Advanced Thermodynamics (M2794.007900)

Chapter 11

Kinetic Theory of Gases (2)

Min Soo Kim

Seoul National University

11.6 Distribution of Molecular Speeds

11.6 Distribution of Molecular Speeds

* Assumption: $\boldsymbol{v}_{\boldsymbol{y}}$ is not affected by $\boldsymbol{v}_{\boldsymbol{x}}$
$d^{2} N_{v_{x}} v_{y} \quad \cdots$ the number of molecules with $v_{x} \sim v_{x}+d v_{x}, \quad v_{y} \sim v_{y}+d v_{y}$

$$
\begin{aligned}
& \frac{d^{2} N_{v_{x} v_{y}}}{d N_{v_{x}}} \cdots \text { fraction of } v_{x} \text { component molecules with } v_{y} \sim v_{y}+d v_{y} \\
& d^{2} N_{v_{x} v_{y}}=d N_{v_{x}} \frac{d N_{v_{y}}}{N}=d N_{v_{x}} f\left(v_{y}\right) d v_{y} \\
& \longleftrightarrow N f\left(v_{x}\right) d v_{x} \\
& \boldsymbol{d}^{3} \boldsymbol{N}_{v_{x} v_{y} v_{z}}=\boldsymbol{N} \boldsymbol{f}\left(\boldsymbol{v}_{x}\right) \boldsymbol{f}\left(\boldsymbol{v}_{\boldsymbol{y}}\right) \boldsymbol{f}\left(\boldsymbol{v}_{z}\right) \boldsymbol{d} v_{x} \boldsymbol{d} v_{y} \boldsymbol{d} v_{z}
\end{aligned}
$$

the number of molecules with $v_{x} \sim v_{x}+d v_{x}, v_{y} \sim v_{y}+d v_{y}, v_{z} \sim v_{z}+d v_{z}$

11.6 Distribution of Molecular Speeds

- Density in velocity space

Consider a velocity space where velocity vectors of particles are distributed

$$
\begin{aligned}
& d^{3} N_{v_{x} v_{y} v_{z}}=N f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) d v_{x} d v_{y} d v_{z} \\
& d N_{v}=N f(v) d v_{x} d v_{y} d v_{z} \quad ※ d N_{v_{x}}: \text { number of molecules in the slice } v_{x}<v<v_{x}+d v_{x}
\end{aligned}
$$

Number density of velocity vectors

$$
\begin{aligned}
& \rho(v)=\frac{d^{3} N_{v_{x}} v_{y} v_{z}}{d v_{x} d v_{y} d v_{z}}=N f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) \\
& v^{2}=v_{x}{ }^{2}+v_{y}^{2}+v_{z}^{2}
\end{aligned}
$$

Figure 11.1 Velocity space

11.6 Distribution of Molecular Speeds

$$
\begin{aligned}
& d \rho=\frac{\partial \rho}{\partial v_{x}} d v_{x}+\frac{\partial \rho}{\partial v_{y}} d v_{y}+\frac{\partial \rho}{\partial v_{z}} d v_{z} \\
& \frac{\partial \rho}{\partial v_{x}}=N \frac{\partial}{\partial v_{x}}\left[\left(f\left(v_{x}\right)\right] f\left(v_{y}\right) f\left(v_{z}\right)=N f^{\prime}\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right)\right.
\end{aligned}
$$

Because of homogeneity of direction of particles, there exist constraints along spherical shell of the velocity space

1) $d \rho=0$

$$
\frac{f^{\prime}\left(v_{x}\right)}{f\left(v_{x}\right)} d v_{x}+\frac{f^{\prime}\left(v_{y}\right)}{f\left(v_{y}\right)} d v_{y}+\frac{f^{\prime}\left(v_{z}\right)}{f\left(v_{z}\right)} d v_{z}=0
$$

