Week 8 Project Cost Estimating (2) Engineering Economics

457.307 Construction Planning and Management Department of Civil and Environmental Engineering Seoul National University

> Prof. Seokho Chi <u>shchi@snu.ac.kr</u> 건설환경공학부 35동 304호

A Sea of Problems

- Simple Problems: Worked in one's head
 - Should I pay cash for an item or use my credit card?
 - Shall we replace a burned-out motor?
 - Do I take a bus or a subway?
- Intermediate Problems: Organized and analyzed, Economic aspects are significant
 - Shall I buy or lease my next car?
 - Which equipment should be selected for a new assembly line?
 - Which materials should be used as roofing, siding, and structural support for a new building?
 - Do I buy a semester parking pass or use the parking meters?
 - Which printing press should be purchased? A low cost press requiring three operators or a more expensive one needing only two operators?

A Sea of Problems

- Complex Problems: Economic, political and humanistic
 - The selection of a girlfriend or a boyfriend (who may later become a spouse): economic analysis can be of little or no help.
 - Manufacturing site: Texas or California

Texas

Permit time: 9-12 months No seismic sensitivity No dock Facilities (major market: Asia) Lower labor/construction cost Closer to raw materials Lower taxes

California

Permit time: 12-18 months Seismic sensitive location Coast with dock facilities Higher construction cost More environmental restrictions CEO' preference

Role of Engineering Economic Analysis

- Suitable for Intermediate Problems & Economic Aspects of Complex Problems
 - The decision is sufficiently important that serious thought and effort is required.
 - That careful analysis requires that the decision variables be carefully organized and the consequences be understood.
 - A significant component of the analysis leading to a decision are ECONOMIC ISSUES.
 - Engineering economic analysis focuses on: costs, revenues and benefits that occur at different times
 - When a civil engineer designs a road, a dam, or a building: construction costs occur in the near future and benefits to users only begin when construction is finished but then the benefits continue for a long time.

Decision Making Process

- 1. Recognize problem
- 2. Define the goal or objective
- 3. Assemble relevant data
- 4. Identify feasible alternatives
- 5. Select criteria to determine the best alternative
- 6. Construct a model
- 7. Predict each alternative's outcomes or consequences
- 8. Choose the best alternative
- 9. Audit the result

Example

- A machine part is manufactured at a unit cost of 40¢ for material and 15¢ for direct labor (other costs = 2.5 x direct labor cost). An investment of \$500,000 in tooling is required. The order calls for 3,000,000 pieces. Half-way through the order, a new method of manufacture can be put into effect which will reduce the unit costs to 34¢ for material and 10¢ for direct labor, but it will require \$100,000 for additional tooling. What, if anything, should be done?
- Alternative 1: Continue with present method
 - Direct cost: 1,500,000 pieces x 0.40 =\$600,000
 - Direct labor cost: 1,500,000 pieces x 0.15 = \$225,000 | Other costs = \$562,500
 - Total = \$1,387,500
- Alternative 2: Change the manufacturing method
 - Material cost: 1,500,000 pieces x 0.34 = \$510,000
 - Direct labor cost: 1,500,000 pieces x 0.10 = \$150,000 | Other costs = \$375,000
 - Additional tooling cost: \$100,000
 - Total = \$1,135,000

Engineering Costs

- Classifications of Costs
 - Fixed: constant, unchanging (e.g. "crane" costs)
 - Variable : depend on activity level (e .g . " placing concrete " cost depends on the quantity)
 - Marginal: variable cost for one more unit
 - Average : total cost /number of units

Engineering Costs

• An entrepreneur named YG was considering the money-making potential of chartering a bus to take people from is hometown to an event in a larger city. YG planned to provide transportation, tickets to the event, and refreshments on the bus for those who signed up. He gathered data and categorized these expenses as either fixed or variable.

Engineering Costs

• Profit and Loss Terms

Fixed C	Costs		Variabl	e C	osts	Ticket price						
Bus Rental	\$ 80.00	Event	Tickets	\$	12.50	-		\$	35.00			
Gas Expense	\$ 75.00	Refres	hments	\$	7.50							
Other Fuels	\$ 20.00											
Bus Driver	\$ 50.00					-						
Total FC	\$225.00	Total \	VC	\$	20.00							
	People	Fixe	d cost	Va	riable cost	Т	otal cost	R	evenue	Profit	Region	
	0	\$	225.00	\$	-	\$	225.00	\$	-	\$ (225.00)	Loss	
	5	\$	225.00	\$	100.00	\$	325.00	\$	175.00	\$(150.00)	Loss	
	10	\$	225.00	\$	200.00	\$	425.00	\$	350.00	\$ (75.00)	Loss	
	15	\$	225.00	\$	300.00	\$	525.00	\$	525.00	\$ -	Breakeven	
	20	\$	225.00	\$	400.00	\$	625.00	\$	700.00	\$ 75.00	Profit	
	25	\$	225.00	\$	500.00	\$	725.00	\$	875.00	\$ 150.00	Profit	
	30	\$	225.00	\$	600.00	\$	825.00	\$ [^]	1,050.00	\$ 225.00	Profit	
	35	\$	225.00	\$	700.00	\$	925.00	\$ [^]	1,225.00	\$ 300.00	Profit	
	40	\$	225.00	\$	800.00	\$	1,025.00	\$ [^]	1,400.00	\$ 375.00	Profit	
		Cost (\$)	\$1,500 \$1,000 \$500 \$	Pı .00 .00 .00	0 5 10 1	b r 5 2 ⁄o lu	eakeven 0 25 30 35	ch	art — To — Fix — Re	otal cost xed cost evenue		

