

Data Link Control Protocols

introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links

Shared

wireless lin

- point-to-point
 - wireless, wired
- shared \xrightarrow{MAC} point-to-point
 - wireless, wired
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Data Link Layer Functions

- Framing
 - encapsulate datagram into frame, adding header and trailer
 - Frame sync
- Flow Control

- Control a rate of transmission to prevent over-run
- Error Control
 - Correct transmission errors (by retransmission)
- Addressing
 - When many nodes share transmission link: Addresses used in frame headers to identify source and destination (different from IP address) within the access network
- Logical Link Management
 - Initiation, maintenance, & termination of a sustained data exchange

- The receiver should be able to recognize the start and end of each frame
- Special preamble and postamble bit patterns: indicate the start/end of a frame (data block)

8-bit flag	Control fields	Data field	Control fields	8-bit flag
---------------	----------------	------------	----------------	---------------

Synchronous frame format

For data transparency, bit stuffing is typically used.

··· 0001001 0111110 01010100001100000101···01000001010000101000111110 101··· PHY 4

Flow Control

- Technique for controlling a data rate so that a sender does not over-run a receiver
 - 1. Stop-and-wait
 - 2. Sliding-window

Stop & Wait ARQ (1)

- Simplest flow control scheme
 - Sender transmits a message frame
 - Receiver checks the received frame for errors; sends ACK/NAK
 - Sender waits for ACK/NAK
 - NAK \Rightarrow retrans
 - ACK \Rightarrow next frame
 - Frame/ACK could be lost \Rightarrow Uses a timeout mechanism
 - Possibility of duplication \Rightarrow Number frames
 - Only need a 1-bit frame number alternating 1 and 0
- Minimum buffer requirement but ineffective

Link Utilization of Stop & Wait (1/4)

Refer to Chapter 16

→ B bits/sec transmission rate

- Propagation time (T_p)
 - time taken for signal to travel from S to R: $T_p = d/V$.
- Transmission time (T_t)
 - time taken to emit all bits of frame at sender: T_t=L/B

$$- a = \frac{\text{Propagation time}}{\text{Transmission time}} = \frac{T_p}{T_t} = \frac{d}{V} \cdot \frac{B}{L}$$

Utilization of Stop & Wait (2/4)

Utilization of Stop & Wait (3/4)

Error-Free

 $a = \frac{1}{V} \cdot \frac{1}{L}$

- With stop & wait scheme, for high channel utilization, we need small a (since U=1/(1+2a))

R

- small $a \Rightarrow L$ as large as possible
 - In practice, it is desirable to limit the frame length L

Frame error probability increases with L

 So a more efficient scheme is requested, especially for WAN/satellite communication and/or high rate communication 10

Utilization of Stop & Wait (4/4)

When Considering Frame Error

$$J = \frac{\text{Useful time}}{\text{Total time}} = \frac{T_t}{N_r(T_t + 2T_p)} = \frac{1}{N_r(1 + 2a)}$$

Where N_r = expected # of attempts needed for successful transmission Let P = prob. of error in frame transmission.

Sliding-Window Flow Control (1)

- Pipeline transmission of successive frames
- Transmit up to "W" frames if necessary without receiving ACKs
- Wait for ACKs when "W" unacked frames are in transmitting
- For duplex transmission, each station needs sending window & receiving window

```
Simplex: A→ B (only one direction)
Duplex
Half duplex: A→ B, B→A (only one at a time)
Full duplex: A↔ B (simultaneously)
```

Sliding-Window Flow Control (2)

Sliding-Window Flow Control (3)

Link Utilization of Sliding Window (1/3)

Assume error-free

Refer to Chapter 16

- Utilization : U is a function of a and W
 - Case 1 : W > 2*a*+1 : U = 1
 - Ack for frame 1 reaches sender before transmission of Wth frame ⇒ continuous transmission possible

15

Link Utilization of Sliding Window (2/3)

- Case 2 : W < 1 + 2a : U = W / (1+2a)

Wasted time between W and 1 + 2a

Link Utilization of Sliding Window (3/3)

Error Control

- Error control techniques
 - Forward error control (forward error correction: FEC)
 - Error recovery by correction at the receiver
 - Backward error control
 - Error recovery by retransmissions (Automatic Repeat ReQuest)
 - Stop-and-wait ARQ
 - Go-back-N ARQ
 - Selective-repeat ARQ

Go-back-N ARQ

- If the receiver detects an error on a frame, it sends a NAK for that frame.
- The receiver will discard all future frames until the frame in error is correctly received.
- Thus the sender, when it receives a NAK or timeout, must retransmit the frame in error plus all succeeding frames.
- The sender must maintain a copy of each unacknowledged frame