11.6 Distribution of Molecular Speeds

2) $v^{2}=$ constant

$$
\begin{aligned}
& \lambda\left[v_{x} d v_{x}+v_{y} d v_{y}+v_{z} d v_{z}\right]=0 \\
& \longleftrightarrow \text { Lagrange's method of undetermined multiplier }
\end{aligned}
$$

$$
\begin{gathered}
{\left[\frac{f^{\prime}\left(v_{x}\right)}{f\left(v_{x}\right)}+\lambda v_{x}\right] d v_{x}+\left[\frac{f^{\prime}\left(v_{y}\right)}{f\left(v_{y}\right)}+\lambda v_{y}\right] d v_{y}+\left[\frac{f^{\prime}\left(v_{z}\right)}{f\left(v_{z}\right)}+\lambda v_{z}\right] d v_{z}=0} \\
=0 \quad=0
\end{gathered}
$$

$$
\frac{f^{\prime}\left(v_{x}\right)}{f\left(v_{x}\right)}+\lambda v_{x}=0, \longrightarrow \ln f=-\frac{\lambda}{2} v_{x}^{2}+\ln \alpha
$$

$$
f\left(v_{x}\right)=\alpha e^{-\frac{\lambda}{2} v_{x}^{2}}=\alpha e^{-\beta^{2} v_{x}^{2}}
$$

11.6 Distribution of Molecular Speeds

$$
\begin{aligned}
d^{3} N_{v_{x}} v_{y} v_{z} & = \\
& N f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) d v_{x} d v_{y} d v_{z} \\
& =N \alpha^{3} e^{-\beta^{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)} d v_{x} d v_{y} d v_{z}
\end{aligned}
$$

The number of points per unit volume

$$
\rho=\frac{d^{3} N_{v_{x} v_{y} v_{z}}}{d v_{x} d v_{y} d v_{z}}=N \alpha^{3} e^{-\beta^{2} v^{2}} \quad \text { Maxwell velocity distribution function }
$$

The number of molecules with speed $\quad v \sim v+d v$

$$
d N_{v}=\left(N \alpha^{3} e^{-\beta^{2} v^{2}}\right) \times\left(4 \pi v^{2} d v\right)=4 \pi N \alpha^{3} v^{2} e^{-\beta^{2} v^{2}} d v
$$

11.6 Distribution of Molecular Speeds

- Maxwell-Boltzmann distribution

Two, obvious relations are used to obtain α, β of $N(v)$

$$
\begin{aligned}
& N=\int_{0}^{\infty} d N_{v}=4 \pi N \alpha^{3} \underline{\int_{0}^{\infty} v^{2} e^{-\beta^{2} v^{2}} d v} \frac{\alpha=\frac{\beta}{\sqrt{\pi}}}{\frac{\sqrt{\pi}}{4 \beta^{3}}} \\
& E=\frac{3}{2} N k T=\frac{1}{2} m \int_{0}^{\infty} v^{2} d N_{v}=2 \pi m N \alpha^{3} \int_{0}^{\infty} v^{4} e^{-\beta^{2} v^{2} d v} \\
& \\
& \therefore \alpha=\sqrt{\frac{m}{2 \pi k T}}, \quad \beta=\sqrt{\frac{m}{2 k T}}
\end{aligned}
$$

11.6 Distribution of Molecular Speeds

Finally, the Maxwell-Boltzmann speed distribution is given below

Figure 11.2 Speed distribution of O_{2} molecules

$$
d^{3} N_{v_{x} v_{\mathrm{y}} v_{\mathrm{z}}}=N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m v^{2} / 2 k T} d v_{x} v_{\mathrm{y}} v_{\mathrm{z}} \quad d N_{v_{x}}=N\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m v_{x}^{2} / 2 k T} d v_{x}
$$

11.7 Mean Free Path and Collision Frequency

- Mean free path and collision frequency

Equation of state
Collisions between molecules \cdots ignored

$$
P V=N k T=\frac{1}{3} N m \overline{v^{2}}
$$

\rightarrow Will change the velocity of individual molecules
\rightarrow The number of molecules having particular velocity is unchanged