Project Lifecycle

Life Cycle Cost (LCC)

Adapted from *Life Cycle Assessment – A Primer*, Paladino Consulting LCC, July 2000, Seattle, WA, www.palcon.com

LCC Practice

- LCC methodology encompasses:
 - Capital costs
 - O&M costs
 - Energy in particular
 - Salvage costs
- Economic analysis is future based.
- Costs and benefits in the future require estimating.
- Estimated costs are not known with certainty: Power Sizing(Segmenting + Interests), Cost Indexes, Learning Curve, etc.
- The more accurate the estimate, the more reliable the decision.

Energy Consumption

• Buildings = Biggest polluters + Biggest Energy Consumption

Green Building

- Green building is the practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout a building's life-cycle from siting to design, construction, operation, maintenance, renovation and deconstruction.
- Green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by:
 - Efficiently using energy, water, and other resources
 - Protecting occupant health and improving employee productivity
 - Reducing waste, pollution and environmental degradation

Cash Flow Diagrams

- Summarizes the flow of money overtime
- Can be represented using a spreadsheet

Net Present Value (NPV) Analysis

- Today's \$100 OR Tomorrow's \$100?
- Discounting: \$ tomorrow is worth less than \$ today
 - Why?
 - Risk. You might not get paid tomorrow.
 - Opportunity. You could invest the dollar today to make money.
 - Risk. Prices in the future might go up.
 - Risk. You might not be around tomorrow.
 - Value. Why delay gratification when you could have something now?

Cash Flow Mapping

If you can get the cash flow diagram straight, you have the problem mostly solved!

Discounting or NPV Formulas

NPV Example

- Repair vs Replace HVAC system
 - If *repair* current HVAC,
 - no upfront costs (P=0), but O&M costs are 100k/yr
 - If *replace* with new HVAC,
 - upfront costs are 300k and O&M costs are 50k/yr
 - Assume 10 year lifespan, i = 7%

"\$100k(P|A, n=10, i=7%)"

NPV Example (Cont'd)

• Replace

Makes sense to invest in the new system!

