
1

Transmission Control
Protocol (TCP)

Chapter 15, 20

Reliable Byte Stream Service
 To the application layer, TCP handles data as a sequence of bytes
 To the lower layers, TCP handles data in blocks (segments).

‒ Sender TCP: byte stream is broken up into segments

 Reliable delivery
– Receiver TCP: sends ACKs for successfully received segments.
– Sender TCP: If an ACK is not received in time, the segment is retransmitted

2

Application
Process

Reliable E2E channel

Unreliable end-to-end (E2E) channel

byte stream

Application
Process

segments

3

 Connection-oriented reliable end-to-end
transmission
• Connection management
• Error control
• Flow control

• Congestion control

Sender
TCP

Receiver
TCP

…

Sender
TCP

Sender
TCP

Sender
TCP

Sender
TCP

Global
Internet

Sender
TCP

TCP Header

source port # dest. port #

32 bits

Application data
(variable length)

sequence number

acknowledgement number

receive window

Urg data pointer checksum

U
R
G

Data
offset

options (variable length)

not used

connection estab
(setup, teardown

commands)

of bytes
Advertised window
(Rwnd: receiver willing
to accept)

Counting by bytes
(not segments!)

Internet
checksum

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

E
C
E

C
W
R

rate adjustment
notification by

congestion control

4

number of 32-bit
words in header

the sequence number
of the next data octet
that the TCP entity
expects to receive

TCP Connection

SYN(k)

ACK(k+1),
SYN(j)

ACK(j+1),
http get

FIN(m)

ACK(m+1)

FIN(n)

ACK(n+1)

Server TCP

Client TCP

connection
setup

data
transfer

3-way
handshaking

5

…

connection
release

Piggyback ACK

To allow ECN-capable for explicit congestion control,
in connection setup phase,
- TCP client: SYN, ECE and CWR flag setting
- TCP server: ACK, SYN, ECE flag setting IP header: ECN=01,10

6

TCP Error/Flow/Congestion Control
• The goal of each of the control mechanisms is different.
 but, the implementation is combined

• Window
– Advertised Window (Rwnd):

• flow control between the TCP sender and TCP receiver
• A amount of data granted by the receiver, starting from

acknowledgement number
– Congestion Window (Cwnd):

• A window size for network congestion control
– Allowed window (Sender’s Window)

• The amount of data that TCP is currently allowed to send
without receiving further ACK’s

• Allowed window = min (Rwnd, Cwnd)

TCP Flow Control: Rwnd

2K SeqNo=0

Receiver
Buffer

04K
Sender
sends
2K of data

AckNo=2048
Rwnd=2048

2K SeqNo=2048

AckNo=4096
Rwnd=0

AckNo=4096
Rwnd=1024

 Sender blocked

Sender
sends
2K of data

0

0

0

4K

4K

4K

2K

2K

3K 1K

The receiver returns two parameters (Ack #, Rwnd) to the sender, meaning that
“I am ready to receive new data with seqNo= AckNo, AckNo+1, …., AckNo+Rwnd-1”

7

TCP Error Control (1/2)
 Segment Acceptance Policy of Receiver

‒ In-window: accept all segments within the receive window
‒ In-order: Accept only segments that arrive in-order
‒ Implementation-dependent

 Acknowledgement number

‒ Delayed ACK (for piggyback ACK)
• The receiver waits for the outbound segment for piggyback ack until timer

expires. At time-out (200ms), send an empty segment with AckNo
• But, at out-of-order segment arrival, immediately sends a duplicate ACK.

– Cumulative ACK: the receiver has received up to (AckNo-1) in-order.

• Retransmit Policy of the Sender
‒ First-only: retransmit only the segment at the queue front (Selective-repeat).
‒ Batch: retransmit all segments in the queue (go-back-N)
‒ Implementation-dependent

8

…
ACK n+data ACK n

data data data data

ACK v+data

data

delayed duplicate

k v-1 m-1 n-1 v m n j-1 j k-1
data

Rwnd ACK num

data
w

ACK n
duplicate

Cumulative ACK

Received segments

out-of-order arrivals
Loss or delayed arrival

TCP Error Control (2/2)
 A TCP sender retransmits a segment when

1. a timeout event occurs.
2. three duplicate ACKs has been received (Fast Retransmission)

 Retransmission Timer
‒ TCP sender maintains one retransmission timer for each connection
‒ when the timer reaches the retransmission timeout (RTO) value,

the sender retransmits the first segment that has not been acknowledged
 Retransmission timer is started

1. when a packet with payload is transmitted and
 timer is also not running or
 when an ACK arrives that acknowledges new data (no duplicate ACK)

which lets the timer start
2. when a segment is retransmitted

 Retransmission timer is stopped when
‒ all segments are acknowledged

9

Round Trip Time (1/2)

RTT #1 Timer expires

A
C

K
 +

 S
e
g
m

e
n
t
1

A
C

K
 fo

r S
e
g
m

e
n
t 1

S
Y
N

S
Y
N

 +
 A

C
K

S
e
g
m

e
n
t
2

S
e
g
m

e
n
t
3

A
C

K
 fo

r S
e
g
m

e
n
t 2

 A
C

K

RTT #2

S
e
g
m

e
n
t
4

.

S
e
g
m

e
n
t
5

 .

S
eg

m
en

t
6

 .

