 To implement a disjoint-set forest with the union-by-rank heuristic, we must 
keep track of ranks. 

 With each node x, we maintain the integer value x.rank, which is an upper 
bound on the height of x (the number of edges in the longest simple path 
between x and a descendant leaf).

 When MAKE-SET creates a singleton set, the single node in the corresponding 
tree has an initial rank of 0. 

 Each FIND-SET operation leaves all ranks unchanged. 

 The UNION operation has two cases, depending on whether the roots of the 
trees have equal rank.

 If the roots have unequal rank, we make the root with higher rank the parent of the 
root with lower rank, but the ranks themselves remain unchanged. 

 If the roots have equal ranks, we arbitrarily choose one of the roots as the parent and 
increment its rank.

 We designate the parent of node x by x.p.



Pseudocodes for Disjoint-set 
Forests

MAKE-SET(x)

1. x.p = x

2. x.rank = 0

UNION(x,y)

1. LINK(FIND-SET(x), FIND-SET(y))

LINK(x,y)

1. if x.rank>y.rank

2. y.p = x

3. else x.p = y

4. if x.rank == y.rank

5. y.rank = y.rank + 1

FIND-SET(x)

1. if x ≠ x.p

2. x.p = FIND-SET(x.p)

3. return x.p



FIND-SET Procedure

 A two-pass method 

 As it recurses, it makes one pass up the find path to find the root.

 As the recursion unwinds, it makes a second pass back down the find path 
to update each node to point directly to the root.

 If x is the root, then FIND-SET skips line 2 and instead returns x.p, 
which is x. 

 Otherwise, line 2 executes, and the recursive call with parameter x.p
returns a pointer to the root. 

 Line 2 updates node x to point directly to the root, and line 3 
returns this pointer.

FIND-SET(x)

1. if x ≠ x.p

2. x.p = FIND-SET(x.p)

3. return x.p



Path Compression

 FIND-SET(3)
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Effect of the Heuristics on the Running Time

 Separately, either union by rank or path compression improves 
the running time of the operations on disjoint-set forests, and 
the improvement is even greater when we use the two 
heuristics together. 

 The union by rank heuristic alone yields a running time of O(m 
lg n) (see Exercise 21.4-4), and this bound is tight (see Exercise 
21.3-3).

 Although we shall not prove it here, for a sequence of n MAKE-
SET operations (and hence at most n-1 UNION operations) and 
f FIND-SET operations, the path-compression heuristic alone 
gives a worst-case running time of (n + f(1 + log2+f/n n)).



Effect of the Heuristics on the Running Time

 The union by rank heuristic alone yields a running time of O(m lg n) 
(see Exercise 21.4-4), and this bound is tight (see Exercise 21.3-3).

 For a sequence of n MAKE-SET operations (and hence at most n-1 
UNION operations) and f FIND-SET operations, the path-compression 
heuristic alone gives a worst-case running time of (n + f(1 + log2+f/n 

n)).

 When we use both union by rank and path compression, for a 
sequence of m MAKE-SET, UNION, FIND-SET operations with n MAKE-
SET operations, the worst-case running time is 𝑂(𝑚 𝛼 𝑛 ), 

 𝛼(𝑛) is a very slowly growing function which we define in Section 
21.4.

 In any conceivable application of a disjoint-set data structure, 𝛼(𝑛)
≤ 4. 

 Thus, we can view the running time as linear in m in all practical 
situations.



Any Question?
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