

LAN Overview

LAN (local area networks)

- LAN features
 - Local area: ~ 10 km (wireless: 100 m)
 - Single organization
 - High speed, Low error rate
 - Shared medium
- IEEE 802 reference model
 - LAN standards
 - bottom 2 layers of ISO reference model
 - LLC (logical link control) sublayer
 - MAC (medium access control) sublayer
 - PHY (physical) layer

IEEE 802 Protocol Layer

Wired LAN Topology

- The way in which the stations are interconnected.
- The medium is shared to all stations (shared medium)
- Bus, Star

Functions of Each Layer (1)

• PHY (Physical)

- bit transmission/reception
- encoding/decoding of signals
- preamble generation/removal for bit synchronization
- includes specification of medium and topology
- MAC (Medium Access Control)
 - control access to shared transmission medium
 - on transmission, assemble data into a frame with address and error detection fields
 - on reception, perform address recognition and merely detect errors and discard any erroneous frame

Functions of Each Layer (2)

LLC (Logical Link Control)

- Provide an interface to higher layers
- Data link control layer of OSI model (dedicated point-to-point link)
- LLC Services
 - Unacknowledged connectionless (type-1)
 - no flow control and no error control
 - in higher layer, reliability issue is expected to be dealt with
 - Connection-mode (type-2)
 - Logical connection is set up
 - Flow control and error control (error recovery by retransmission)
 - is similar with Asynchronous Balanced Mode of HDLC
 - Acknowledged connectionless (type-3)
 - No prior logical connection setup
 - Datagrams are acknowledged

Protocol Data Unit

IEEE 802 Standards

IEEE 802 Reference Model

LLC			
MAC			
Physical			
Medium			

IEEE 802 Standard

802.2 LLC					
802.3 CSMA/CD	802.11 CSMA/CA	802.15.1 802.15.4	802.16		
Wired LAN (Ethernet)	Wireless (WiFi)	Wireless (Bluetooth, ZigBee, UWI	Wireless (WiMax)		

Bridge

Expansion beyond single LAN

- Interconnection to other LANs/WANs
- Bridge or router is used
- Bridge is simpler
 - Connects LANs
 - Minimal processing
- Router is more general
 - Interconnect LAN and WAN

Functions of a Bridge

- Read all frames transmitted on one LAN and accept those addressed to any station on the other LAN
- Using MAC protocol for second LAN, retransmit each frame

Bridge Design Aspects

- When connecting LANs with identical protocols
 - No modification to content or format of frame
 - No encapsulation
 - Exact bitwise copy of frame
- Amount of Buffer to meet peak traffic demand
- Contains routing and address intelligence
 - Must know which frames to pass
 - May be more than one bridge to cross
- Bridging is transparent to stations
 - Appears to all stations on multiple LANs as if they are on one single LAN

Bridge Protocol Architecture

- IEEE 802.1D
- Bridge does not need the LLC layer
 - It is relaying MAC frames
- MAC level Bridge
 - Station address is at this level (MAC address)
 - Destination MAC address (DA): the address of the destination in the entire LAN (multiple LANs interconnected by bridges)
 - DA is the MAC address of a router if the final destination node is on an external network.

Connection of Two LANs by a Bridge

DSL modem + WiFi AP + Ethernet Switch

Routing in Multiple LANs

- Complex large LANs need alternative routes
 - Load balancing
 - Fault tolerance
- Bridge must decide which LAN to forward frame on
- Routing
 - Spanning Tree algorithm: IEEE 802.1D
 - Source Routing

Spanning Tree (1)

- Bridge automatically develops the routing table and automatically updates it in response to changes
- Consists of three mechanism
 - Frame forwarding
 - Address learning
 - Loop resolution: spanning tree

Spanning Tree (2)

- Frame forwarding
 - Forwarding database for each port
 - List the addresses of the stations reached through each port
 - can preloaded or be learned
 - For a frame arriving on port X:
 - If the destination MAC address is listed for port X, discard the frame
 - search forwarding database to see if the destination MAC address is listed for any port except X
 - If the address is not found, forward to all ports except X
 - If the address is listed for port Y, check port Y for blocking or forwarding state
 - Blocking prevents port from receiving or transmitting
 - If not blocked, transmit frame through port Y

Spanning Tree (3)

Address Learning

- When a frame arrives at port X
 - It means that the frame has come from the LAN attached to port X
 - update the forwarding database for port X to include the source address of the frame
- Timer on each entry in database
 - If timer expires, entry is removed
- *

Each time a frame arrives, its source address is checked against forwarding database for arriving port

- If present, timer is reset
- If not present, entry is created and timer is set

Loop of Bridge

Address Learning

- Address learning works well when there are no alternate routes in the network
 - Alternate route means there is a closed loop

 For any connected graph, there is a spanning tree maintaining connectivity with no closed loops

Spanning Tree (4)

- Modeling the LAN system as a graph
 - Each LAN segment: graph node
 - Bridge between LAN segments: graph edge
 - Bridge has a unique id
 - Bridge Port : has a unique ID in the bridge
 - Cost (for example, the capacity of LAN) is assigned
- Minimal cost spanning tree from graph
 - Exchange of information between bridges to find spanning tree
 - Whenever there is a change in topology, the bridges automatically recalculate the spanning tree

Spanning Tree (5)

Example

Let us suppose that the cost of all ports are the same

Spanning Tree (6)

- 1. The bridge with the smallest ID: the *root bridge*
- 2. On each bridge, select a *root port*
 - Port with the least cost path to the root bridge

LAN1

Spanning Tree (7)

- 3. On each LAN segment, select a *designated bridge*
 - Bridge with the least cost path to the root bridge
 - If two bridges have same cost, select the bridge with smallest ID
 - Mark the corresponding port as the *designated port*

Spanning Tree (8)

Spanning Tree (9)

- (a) Interconnected LANs
- (b) A spanning tree covering the LANs. The dotted lines are not part of the spanning tree. 26

Repeaters of Bus Topology

- Joins two segments of cable
- No buffering
- No logical isolation of segments
- If two stations on different segments send at the same time, packets will collide
- Only one path of segments and repeaters between any two stations

Star LANs

- Use unshielded twisted pair wire (telephone)
 - Minimal installation cost
 - All locations in building covered by existing installation
- Attach to a central active hub
- Two links
 - Transmit and receive
- Hub repeats incoming signal on all outgoing lines
- Link lengths limited to about 100m
 - Fiber optic up to 500m
- Logical bus with collisions

Two Level Star Topology

Hubs and Switches

- Shared medium hub
 - Central hub
 - Hub retransmits incoming signal to all outgoing lines
 - Only one station can transmit at a time
 - With a 10Mbps LAN, total capacity is 10Mbps
- Switched LAN hub (Layer 2 Switch)
 - Hub acts as switch
 - Incoming frame switches to appropriate outgoing line
 - Unused lines can also be used to switch other traffic
 - With two pairs of lines in use, overall capacity is now 20Mbps

Wired LAN Configuration

Figure 15.13 A LAN Configuration