	Single P	ayment		Uniform I	Arithmet	t			
	Compound Amount Factor	Present Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Compound Amount Factor	Present Worth Factor	Gradient Uniform Series	Gradient Present Worth	
п	Find F Given P F/P	Find P Given F P/F	Find A Given F A/F	Find A Given P A/P	Find F Given A F/A	Find P Given A P/A	Find A Given G A/G	Find P Given G P/G	
1	1.040	.9615	1.0000	1.0400	1.000	0.962	0	0	1
2	1.082	.9246	.4902	.5302	2.040	1.886	0.490	0.925	2
4	1.125	.8890	.3203	.3003	3.122	2.775	0.974	2.702	3
5	1.217	.8219	.1846	.2246	5.416	4.452	1.451	5.267 8.555	4 5
6	1.265	7903	1508	1908	6 633	5 242	2 396	12 506	
7	1.316	.7599	.1266	.1666	7.898	6.002	2.300	12.500	07
8	1.369	.7307	.1085	.1485	9.214	6.733	3.294	22 180	8
9	1.423	.7026	.0945	.1345	10.583	7.435	3.739	27,801	9
10	1.480	.6756	.0833	.1233	12.006	8.111	4.177	33.881	10
11	1.539	.6496	.0741	.1141	13.486	8.760	4.609	40.377	11
12	1.601	.6246	.0666	.1066	15.026	9.385	5.034	47.248	12
13	1.000	.6006	.0601	.1001	16.627	9.986	5.453	54.454	13
15	1.801	.5775	.0547	.0947	20.024	10.563	5.866	61.962	14
16	1 972	6220	0450	0050			0.272	05.155	15
17	1.0/2	5124	.0458	.0858	21.825	11.652	6.672	77.744	16
18	2 026	4936	0422	0700	23.097	12.166	7.066	85.958	17
19	2.107	4746	0361	0761	27 671	13 134	7.433	94.350	18
20	2.191	.4564	.0336	.0736	29.778	13.590	8.209	111.564	20
21	2.279	.4388	.0313	.0713	31,969	14 029	8 578	120 341	21
22	2.370	.4220	.0292	.0692	34.248	14.451	8.941	129 202	22
23	2.465	.4057	.0273	.0673	36.618	14.857	9.297	138.128	23
25	2.563	3901	.0256	.0656	39.083	15.247	9.648	147.101	24
	2.000	.5751	.0240	.0040	41.040	15.022	9.993	156.104	25
26	2.772	.3607	.0226	.0626	44.312	15.983	10.331	165.121	26
28	2.883	.3408	.0212	.0612	47.084	16.330	10.664	174.138	27
29	3.119	3207	0189	0589	49.908	16.003	10.991	183.142	28
30	3.243	.3083	.0178	.0578	56.085	17.292	11.627	201.062	30
31	3.373	2965	.0169	0569	50 328	17 588	11 037	200.055	21
32	3.508	.2851	.0159	.0559	62,701	17.874	12 241	218 702	32
33	3.648	.2741	.0151	.0551	66.209	18.148	12.540	227.563	33
34	3.794	.2636	.0143	.0543	69.858	18.411	12.832	236.260	34
33	3.940	.2534	.0136	.0536	73.652	18.665	13.120	244.876	35
40	4.801	.2083	.0105	.0505	95.025	19.793	14.476	286.530	40
43	5.841	.1712	.00826	.0483	121.029	20.720	15.705	325.402	45
55	8.646	1157	.00055	.0466	152.667	21.482	16.812	361.163	50
60	10.520	.0951	.00420	.0432	237.990	22.623	18.697	422.996	55
65	12 700	0781	00330	0424	204 049	22.042	10.401	110 201	
70	15.572	.0642	.00275	0427	364 200	23.047	19.491	449.201	05
75	18.945	.0528	.00223	.0422	448.630	23.680	20.821	493 041	75
30	23.050	.0434	.00181	.0418	551.244	23.915	21.372	511,116	80
15	28.044	.0357	.00148	.0415	676.089	24.109	21.857	526.938	85
ю	34.119	.0293	.00121	.0412	827.981	24.267	22.283	540 737	90
5	41.511	.0241	.00099	.0410 1	012.8	24.398	22.655	552.730	95
NU .	50.505	.0198	.00081	.0408 1	237.6	24 505	22 980	563 125	100

Time Value of Money

- Money has a time value because it can earn more money over time. (interest: earning power)
- Money has a time value because its purchasing power change over time. (inflation)

Contemporary Engineering Economics, 5th edition © 2010

http://www.planyourescape.ca/understanding-inflation-24

Inflation Happens

...and it adds up

www.bls.gov

The Corrosive Effect of Inflation

- Suppose 3% inflation for 30 years
 - \$1 purchasing power today →
 F|P, 3%, 30 yrs → Need \$2.43 tomorrow
- Suppose 4% inflation for 30 years
 - $1 \text{ today} \rightarrow \text{Need } 3.24 \text{ tomorrow}$

What does this do to your estimate for retirement savings?

Discount Rates and Inflation

- Discount rate accounts for time value of money
- Nominal interest: Rate inclusive o f inflation
- Real interest: Rate after inflation
- Real \approx Nominal Inflation rate (approximate)

• Cash flows

- Constant dollars: No inflation . Thinking from present .
 Dollars expected to be same as base date
 e.g., \$100 O&M costs: In 2030, actually pay \$100+α
- Current dollars: Account for inflation in each periode .g ., \$ 1,000 home mortgage: In 2030, actually still pay \$1,000

Discount Rates and Inflation

• Use

- Real interest rate with constant dollars
- Nominal interest rate with current dollars
- Normally, you can ignore inflation!
 - Make estimates in constant dollars
 - Everything is scaled to today's prices
 - Is more accurate: inflation varies, but real returns more stable
 *Real return: Real interest provides increase in money in the future after taking account of inflation increase
 e.g., \$100 O&M costs: In 2030, actually pay \$100+α

Exercise (1)

The SH 230 highway project east of Austin was awarded based on a life cycle cost analysis. Proposals were made by two consortiums; Lonestar and Four Rivers. Lonestar proposed to build the four lane divided highway east of Austin using continuously reinforced concrete pavement for a construction cost of \$226,666,000/year for six years, and for *a maintenance cost of \$4,300,000/year for the following 29* years. Four Rivers proposed to build the highway using asphalt concrete pavement for \$262,000,000/year for five years and for a maintenance cost of \$10,600,000/year for the following 30 years. TxDOT added a cost of \$1,733,000/year in the last 15 years onto the Four Rivers proposal for a more realistic estimate that included milling and overlay expenses. At a 6% interest, which proposal should TxDOT have chosen? Use NPV analysis and a 35 year analysis period.