Go-back-N Example

Selective-repeat ARQ

- Only the frame that receives a NAK or timeout is retransmitted
- Can save retransmissions, but requires more buffer space and complicated logic

Selective-repeat Example

Selective Repeat Dilemma (1)

When the number of SN is W+1

• In case of Go-back-N : W=3, 4 SNs (0, 1, 2, 3)

Selective Repeat Dilemma (2)

• Selective repeat, when the number of SN is W+1

Reliable Transmission

- Efficient and Reliable Transmission
 - Flow Control & Error Control
- Point-to-Point (between two adjacent nodes) Transmission Control: Layer 2
- End-to-End (between source host and destination host)
 Transmission Control: Layer 4
 - Reliable Transmission : TCP
- TCP
 - Flow Control : a variant of sliding window (explicit amount of traffic)
 + Congestion control (flow control in viewpoint of network)
 - Error Control : Selective Repeat (default)

High-Level Data Link Control (HDLC)

- Basis for many other data link control protocols
- Connections can be point-to-point or multipoint (multidrop)

multipoint link (unbalanced link conf.)

- Three types of stations
 - Primary station
 - Controls the operation of the link, issues commands, and receives response
 - Secondary station
 - Usually only communicates (response) to a primary station
 - Combined station
 - Can be both primary and secondary

HDLC (2)

- Two link configurations
 - Unbalanced configuration
 - One primary and multiple secondary stations
 - Balanced configuration
 - Two combined stations
- Three data transfer modes
 - Normal response mode (NRM)
 - Unbalanced config.
 - Primary station always dictates who sends and receives.
 - Used on multipoint-line (Primary: Main computer, Secondary: terminal)
 - Asynchronous balanced mode (ABM)
 - Balanced config.
 - Either station initiates transmission
 - Asynchronous response mode (ARM)

Frame Structure

HDLC (4)

Flag

- 8 bits (01111110)
- May close one frame and open another
- Frame sync
- Bit stuffing is used for data transparency
- Bit stuffing: whenever five 1's are transmitted, extra zero is inserted

Original Pattern:

111111111111011111101111110

After bit-stuffing

11111011111011011111010111111010

HDLC (5)

Control Field

- Different for different frame type
 - Information
 - Data to be transmitted to user
 - Flow control and error control piggybacked on information frames
 - Supervisory
 - ARQ when piggyback is not used
 - Unnumbered
 - supplementary link control
- First one or two bits of control field identify the frame type

HDLC – Control Field (1)

(c) 8-bit control field format

(d) 16-bit control field format

HDLC – Control Field (2)

- Sequence Number
 - N(s) : the sequence number of Information frame
 - N(r) : acknowledgement number for piggyback ACK
- Poll/Final bit
 - Usage depends on context
 - Command frame
 - P bit
 - 1 to solicit (poll) response from peer
 - Response frame
 - F bit
 - 1 indicates response to soliciting command

HDLC – Control Field (3)

- Frame type
 - Information frame : data transmission
 - two 3-bits (or 7-bits) sequence numbers
 - Exchange of user data
 - Supervisory frame : flow and error control
 - 00 (Receive Ready: RR)
 - Positive ACK & Ready to receive I-frame
 - 01 (Reject: REJ)
 - a NACK in Go-back-N
 - 10 (Receive Not Ready: RNR)
 - Positive ACK & Not ready to receive I-frame
 - 11 (Selective Reject: SREJ)
 - a NACK in Selective Reject
 - a sequence number for acknowledgement

1	2	3	4	5	6	7	8
0		N(S)		P/F		N(R)	

1	2	3	4	5	6	7	8
1	0	s	5	P/F		N(R)	

HDLC – Control Field (4)

- Unnumbered frame: Link setup & Disconnect
 - Sets up the data transfer mode and sequence number size
 - Reset the link
 - Has a variety of purposes

Unnumbered (U)

Set normal response/extended mode (SNRM/SNRME)	С
Set asynchronous response/extended mode (SARM/SARME)	С
Set asynchronous balanced/extended mode (SABM, SABME)	С
Set initialization mode (SIM)	С
Disconnect (DISC)	С
Unnumbered Acknowledgment (UA)	R

1	2	3	4	5	6	7	8
1	1	Μ	[P/F		Μ	

- Set mode; extended = 7-bit sequence numbers
- Set mode; extended = 7-bit sequence numbers
- Set mode; extended = 7-bit sequence numbers
- Initialize link control functions in addressed station
- Terminate logical link connection
- Acknowledge acceptance of one of the setmode commands

Examples of Operation under HDLC (1)

(a) Link setup and disconnect

(b) Two-way data exchange

(c) Busy condition

Examples of Operation under HDLC (2)

(d) Reject recovery

(e) Timeout recovery