Molecules \quad L_ colliding with one another

11.7 Mean Free Path and Collision Frequency

- Mean free path, λ

At collision,

Collision radius $=2 \mathrm{r}$

Collision cross section : $\sigma=4 \pi r^{2}$

11.7 Mean Free Path and Collision Frequency

Collision cross section : $\sigma=4 \pi r^{2}$
Moving distance in the time interval $t=\bar{v} t$

The number of molecules in the cylinder swept out by moving molecule: $\sigma \bar{v} t n$
The number of collision per unit time : collision frequency

$$
\text { collision frequency }=z=\frac{n \sigma \bar{v} t}{t}=n \sigma \bar{v}
$$

11.7 Mean Free Path and Collision Frequency

Mean free path : $\lambda=\frac{\bar{v} t}{n \sigma \bar{v} t}=\frac{1}{n \sigma}$

This answer is only approximately correct because we have used the mean
speed \bar{v} for all the molecules instead of performing an integration over the
Maxwell-Boltzmann speed distribution. If that is done, the result is

11.7 Mean Free Path and Collision Frequency

- The distribution of free path, $x \ll x+d x$
- $d N=-P_{c} N d x$
$d N$: number of molecules decreasing after collision
P_{c} : collision probability
$d x$: molecule's moving distance
- $N=N_{0} e^{-P_{c} x}$ $d N=-P_{c} N_{0} e^{-P_{c} x} d x$
N : The number of molecules that have not yet made a collision after traveling a distance x

11.7 Mean Free Path and Collision Frequency

- $\lambda=\frac{\int x(-d N)}{N_{0}}=\frac{\int_{0}^{\infty} P_{c} N_{0} x e^{-P_{c} x} d x}{N_{0}}=P_{c}\left\{\left[\frac{x e^{-P_{c} x}}{-P_{c}}\right]_{0}^{\infty}-\frac{1}{-P_{c}} \int_{0}^{\infty} e^{-P_{c} x} d x\right\}$

$$
=P_{c}\left\{0-\frac{1}{P_{c}^{2}}\left[e^{-P_{c} x}\right]_{0}^{\infty}\right\}=\frac{1}{P_{c}}
$$

- Survival equation : $N=N_{0} e^{-\frac{x}{\lambda}}$
(\# having free paths $x<$)

11.9 Transport Process (coefficient of viscosity)

- Velocity of gas \ll thermal velocity

Thermal velocity distribution can be used
even though the gas is not in equilibrium

Figure 11.5 Flow of a viscous fluid between a moving upper plate and a stationary lower plate.
$\tau=\eta \frac{d u}{d y} \quad F=\eta A \frac{d u}{d y}$

Frictional force (?)

- Net momentum change : $\frac{d(m v)}{d t}$

$$
P=F /_{A}=\frac{d(m v)}{d t} /_{A}
$$

momentum across a surface (O)

11.9 Transport Process (coefficient of viscosity)

ENGENEERING
COLLEGEOF ENGINEERING
SEOUL NATIONAL UNIVERSITY
서 울 대 학 교 공 과 대 학

11.9 Transport Process

- The number of molecules in $d V=n d V$
- The number of collisions in $d V$ for $d t=\frac{1}{2} z d t \cdot n d V$
z : collision frequency of any one molecule
- The number of free paths in $d V$ for $d t=z d t \cdot n d V$
- The number of free paths toward $d A=\frac{d \omega}{4 \pi} \cdot z d t \cdot n d V \quad\left[d \omega=\frac{d A \cos \theta}{r^{2}}\right]$
- Fraction of molecules that reach $d A$ without collision (survival eq.) : $\frac{N}{N_{0}}=e^{-\frac{r}{\lambda}}$
- \# of molecules leaving $d V$ in $d t$ crossing $d A$ without collision $=\frac{d \omega}{4 \pi} \cdot z d t \cdot n d V \cdot e^{-\frac{r}{\lambda}}$

$$
=\frac{d A \cos \theta}{4 \pi r^{2}} \cdot z d t \cdot n r^{2} \sin \theta d \theta d \varphi d r \cdot e^{-\frac{r}{\lambda}} \quad\left[d V=r^{2} \sin \theta d \theta d \varphi d r\right]
$$