Exercise (1)

• Lonestar

- NPV = - $226,666k \times (P | A, n=6, i=6\%)$ - $4,300k \times (P | A, n=29, i=6\%) \times (P | F, n=6, i=6\%)$ = -1,155,718k

Exercise (1)

• Four River

- NPV = $-\$262,000k \times (P | A, n=5, i=6\%)$ $-\$10,600k \times (P | A, n=30, i=6\%) \times (P | F, n=5, i=6\%)$ $-\$1,733k \times (P | A, n=15, i=6\%) \times (P | F, n=20, i=6\%)$ = -\$1,271,830k

Thus, Choose LONESTAR (-\$1,156M) < Four River (-\$1,272M)

Apartment HVAC System Renovation?

Current Window-based System VS New Centralized System

System LCC = Initial Cost + Maintenance Cost + Replacement Cost

+ Residual Values + Energy Cost

Cost	Window-Unit Systems	Centralized Systems
Initial cost	-	\$22,771
Maintenance cost	\$90 per year	\$90 per year
Window unit	\$1,300	-
replacement cost		
Baseboard heater	\$130	-
replacement cost		
Residual values	\$138	-
Energy cost	\$859 per year	\$531 per year

*Analysis period: 30 years | Constant value analysis | Discount rate: 4% Window unit replacement: 4th, 13th, 22nd year Based board heater replacement: 6th, 18th year

Exercise (2)

Current Window-based System

* NPV = <u>-\$ 18,975</u>

Initial cost: 0

Maintenance cost : $90 \times (P \mid A, n=30, i=4\%)$

Window unit replacement cost : $1,300 \times ((P | F, n=4, i=4\%) + (P | F, n=13, i=4\%) + (P | F, n=22, i=4\%)$

BB heater replacement cost : $130 \times ((P | F, n=6, i=4\%) + (P | F, n=18, i=4\%))$ Residual values : $138 \times (P | F, n=30, i=4\%)$ Energy cost : $859 \times (P | A, n=30, i=4\%)$

Exercise (2)

New Centralized System

=\$22,771

* NPV = <u>-\$ 33,509</u>

Initial cost : \$22,771 Maintenance cost : \$90 × (P|A, n=30, i=4%) Energy cost : \$531 × (P|A, n=30, i=4%)

Thus, Choose Current System (-\$18,975) > New System(-\$33,509)

Example (3)

A firm will install one of two mechanical devices to reduce costs. Both devices have useful lives of 5 years and no salvage value. Device A costs \$10,000 and can be expected to result in \$3,000 savings annually. Device B costs \$13,500 and will provide cost savings of \$3,000 the first year but savings will increase \$500 annually. With interest at 7%, which device should the firm purchase?

 $PV_A = -10,000 + 3,000(P/A, n=5, i=7\%) = -10,000 + 3,000 (4.1) = \$2,301$ $PV_B = -13,500 + 3,000(P/A, n=5, i=7\%) + 500(P/G, n=5, i=7\%)$ = -13,500 + 3,000(4.1) + 500(7.647) = \$2,624<u>Device B</u> has the larger Present Value and is the preferred alternative.

Example (4)

A diesel manufacturer is considering the two alternative production machine cashflows and specific data are as follows. The manufacturer uses as interest rate 8% and wants to use the NPV method to compare these alternatives over an analysis period of 10years.

	Alt.1	Alt.2
Initial Cost	\$50,000	\$75,000
Estimated salvage value at end of useful life	\$10,000	\$12,000
Useful life of equipment, in years	7	13
Estimated market value, end of 10-year analysis period	\$20,000	\$15,000

	Alt.1	Alt.2
Initial Cost	\$50,000	\$75,000
Estimated salvage value at end of useful life	\$10,000	\$12,000
Useful life of equipment, in years	7	13
Estimated market value, end of 10-year analysis period	\$20,000	\$15,000

Example (4)

 $PV_{At .1} = -50,000 + (10,000-50,000)(P/F, n=7, i=8\%) + 20,000(P/F, n=10, i=8\%)$ = - 50,000 -40,000 (0.5835)+20,000(0.4632) = - \$64,076 $PV_{At .2} = -75,000 + 15,000(P/F, n=10, i=8\%)$ = - 75,000 + 15,000(0.4632) = - \$68,052 To minimize PV of costs the diesel manufacturer should select <u>Alt.1</u>.

Example (5)

You have 4 choices:

Alt.1 Do nothing
Alt.2 Build a market for \$50,000. It will earn \$5,100 per yr. and will sell for \$30,000 in 20 yrs.
Alt.3 Build a gas station for \$95,000. It will earn \$10,500 per yr, and will sell for \$30,000 in 20 yrs.
Alt.4 Build a motel for \$350,000. It will earn \$36,000 per yr, and will sell for \$150,000 in 20 yrs.
Which alternative would you choose at 10% interest?