 A
C

K
 fo

r

 S
e
g
m

e
n
t 4

1 20 3 4 5 7 86 9

1
0

1
1

1
2

1
3

1
4

1
5

1
7

1
8

1
6

1
9

2
0

2
1

2
3

2
4

2
2

S
eg

m
en

t
7

 .

 R

et
ra

ns
m

is
si
on

of

 S
eg

m
en

t
8

 Timer restart

 S

eg
m

en
t
8

 .

Se
gm

en
t
9

 .

Se
gm

en
t 1

0

.

RTT #3

 A
C

K

 A
C

K
 fo

r S
e
g
m

e
n
t 8

10

Timer start Timer restart Timer restart Timer restart

Retransmission Timer
 How to set the TCP timeout value (RTO) ?

‒ Based on round trip time (RTT), but should be longer than RTT
• consider that RTT varies.

‒ too short: premature timeout, unnecessary retransmissions
‒ too long: slow reaction to segment loss

 How to estimate RTT?
– SampleRTT:

• measured time from a segment transmission until its ACK receipt
• ignore retransmissions

– “Smoother” change of estimated RTT is desirable
• Average of several recent measurements, not just current sampleRTT
• Greater weight for more recent measurement

Moving average

11

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

Round Trip Time (2/2)

12

Retransmission Timeout (RTO)

safety margin

13

14

TCP Congestion Control (1/3)
• Slow Start

– Congestion window (Cwnd) = 1
– Cwnd is increased by 1 for each

ACK until Cwnd reaches to a
slow start threshold (ssthresh)

 :Multiplicative increase
– At initialization

 Additive Increase
− For Cwnd>ssthresh, increase

Cwnd by 1 for each round-trip
time

τl

τl

τl

τrt

τrt

τrt

τl

Client Router Server

τl

Access Link Connecting Link

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

2
3

4
5

6 7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

Data segment
ACK

For simplicity, let’s assume
- Rwnd and Cwnd represent the number of segments (not bytes)
- Rwnd >> Cwnd

15

TCP Congestion Control (2/3)
• When a timeout occurs (Congestion Avoidance)

1. Set a slow start threshold (ssthresh) to half the current
congestion window : ssthresh ← Cwnd/2

2. Set Cwnd =1
3. Performs the Slow Start process (Multiplicative Increase)

until Cwnd = ssthresh
4. For Cwnd>ssthresh, Additive Increase

16

TCP Congestion Control (3/3)

Fast Retransmission
 If three duplicate ACKs are

received, the TCP sender
believes that a segment has
been lost.

 Then, TCP performs a
retransmission of what seems to
be the missing segment, without
waiting for a timeout to happen.

1K SeqNo=0

AckNo=1024

AckNo=1024

1K SeqNo=1024

SeqNo=20481K

SeqNo=30721K

SeqNo=40961K

1. duplicate
ACK

AckNo=5120

SeqNo=10241K

SeqNo=51201K

2. duplicate
ACK

3. duplicate
ACK

AckNo=1024

AckNo=1024

17

Slow start

Fast Recovery
 Modification to fast retransmission
 If the sender receives n duplicate ACKs (typically n=3),

– retransmit the loss segment immediately
– ssthresh = Cwnd/2

– Cwnd = ssthresh
– ndup

• If (n+1) duplicate ACK’s are received (i.e., when receiving one additional
duplicate ACK after retransmission)

 ⇒ ndup is set to (n+1) and increments every duplicate ACK received.
• If ndup reaches half the old_cwnd
 ⇒ the sender transmits new packets for each additional duplicate ACK.

– Upon receipt of an ACK for new data, the sender exits Fast Recovery
by setting ndup to 0 and incrementing Cwnd.

 18

Fast retransmission

19

Cwnd=12

Cwnd=12

Cwnd=12

20

Tahoe TCP, Reno TCP
 Tahoe TCP

– Slow Start
– Congestion Avoidance
– Fast retransmit

 Reno TCP
– Slow Start
– Congestion Avoidance
– Fast Recovery

2 new transmissions
retransmission

21

UDP (User Datagram Protocol)
 Transport layer protocol
 Connectionless service for applications
 Unreliable service

• Deliver and duplicate protection are not guaranteed
• It merely adds a port addressing capability to IP

 UDP header (8 bytes)

Source port Destination port
Length Checksum

0 16 31

 Optional field
- If not used, set to zero
- If error is detected, the segment is

discarded and no further action is taken

22

Some Application Protocols in
TCP/IP Protocol Suit

Layer 4
(Transport)

Layer 5
(Application)

Layer 3
(Network)

학기 마무리 잘 하고

여름방학

즐겁게 보내세요!

23

	Transmission Control Protocol (TCP)
	Reliable Byte Stream Service
	슬라이드 번호 3
	TCP Header
	TCP Connection
	TCP Error/Flow/Congestion Control
	�TCP Flow Control: Rwnd
	TCP Error Control (1/2)
	TCP Error Control (2/2)
	Round Trip Time (1/2)
	Retransmission Timer
	Round Trip Time (2/2)
	Retransmission Timeout (RTO)
	TCP Congestion Control (1/3)
	TCP Congestion Control (2/3)
	TCP Congestion Control (3/3)
	Fast Retransmission
	Fast Recovery
	슬라이드 번호 19
	Tahoe TCP, Reno TCP
	UDP (User Datagram Protocol)
	Some Application Protocols in TCP/IP Protocol Suit
	슬라이드 번호 23

