2021 Spring

"Phase Equilibria in Materials"

04.20.2021

Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Isothermal section

cf) Movie

Vertical section

1.5 Binary phase diagrams

- > Point 1: 4 on the α solidus surface
- > Point 1- Point 2
- * $4 \rightarrow 6$ on the α solidus surface * $1 \rightarrow 5$ on the α liquidus surface Three phase equilibrium 15, $\alpha 6$, $\beta 7$
 - * α : 6 \rightarrow 9, β : 7 \rightarrow 10, l: 5 \rightarrow 8
- > Point 3: on the tie line 9-10
- > Point 3-Y: α : 9 \rightarrow 11, β : 10 \rightarrow 12

Projection of the solidification sequence for alloy Y on the concentration triangle

• A peritectic solubility gap in one binary system

PP₁: monovariant curve for liquid

Points P_1 and c lie at the same temperature and the line P_1c is a degenerate tie triangle.

isothermal section

• A peritectic solubility gap in one binary system

• A peritectic solubility gap in two binary system

• A transition from a binary eutectic to a binary peritectic reaction

- Tie lines are drawn on the I β and I α surfaces only.
- By Hillert to show that <u>the transition form a peritectic to</u> <u>a eutectic reaction does not occur at a unique temperature.</u>

• Binary Monotectic, syntectic and metatectic reactions in combination with each other as well as with binary eutectic and peritectic reactions.

Chapter 10. Ternary phase Diagrams Four-Phase Equilibrium

a. THE TERNARY EUTECTIC EQUILIBRIUM ($l = \alpha + \beta + \gamma$)

b. THE QUASI-PERITECTIC EQUILIBRIUM $(l + \alpha = \beta + \gamma)$

c. THE TERNARY PERIECTIC EQUILIBRIUM $(l + \alpha + \beta = \gamma)$

Three phase equil. (f = 1) - eutectic, peritectic

Now we consider of four-phase equilibrium

- max N of phase
- f = 0 : composition of four phases at temp. \rightarrow fixed
- isothermal four phase regions

The eutectic four-phase plane as the junction of four tie triangles

Ternary eutectic • Projection : solid solubility limit surface : monovariant liquidus curve

18

THE TERNARY EUTECTIC EQUILIBRIUM ($l = \alpha + \beta + \gamma$)

Tabular representation of ternary equilibria: interlinks the binary and ternary reactions in tabular form

Eutectic equilibrium $1 \rightleftharpoons \alpha + \beta + \gamma$

Binary AB	Ternary	Binary AC	Binary BC
$l \rightleftharpoons \alpha + \beta$	$l \rightleftharpoons \alpha + \beta + \gamma$ \downarrow $\alpha + \beta + \gamma$	$l \rightleftharpoons \alpha + \gamma$	$l \rightleftharpoons \beta + \gamma$

TA: Melting Point Of Material A

T_B: Melting Point Of Material B

T_C: Melting Point Of Material C

TEI: Eutectic Temperature Of A-B

T_{E2}: Eutectic Temperature Of B-C

TE3: Eutectic Temperature Of C-A

Main outline of Ternary Phase Diagram with Ternary Eutectic (Te) and Solid Single Phase Regions Shown

Temperature Slice At T3 <TA, TB, TC, But T3>TE1, TE2, TE3

Isothermal Section At T= T₃

T= ternary eutectic temp.

http://www.youtube.com/watch?v=yzhVomAdetM

• **Isothermal section** $(T_A > T > T_B)$

Vertical section

Location of vertical section

Fig. 179. Construction of vertical section 1-2.

10.1. THE EUTECTIC EQUILIBRIUM $(l = \alpha + \beta + \gamma)$

Vertical section Location of vertical section

10.1. THE EUTECTIC EQUILIBRIUM $(l = \alpha + \beta + \gamma)$

Transformation during cooling

36

Ternary Eutectic microstructure

Microstructure of the ternary eutectic in the Al-Cu-Si system. $_{37}$ α light, Θ dark, Si grey, (x 900)

Transformation during cooling

Transformation during cooling

39

Ternary Eutectic System

Solidification Sequence