Example (5)

$\begin{aligned} PV_{At.1} &= \mathbf{0} \\ PV_{At.2} &= -50,000 + 5,100(P/A,n=20,i=10\%) + 30,000 (P/F,n=20,i=10\%) \\ &= -50,000 + 5,100 (8.5146) + 30,000 (0.1486) = -\$2,122 \\ PV_{At.3} &= -95,000 + 10,500(8.5146) + 30,000 (0.1486) = -\$1,148 \\ PV_{At.4} &= -350,000 + 36,000 (8.5146) + 150,000 (0.1486) = -\$21,215 \end{aligned}$

None of the alternatives have a positive present value. Therefore it makes sense to choose the <u>do nothing</u> alternative.

Example (6)

Machine A costs \$2,000, income starts at \$1000 in Year 1, declines \$150 per yr, and settles at \$400 per yr for Years 5-8. Machine B costs \$1,500, income is \$700 in yr 1, then \$300 in Years 2-5, then grows by \$100 per yr to end at \$600 in Year 8. Which is preferable at 8%?

Machine A cash flow

Ex. 5.1: Consider 2 options costing \$1000 each, but savings from the first will be \$300 per year ending at 5 years, while the savings from the second start at \$400 and decline \$50 per year, ending at 5 years. At 7% interest, which would you recommend?

Analysis period: Assume 5 years PW of A = -1000 + 300(P/A, n=5, i=7%) = -1000 + 300 (4.100) = \$230 PW of B = -1000 + 400(P/A, n=5, i=7%) - 50(P/G, n=5, i=7%) = -1000 + 400(4.100) - 50(7.647) = \$258 <u>Alternative B</u> has a higher Present Worth.

Alternatives with Complex Cash Flows

Ex. 5.10: Machine A costs \$2000, income starts at \$1000 in Year 1, declines \$150 per yr, and settles at \$400 per yr for Years 5-8. Machine B costs \$1500, income is \$700 in yr 1, then \$300 in Years 2-5, then grows by \$100 per yr to end at \$600 in Year 8. Which is preferable at 8%?

Comparing Two Alternatives (cont'd)

PW of A = -2000 + 400(P/A, n=8, i=8%)+ 600(P/A, n=4, i=8%) - 150(P/G, n=4, i=8%)= -2000 + 400(5.747) + 600(3.312) - 150(4.650) =\$1589 PW of B = -1500 + 400(P/F, n=1, i=8%) + 300(P/A, n=8, i=8%)+100(P/G, n=4, i=8%)(P/F, n=4, i=8%)= -1500 + 400(0.9259) + 300(5.747) + 100(4.650)(0.7350) =\$936 Machine A has greater Present Worth.

ESSENTIALS of ENGINEERING ECONOMIC ANALYSIS

Present worth analysis
Annual cash flow analysis
Rate of return analysis
Incremental analysis
Future worth analysis
Benefit-cost ratio analysis
Payback period
Sensitivity and breakeven analysis

- Future predictions are uncertain by nature
 - Interest rates, costs, timing of replacements, etc.
- Need to make an assessment of how variation in costs makes a difference to NPV
 - In general, the further out in time, the less important something is (discounting at work)
 - Most important assessment is uncertainty in costs in near term and annual costs
 - Change in NPV due to variation in interest rates also important

- Sensitivity Analysis:
 - Vary key costs, re-compute NPV
 - Generally "High-Expected-Low" is good to get a range
 - Vary costs one at a time to build picture of most influential
 - Cost that have great influence on NPV bear further study to increase certainty

Sensitivity Analysis: Tornado Diagram

- Breakeven analysis:
 - Compute min/max values
 - Minimum value of a savings for project to breakeven
 - Maximum value of initial investment for project to breakeven
 - Useful to determine at what threshold value(s) project becomes uneconomic
 - Compare min/max to expectations about costs

Assess Non-Monetary Value

- Some costs/benefits cannot easily be quantified
 - Value of a quieter HVAC system
 - Value of north facing windows with a view
- These should be identified and presented to decision makers along with cost assessment
 - e.g., energy efficient HVAC has LCC savings of \$235,000, but is significantly noisier (>3db)

Assess Non-Monetary Value

• Generally, multiple considerations attach to multiple alternatives

Ambient temp Acoustic privacy Lighting View Ambient temp Base (do nothing) Alternative 1 Alternative 2

- Difficult to make a fair, collective comparison
- Several structured, matrix approaches exist to help rank, value non-monetary considerations
 - Attach benefit value and importance for each consideration to each alternative
 - Make a weighted comparison

Make Recommendations

• Present

SIR: Saving-Investment Ratio

- Alternatives
- LCC of each alternative with non-monetary benefits/costs
- Ranking of independent projects (SIRs) (as needed by decision)
- Make a recommendation
 - Alternative 2 costs \$10k more than Alternative 1 but saves \$25k over the base (do-nothing) scenario. Alternative 2 provides a better working environment than Alternative 1 and the base scenario (non-monetary benefits), which we believe outweighs the \$10k difference in cost.

