Preview

- Dedicated Link
- Frame transmission

	network	
Error control	Link	
(Dedicated)	Link	
Signal encod Access		
	physical	
	physical	

- Shared Link

1. Shared medium access right (dedicated link)
2. Frame transmission

Chapter 6

Error Detection Error Correction

Signal Impairment

Figure 3.15 Attenuation and Delay Distortion Curves for a Voice Channel

Types of Transmission Errors (1)

- An error occurs when a bit is altered between transmission and reception
- Single bit error
- Isolated error that alters one bit but does not affect nearby bits
- Can occur in the presence of white noise
- Burst error
- Contiguous sequence of B bits in which the first and last bits and any number of intermediate bits are received in error
- Can be caused by impulse noise or by fading in a mobile wireless environment
- Effects of burst errors are greater at higher data rates

Types of Transmission Errors (2)

Figure 6.1 Burst and Single-Bit Errors

Coping with Data Transmission Errors

- Error detection and Retransmission
- detect the presence of an error
- Automatic repeat request (ARQ) protocols
- Receiver discards a block of data with error Transmitter retransmits that block of data
- Error correction codes, or forward error correction (FEC)
- Designed to detect and correct errors

Error Detection (1)

Figure 6.2 Error Detection Process

Error Detection (2)

- Two common techniques
- Parity checks
- Cyclic redundancy checks (CRC)
- Parity check
- One extra "parity" bit is added to each word
- Simplest error detection technique
- If any even number of bits are inverted due to error, an undetected error occurs
- Single parity is very effective with white noise, but not very robust with noise bursts

Two-Dimensional Parity Check

(a) Parity calculation

0	1	1	1	0	1
0	1	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	0	0	1	1	0

(b) No errors

0	1	1	1	0	1
0	(0)	1	1	0	1
0	$1_{\text {error }}^{\text {row parity }}$				
0	1	0	0	0	1
0	1	0	1	1	1
0	0	0	1	1	0
column parity error					

(c) Correctable single-bit error

0	1	1	1	1	1	0	1
0	0	1	1	0	1	1	0
0	0	1	1	0	0	1	1
0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	0
1	1	0	0	0	1	1	0

(d) Uncorrectable error pattern

Cyclic Redundancy Checks (1)

- Powerful error detection method
- Easily implemented
- Message (D) to be transmitted is appended with extra frame checksum bits (F), so that bit pattern transmitted (T) is perfectly divisible by a special "generator" pattern (P)
- At destination, divide received message by the same P.
- If remainder is nonzero \Rightarrow error
- Use modulo-2 arithmetic
- no carries/borrows
- add \equiv subtract \equiv xor

Cyclic Redundancy Checks (2)

- Let
- $\mathrm{T}=\mathrm{n}$-bit frame to be transmitted,
- $D=k$-bit message, the first k bits of T
- $F=(n-k)$-bit FCS, the last $n-k$ bits of T
$-P=n-k+1$ bits, generator pattern (predetermined divisor)
- Method
- Extend D with ($\mathrm{n}-\mathrm{k}$) '0's to the right ($\equiv 2^{n-k D}$)
- Divide extended message by P to get $R\left(2^{n-k} D / P=Q+R / P\right)$
- Add R to extended message to form $T\left(T=2^{n-k} D+R\right)$
- Transmit T
- At receiver, divide T by P. Nonzero rem. \Rightarrow error

$$
\frac{T}{P}=\frac{2^{n-k} D+R}{P}=\frac{2^{n-k} D}{P}+\frac{R}{P}=Q+\frac{R+R}{P}=Q
$$

Cyclic Redundancy Check (3)

Example 6.6: Message $D=1010001100$, Pattern $P=110101$

Exercise:
Compute the frame to be transmitted for message 1101011011 using $\mathrm{P}=10011$

- Answer: 11010110111110

Cyclic Redundancy Check (4)

- Can view CRC generation in terms of polynomial arithmetic
- Any bit pattern : polynomial in dummy variable X

Ex) $\mathrm{D}=110011$

$$
\begin{aligned}
D(X) & =1 \cdot X^{5}+1 \cdot X^{4}+0 \cdot X^{3}+0 \cdot X^{2}+1 \cdot X^{1}+1 \cdot X^{0} \\
& =X^{5}+X^{4}+X+1
\end{aligned}
$$