11.9 Transport Process

- \# of molecules leaving $d V$ in $d t$ crossing $d A$ without collision $=\frac{d \omega}{4 \pi} \cdot z d t \cdot n d V \cdot e^{-\frac{r}{\lambda}}$

$$
\begin{aligned}
= & \frac{d A \cos \theta}{4 \pi r^{2}} \cdot z d t \cdot n r^{2} \sin \theta d \theta d \varphi d r \cdot e^{-\frac{r}{\lambda}} \\
& \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta= \\
& \int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \theta}{2} \mathrm{~d} \theta=\left[-\frac{1}{4} \cos 2 \theta\right]_{0}^{\frac{\pi}{2}}=\frac{1}{2} \quad \int_{0}^{2 \pi} \mathrm{~d} \varphi=2 \pi \quad \int_{0}^{\infty}-\lambda e^{-\frac{r}{\lambda}} \mathrm{dr}=\lambda \\
& 0<\theta<\frac{\pi}{2} \\
& 0<\emptyset<2 \pi \\
& 0<r<\infty
\end{aligned}
$$

- Collision frequency : $z=\frac{\bar{v}}{\lambda}$
- Total \# of collision with the wall per $d A, d t$ for all direction $\&$ speed $=\frac{1}{4} n \bar{v}$

11.9 Transport Process

- Average height of last collision before crossing

The height of the volume element $=r \cos \theta$
The number of molecules crossing $d A$ without collision $=\frac{d \omega}{4 \pi} z d t \cdot n d V \cdot e^{-\frac{r}{\lambda}} \cdot r \cos \theta$

$$
\begin{aligned}
& \quad\left[d \omega=\frac{d A \cos \theta}{r^{2}}, d V=r^{2} \sin \theta d \theta d \varphi d r\right] \\
& \bar{y}=\frac{\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{d A \cos \theta}{4 \pi r^{2}} \cdot z d t \cdot n r^{2} \sin \theta \cdot e^{-\frac{r}{\lambda}} \cdot r \cos \vartheta d r d \varphi d \vartheta}{\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{d A \cos \theta}{4 \pi r^{2}} \cdot z d t \cdot n r^{2} \sin \theta \cdot e^{-\frac{r}{\lambda}} d r d \varphi d \vartheta} \\
&=\frac{\frac{1}{6} z n \lambda^{2} d A d t}{\frac{1}{4} z n \lambda d A d t} \\
&=\frac{2}{3} \lambda
\end{aligned}
$$

11.9 Transport Process

Figure 11.7 Flow of a viscous fluid between a moving upper plate and a stationary lower plate.

- Net rate of momentum transfer per unit area \& time : $\frac{4}{3} \lambda \frac{d u}{d y} \cdot m \cdot \frac{1}{4} n \bar{v}$
- $\frac{d(m v)}{d t} \frac{1}{A}=\frac{F}{A}=\tau=\frac{1}{3} n m \bar{v} \lambda \frac{d u}{d y}$
- $\eta=\frac{1}{3} n m \bar{v} \lambda$
- $\lambda=\frac{1}{\sigma n}, \bar{v}=\sqrt{\frac{8 k T}{\pi m}}$
- $\eta=\frac{2}{3} \cdot \frac{1}{\sigma}\left(\frac{2 m k T}{\pi}\right)^{\frac{1}{2}} \quad \eta=\frac{5}{16} \cdot \frac{1}{\sigma}\left(\frac{2 m k T}{\pi}\right)^{\frac{1}{2}}$ (considering speed distribution)