Energy Prices

- Energy savings are a key area of LCC practice
 - Annual savings/expenditures
 - Energy costs can be large share of operating costs
 - 15% of total lifecycle cost, higher portion of operating costs
- Lighting/electrical, HVAC, & water most common replacements and upgrades
 - Direct users of energy (e.g., air handling units)
 - Indirect energy wasters (e.g., windows)

Energy Price Indices/Factors

- Energy costs may have changes in real rates aside from inflation
 - Contradicts constant dollar assumptions
- US Government publishes energy price indices and discount factor tables
 - NISTIR 85-3273 (DOE rates)
 - Lookup FEMP UPV* factor
 - Federal Energy Management Program Uniform Present Value Factor
 - Multiply FEMP UPV* by present annual expenditure rate to get discounted NPV (this NPV includes real price adjustments)
 - FEMP UPV* determined by:
 - Region, fuel type, rate type, discount rate, study period

DOE Energy Regions

FEMP UPV* Example

- \$20,000/yr annual energy cost
 - Get costs from current data, utilities, manufacturers...
- Data for analysis using Table
 - Federal commercial office building
 - 20 year span
 - Natural gas
 - Connecticut building: Region=1
 - Discount: std DOE value
 - FEMP UPV* = 17.09
- NPV = $$20,000 \times 17.09 = $341,800$

FEMP UPV* Table

Table Ba-1. FEMP UPV* Discount Factors adjusted for fuel price escalation, by end-use sector and fuel type.

Discount rate = 3.0 % (DOE)

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire,

New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

RESIDENTIAL						COM	MERCIAL	↓			I	TRANSPORT				
N	Elec	Dist	LPG	NtGas	Elec	Dist	Resid	NtGas	Coal	Elec	Dist	Resid	NtGas	Coal	Gasln	N
-																-
1	0.91	0.97	0.96	1.01	0.87	0.98	0.97	1.04	0.95	0.83	1.00	0.98	1.12	0.96	1.01	1
2	1.83	1.96	1.92	2.03	1.74	1.99	2.01	2.10	1.88	1.65	2.03	2.02	2.32	1.89	2.04	2
3	2.76	2.98	2.90	2.99	2.60	3.03	3.14	3.14	2.77	2.48	3.09	3.14	3.49	2.78	3.11	3
4	3.66	4.00	3.87	3.92	3.42	4.09	4.31	4.12	3.64	3.25	4.18	4.30	4.61	3.65	4.20	4
5	4.53	5.02	4.85	4.82	4.21	5.15	5.50	5.09	4.48	4.00	5.27	5.47	5.70	4.49	5.28	5
6	5.38	6.05	5.81	5.69	4.99	6.23	6.70	6.02	5.30	4.74	6.37	6.65	6.75	5.29	6.36	6
7	6.22	7.09	6.76	6.54	5.76	7.31	7.90	6.93	6.08	5.47	7.48	7.84	7.78	6.08	7.42	7
8	7.04	8.12	7.70	7.37	6.52	8.39	9.12	7.81	6.84	6.18	8.59	9.03	8.77	6.84	8.47	8
9	7.83	9.14	8.62	8.18	7.25	9.47	10.35	8.68	7.57	6.88	9.69	10.23	9.74	7.57	9.51	9
10	8.60	10.15	9.52	8.97	7.97	10.53	11.57	9.52	8.28	7.56	10.78	11.42	10.69	8.28	10.53	10
11	9.35	11.14	10.40	9.74	8.68	11.57	12.77	10.34	8.96	8.23	11.85	12.59	11.62	8.96	11.53	11
12	10.09	12.11	11.26	10.50	9.37	12.60	13.95	11.15	9.62	8.89	12.91	13.74	12.54	9.63	12.51	12
13	10.81	13.06	12.10	11.25	10.05	13.60	15.11	11.95	10.27	9.54	13.94	14.87	13.44	10.28	13.48	13
14	11.51	13.98	12.93	11.97	10.72	14.58	16.25	12.73	10.90	10.18	14.95	15.99	14.32	10.91	14.42	14
15	12.19	14.90	13.73	12.68	11.37	15.55	17.38	13.48	11.51	10.80	15.94	17.09	15.18	11.51	15.34	15
16	12.85	15.79	14.52	13.37	11.99	16.50	18.48	14.22	12.10	11.41	16.91	18.16	16.03	12.11	16.24	16
17	13.49	16.67	15.29	14.05	12.61	17.43	19.56	14.95	12.68	12.00	17.87	19.21	16.86	12.68	17.13	17
18	14.12	17.53	16.04	14.72	13.21	18.34	20.62	15.67	13.24	12.59	18.80	20.24	17.69	13.24	18.00	18
19	14.74	18.37	16.78	15.38	13.81	19.24	21.67	16.38	13.78	13.17	19.73	21.25	18.51	13.79	18.85	19
> 20	15.34	19.20	17.50	16.04	14.40	20.12	22.69	17.09	14.32	13.75	20.63	22.25	19.33	14.32	19.69	20
21	15.94	20.02	18.20	16.69	14.98	20.99	23.71	17.79	14.84	14.32	21.53	23.24	20.16	14.83	20.51	21
22	16.52	20.82	18.89	17.33	15.56	21.85	24.72	18.48	15.34	14.89	22.41	24.21	20.97	15.34	21.31	22
23	17.09	21.62	19.57	17.96	16.13	22.70	25.70	19.16	15.83	15.44	23.27	25.16	21.77	15.82	22.10	23
24	17.64	22.40	20.24	18.57	16.68	23.53	26.67	19.82	16.31	15.99	24.13	26.11	22.56	16.30	22.88	24
25	18.19	23.16	20.89	19.17	17.22	24.35	27.62	20.48	16.78	16.53	24.97	27.03	23.33	16.77	23.64	25
26	18.72	23.92	21.53	19.76	17.76	25.16	28.56	21.11	17.23	17.05	25.80	27.94	24.09	17.22	24.39	26
27	19.23	24.66	22.16	20.34	18.28	25.96	29.49	21.74	17.67	17.57	26.61	28.84	24.84	17.66	25.13	27
28	19.74	25.39	22.77	20.91	18.78	26.74	30.41	22.36	18.11	18.07	27.41	29.72	25.58	18.09	25.85	28
29	20.23	26.10	23.37	21.47	19.28	27.50	31.32	22.97	18.52	18.56	28.20	30.60	26.31	18.50	26.55	29
30	20.71	26.80	23.96	22.01	19.76	28.26	32.21	23.56	18.93	19.04	28.97	31.46	27.03	18.91	27.25	30