- CRC generation in terms of polynomial
- Append (n-k) '0's: $X^{n-k} D(X)$
- Modulo 2 division: $\frac{X^{n-k} D(X)}{P(X)}=Q(X)+\frac{R(X)}{P(X)}$
- Transmit $T(X)=X^{n-k} D(X)+R(X)$
- At Receiver

$$
\frac{T(X)}{P(X)}=\frac{X^{n-k} D(X)+R(X)}{P(X)}=Q(X)+\frac{R(X)+R(X)}{P(X)}
$$

Cyclic Redundancy Check (5)

-Commonly used polynomials, $\mathrm{P}(\mathrm{X})$

- CRC-12 $=X^{12}+X^{11}+X^{3}+X^{2}+X+1=(X+1)\left(X^{11}+X^{2}+1\right)$
- CRC-ANSI $=X^{16}+X^{15}+X^{2}+1=(X+1)\left(X^{15}+X+1\right) \leftarrow X^{16}+X^{15}+X^{2}+X+X+1$
- CRC-CCITT $=X^{16}+X^{12}+X^{5}+1$

$$
=(X+1)\left(X^{15}+X^{14}+X^{13}+X^{12}+X^{4}+X^{3}+X^{2}+X+1\right)
$$

- IEEE-802 $=X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}$

$$
+X^{7}+X^{5}+X^{4}+X^{2}+X+1
$$

- Can detect
- All single-bit errors if $P(X)$ has more than one nonzero term
- All double-bit errors and any odd number of errors, as long as $P(X)$ contains a factor ($\mathrm{X}+1$).
- Any burst error for which the length of the burst is less than or equal to the length of the FCS.
- A fraction of error burst of length $n-k+1: 1-2^{-(n-k-1)}$
- A fraction of error burst of length greater than n-k+1: 1-2-(n-k)

Cyclic Redundancy Check (6)

- Implementation
- Implemented by a circuit consisting of exclusive-or gates and a shift register
- The shift register contains ($n-k$) bits (length of FCS)
- There are up to (n-k) exclusive-or gates
- The presence or absence of a gate corresponds to the presence or absence of a term in $\mathrm{P}(\mathrm{X})$

CRC Implementation Example

Circuit with Shift Registers for Dividing by the Polynomial $X^{5}+X^{4}+X^{2}+1$

Internet Checksum

- Error detecting code used in many Internet standard protocols, including IP (IP header), TCP, and UDP (optional)
- Ones-complement addition
- The two numbers are treated as unsigned binary integers and added
- If there is a carry out of the leftmost bit, add 1 to the sum (end-around carry)
- Less effective than CRC
- Little overhead (implemented in software)
- It is assumed that at the lower link level, a strong code such as CRC is used
- An additional end-to-end checksum

Internet Checksum Example

0001 F203 F4F5 F6F7 220D

(a) Checksum calculation by sender

0010001000001101 (220D)

Partial sum	$\begin{aligned} & 0001 \\ & \text { F203 } \\ & \hline \text { F204 } \end{aligned}$
Partial sum	$\begin{array}{r} \text { F204 } \\ \text { F4F5 } \\ \hline 1 \mathrm{E} 6 \mathrm{~F} 9 \end{array}$
Carry	$\begin{array}{r}\text { E6F9 } \\ 1 \\ \hline \text { E6FA }\end{array}$
Partial sum	$\begin{gathered} \text { E6FA } \\ \text { F6F7 } \\ \hline \text { 1DDF1 } \end{gathered}$
Carry	$\begin{array}{r} \mathrm{DDF} 1 \\ \frac{1}{2} \end{array}$
Partial sum	$\begin{aligned} & \mathrm{DDF} 2 \\ & 220 \mathrm{D} \\ & \hline \text { FFFF } \end{aligned}$

(b) Checksum verification by receiver

Error Correction (1)

- Forward error correction (channel coding)

- enough redundancy is transmitted in the code that errors can be corrected by the receiver without retransmission
- Block code
- Mapping a data block to the corresponding codeword
- Hamming code, BCH code, Reed-Solomon code
- Convolutional code, turbo code
- BER on physical channel to the BER requirements of the upper layer (layer 2)

