

Multiplexing

Introduction

- Sharing of high capacity transmission medium between several transmissions
- Various approaches, including FDM & TDM & CDM

FDM & TDM

FDM (1)

- Typical FDM Example
 - Lots of low BW analog signals simultaneously transmitted on high BW link
 - Each signal is "shifted" in frequency by modulating a carrier signal
 modulation
 - Shifted signals can be sent simultaneously since they do not overlap in frequency

demodulation

 At receiver, filters separate the "shifted" signals; demodulation recovers signals

(c) Receiver

Wavelength Division Multiplexing (WDM)

- Multiple beams of light with different wavelengths (1550 nm range) are transmitted on the same fiber.
- A kind of FDM
- The bit streaming through the fiber consists of multiple colors (wavelength), each carrying a separate data channel

Synchronous TDM (1)

- A number of lower rate digital data is simultaneously transmitted on high data rate digital transmission medium, according to a time division manner.
- Sources are scanned in round-robin fashion; each source has fixed slot for transmission
- At destination, the received stream is distributed to the corresponding receivers

Synchronous TDM (3)

- Digital Carrier Systems
 - designed to transmit voice signals over high capacity transmission links, based on synchronous TDM
 - DS-1: basic frame format of the TDM hierarchy (in North America) :
 24 voice-channels multiplexing

Synchronous TDM Example (DS-1)

- 193 (bits/frame) x 8000 (frames/sec) = 1.544 Mbps
- The first bit: a framing bit, used for synchronization
- Voice channel
 - 8-bit PCM used on five of six frames
 - 7-bit PCM used on every sixth frame. Bit 8 of each channel is a signaling bit
- When being used to provide digital data service
 - Channel $1 \sim 23$: data channel
 - Bits 1-7: used for 56 kbps service;
 - Bit 8: indicates whether the channel contains user data or system control data
 - Channel 24: a special sync byte for faster and more reliable reframing

Synchronous TDM (4)

TDM Carrier Standards

North Ar	nerican		International		
Frame format	Number of voice channel	Data rate s (Mbps)	Level number	Number of voice channels	Data rate (Mbps)
DS-1	24	1.544	1	30	2.048
DS-1C	48	3.152	2	120	8.448
DS-2	96	6.312	3	480	34.368
DS-3	672	44.736	4	1920	139.264
DS-4	4032	274.176	5	7680	565.148

Statistical TDM (1)

- With synchronous TDM, the channel capacity is wasted when sources transmit intermittently (due to fixed assignment of channel)
- Statistical TDM (also known as asynchronous TDM and intelligent TDM) does not use fixed assignment; a source gets a time slot only if it is alive
- Multiplexing Technique in Packet Switching Networks

Statistical TDM (2)

DSL Broadband Access Config.

Asymmetrical Digital Subscriber Line (ADSL)

- Link between subscriber and network (Local loop)
- Uses currently installed twisted pair cable
 - Can carry broader spectrum (1 MHz or more)
- Asymmetric
 - Greater capacity downstream than upstream
- Frequency division multiplexing
 - Lowest 25kHz for voice
 - For upstream and downstream, use echo cancellation or FDM to give two bands
 - Use FDM within each band

ADSL Channel Configuration

(a) Frequency-division multiplexing

Discrete Multitone (DMT)

- Multiple carrier signals at different frequencies
- 4kHz subchannels
- Some bits on each channel
- Send test signal and use subchannels with better signal to noise ratio
- 256 downstream subchannels at 4kHz (60kbps)
 - 15.36Mbps
 - Impairments bring this down to 1.5Mbps to 9Mbps

DMT Bits per Channel Allocation

DMT Transmitter

xDSL

- High speed digital transmission of subscriber line
- HDSL (High Data Rate Digital Subscriber Line)
 - 1.544 or 2.048 Mbps
 - Cost-effective means of delivering T1 rate
 - Two twisted pairs
- SDSL (Single-Line Digital Subscriber Line)
 - 1.544 or 2.048 Mbps
 - Single twisted-pair cable (echo cancellation)
- VDSL (Very High Data Rate Digital Subscriber Line)
 - A scheme similar to ADSL at a much higher rate
 - DMT/QAM

Full Duplexing : FDD, TDD

- Simultaneous Transmission between two stations (full duplex)
- Frequency Division Duplex (FDD)
 - Separate frequency subband for each station
- Time Division Duplex (TDD)
 - Separate time slot for each station
 - Slot length: $T_p + T_b + T_g$

Multiple Access: FDMA, TDMA

- Transmission medium sharing between multiple stations
- Frequency Division Multiple Access (FDMA)
 - Separate subchannel for each station

- Time Division Multiple Access (TDMA)
 - Separate time slot for each station