Optimal Efficiency Level

- Definition: Most cost effective *Performance Level* for a facility
 - Differs from other LCC analysis
 - Not LCC for alternative with potentially different performance
 - Rather, least costly parameter for a given level of performance **R-value: Me*
 - Performance examples (energy efficiency):
- *R-value: Measure of thermal resistance (insulation)
- Level of insulation in roof and walls (R-values)
- Efficiency of a furnace
- Collector area for a solar heating system

Calculating Efficiency Level

- General assumption: increasing efficiency increases initial investment
 - If not, no tradeoffs
- Steps:
 - Define parameters and range of possible alternatives
 - Estimate energy usage (or relevant parameter) for each alternative
 - Calculate LCC for each alternative
 - Select lowest LCC
 - Interpolate as needed

Efficiency Example

- Find R-Value on House Attic Insulation
 - Service date: Jan 13
 - Life: 25 yrs
 - Replacement schedule: N/A
 - Residual value: None
 - Electricity price: \$0.08/kWh
 - Location: Ohio (DOE Region 2)
 - Rate type: Residential
 - FEMP UPV* = 17.57

Efficiency Example

Table Ba-2. FEMP UPV* Discount Factors adjusted for fuel price escalation, by end-use sector and fuel type.

Discount Rate = 3.0 % (DOE)

Census Region 2 (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, <u>Ohio</u>, South Dakota, Wisconsin)