Error Correction (2)

Basics

- Hamming distance
- for $2 n$-bit binary sequences, the number of different bits
- E.g., $v_{1}=011011 ; v_{2}=110001 ; d\left(v 1, v_{2}\right)=3$
- Coding rate
- ratio of data bits to total bits
- Coding gain
- the reduction in the required E_{b} / N_{0} to achieve a specified BER of an error-correcting coded system

Coding Gain

Block Code Example

Example 6.9

For $\mathrm{k}=2, \mathrm{n}=5$
Data block Codeword

00	00000
01	00111
10	11001
11	11110

- Minimum distance 1: $00001 \Rightarrow 00000,00011 \Rightarrow 00111$: correction
- Minimum distance 2: $01010 \Rightarrow 00000$ or 11110 : detection
- Singe bit error correction and double bit error detection

BCH code (Chap 16.)

- A kind of block code
- Cyclic code

BCH $(7,4)$

Data Block	Valid Codeword
0000	0000000
0001	0001011
0010	0010110
0011	0011101
0100	0100111
0101	0101100
0110	0110001
0111	0111010
1000	1000101
1001	1001110
1010	1010011
1011	1011000
1100	1100010
1101	1101001
1110	1110100
1111	1111111

BCH code $(7,4)$

Data Block	Valid Codeword
0000	0000000
0001	0001011
0010	0010110
0011	0011101
0100	0100111
0101	0101100
0110	0110001
0111	0111010
1000	1000101
1001	1001110
1010	1010011
1011	1011000
1100	1100010
1101	1101001
1110	1110100
1111	1111111

Example:
Transmitter
Data Block: 1010
Codeword: $1010011 \Rightarrow T(X)=X^{6}+X^{4}+X+1$

Receiver

$$
\begin{aligned}
& R(X)=X^{6}+X+1 \text { (1000011) } \\
& \begin{array}{llll}
& x^{3}+ & X+1 & \\
x^{3}+X+1 & X^{6+} & & X+1
\end{array} \\
& \begin{array}{ll}
\mathrm{X}^{6+} \quad \mathrm{X}^{4}+\mathrm{X}^{3} \\
\hline
\end{array} \\
& \begin{array}{l}
\frac{\begin{array}{l}
X^{4}+X^{3}+ \\
X^{4}+{ }^{2}+X
\end{array}}{\substack{X^{2}+X \\
X^{3}+X^{2}+\\
x^{2}+1}} \\
X^{2}+X \Rightarrow 110
\end{array} \\
& C(X)=R(X)+E(X) \\
& =X^{6}+X+1+X^{4}(1010011)
\end{aligned}
$$

Convolutional Encoder (1)

- The encoder generates a codeword of length n for m-bit input sequence
- a shift register: K stages with m bits per stage (m-bits shift at a time)
- n binary addition operator
- Constraint length: $m K$ bits
length-n codeword

Convolutional Encoder (2)

- Example ($n=3, m=1, K=3$)

Convolutional Encoder (3)

- Trellis Diagram

$$
\mathrm{S}=\mathrm{S}_{2} \mathrm{~S}_{3}
$$

00

01

10

11

$$
\begin{aligned}
& \ldots \mathrm{S}_{1}=0 \\
& \ldots \ldots \mathrm{~S}_{1}=1
\end{aligned}
$$

Input sequence:	1	0	0	1	0
Encoded sequence:	111	010	011	111	010

Convolutional Code Decoding (1)

- Example 1
- Input Sequence: 10010...
- Encoded (Output) sequence: 111010011111010 ...
- Corrupted encoded sequence: 111010111111011 ...
- Decoded sequence: 10010 ... (error correction)

Convolutional Code Decoding (2)

- Example 2
- Input Sequence : 1001110 ...
- Encoded (Output) sequence: $11011011100011 \ldots$
- Corrupted encoded sequence: $11010011110011 \ldots$
- Decoded sequence: $1001110 \ldots$ (error correction)

Interleaving(1)

- To mitigate the effects of error bursts, coding is typically combined with interleaving.
- Deinterleaver: spreading out error bursts
- Channel decoder: error correction over the spread error

Interleaving (2)

Rreview