RESIDENTIAL						COM	MERCIAL				I		TRANSPORT			
N	Elec	Dist	LPG	NtGas	Elec	Dist	Resid	NtGas	Coal	Elec	Dist	Resid	NtGas	Coal	Gasln	N
-	0.93	0 95	0.97	1 02	0.91	0 97	1 06	1.05	0 98	0.87	0.98	1 08	1 17	0.96	1 00	-
2	1 84	1 93	1 95	2 03	1 79	1 96	2 15	2 12	1 94	1 70	2 00	2 17	2 42	1 90	2.02	2
3	2 74	2 93	2 96	3 00	2 64	3 00	3 26	3 17	2 87	2 51	3.06	3 30	3 65	2 81	3 08	3
4	3 62	3 95	3 98	3 92	3 48	4 05	4 40	4 17	3 78	3 29	4 13	4 46	4 84	3 70	4 18	4
5	4 48	4.96	4 99	4.82	4.29	5.10	5 53	5 16	4 66	4.04	5 21	5.60	6.00	4 58	5.26	5
6	5.32	5.99	6.01	5.71	5.09	6.18	6.66	6.12	5.52	4.79	6.31	6.75	7.15	5.44	6.33	6
7	6.14	7.03	7.02	6.57	5.87	7.26	7.78	7.07	6.36	5.52	7.41	7.88	8.26	6.28	7.39	7
8	6.93	8.07	8.01	7.42	6.62	8.34	8.89	7.98	7.16	6.23	8.51	9.01	9.35	7.09	8.44	8
9	7.70	9.09	9.00	8.24	7.36	9.42	9.98	8.88	7.94	6.92	9.61	10.12	10.41	7.88	9.48	9
10	8.45	10.11	9.96	9.05	8.08	10.48	11.04	9.76	8.69	7.60	10.69	11.19	11.45	8.64	10.49	10
11	9.18	11.10	10.90	9.84	8.79	11.52	12.09	10.62	9.41	8.26	11.75	12.25	12.47	9.38	11.49	11
12	9.89	12.08	11.83	10.62	9.48	12.55	13.11	11.48	10.11	8.91	12.80	13.29	13.49	10.09	12.47	12
13	10.58	13.03	12.73	11.39	10.16	13.55	14.11	12.31	10.79	9.55	13.82	14.31	14.48	10.78	13.43	13
14	11.26	13.97	13.62	12.13	10.82	14.54	15.09	13.12	11.45	10.17	14.82	15.31	15.43	11.44	14.37	14
15	11.91	14.89	14.49	12.85	11.47	15.50	16.06	13.91	12.09	10.78	15.80	16.29	16.36	12.09	15.29	15
16	12.55	15.79	15.34	13.56	12.10	16.45	17.00	14.68	12.71	11.38	16.77	17.24	17.28	12.72	16.19	16
17	13.16	16.68	16.17	14.26	12.71	17.38	17.92	15.44	13.31	11.95	17.71	18.18	18.19	13.32	17.08	17
18	13.76	17.55	16.98	14.95	13.31	18.30	18.82	16.20	13.89	12.52	18.64	19.09	19.09	13.92	17.95	18
19	14.34	18.40	17.78	15.64	13.89	19.20	19.71	16.95	14.46	13.08	19.56	19.99	20.00	14.50	18.81	19
20	14.92	19.24	18.57	16.32	14.47	20.09	20.58	17.70	15.02	13.62	20.46	20.88	20.90	15.06	19.64	20
21	15.47	20.07	19.34	17.00	15.03	20.96	21.45	18.45	15.56	14.16	21.35	21.76	21.81	15.61	20.46	21
22	16.02	20.89	20.09	17.67	15.58	21.82	22.29	19.19	16.08	14.69	22.22	22.62	22.71	16.14	21.27	22
23	16.55	21.69	20.83	18.33	16.12	22.67	23.13	19.91	16.59	15.21	23.08	23.47	23.59	16.66	22.06	23
24	17.07	22.48	21.56	18.98	16.65	23.51	23.95	20.62	17.09	15.72	23.93	24.30	24.46	17.17	22.84	24
25	17.57	23.26	22.28	19.61	17.16	24.34	24.76	21.32	17.58	16.22	24.77	25.13	25.32	17.66	23.60	25
26	18.07	24.03	22.99	20.24	17.67	25.15	25.55	22.01	18.05	16.71	25.60	25.93	26.17	18.15	24.36	26
27	18.55	24.78	23.68	20.85	18.16	25.95	26.34	22.69	18.52	17.19	26.41	26.73	27.01	18.62	25.09	27
28	19.02	25.52	24.35	21.45	18.65	26.74	27.11	23.36	18.96	17.66	27.21	27.52	27.83	19.07	25.82	28
29	19.47	26.25	25.02	22.05	19.12	27.51	27.87	24.01	19.40	18.12	27.99	28.29	28.65	19.52	26.53	29
30	19.92	26.97	25.67	22.63	19.59	28.27	28.62	24.66	19.83	18.57	28.76	29.05	29.46	19.96	27.22	30

9,316

10,316

3,181

Efficiency Example

Cost

1,000

6,628

R-value

R-0

R-11

R-19

R-30

R-38

R-49

R-30 is best option (lowest LCC-using positive number convention)

530

Project Financing

- Many projects are financed
- Need to include NPV of financing in LCC
- Why is this tricky?
 - Value of annual payments in CURRENT, not constant dollars
 - EX: Mortgage payment of \$12,000/yr, 30yr period. The payment does not grow with inflation!!!

Financing Example

- Project Financing Data
 - Annual O&M costs \$2,000/yr
 - Loan payment: \$12,000/yr
 - **-** 30 years
 - Nominal rate: 7%
 - Real rate: 4%
- O&M NPV = (P|A, n=30, i=4) = 34,584
- Mortgage NPV = \$12,000 × (P | A, n=30, i=7%) = \$148,909

Thus, LCC = \$34,584 + \$148,909 = <u>\$183,493</u>