457.646 Topics in Structural Reliability In-Class Material: Class 01

)

I. Introduction

Our Content of Cont

① (): Inherent randomness (or physical fluctuation)

e.g. earthquake intensity (PGA, PGV, ...), wind velocity, maximum flow rate

 \Rightarrow () be reduced

② (): uncertainty due to insufficient (

- () uncertainty: imperfect or simplified model (e.g. $3D\rightarrow 2D$)

missing variables or effects

- () uncertainty: insufficient data

e.g. "sample mean is not the true mean"

 \Rightarrow () be reduced by investing more in knowledge and data

Der Kiureghian, A., and O. Ditlevsen (2009). Aleatory or epistemic? Does it matter? *Structural Safety*, **31**: 105-112

Our Content of Cont

457.646 Topics in Structural Reliability (Theory)

- Focus: methods for quantifying risk & applications
- Provide overview and applications of " " reliability methods
 - \Rightarrow The word " " does not refer to physical structures (buildings and bridges, ...)
 - \Rightarrow in an () & () manner

- Part 2: Basic theory of probability & statistics (≤ 3 weeks) (ref. A&T textbook)
- Part 3: Structural Reliability Analysis (SRA) Component

- Reliability index: $\beta_{\scriptscriptstyle MVFOSM}, \beta_{\scriptscriptstyle HL}$
- Reliability methods: FORM, SORM, etc. (how to integrate <)
- Part 4: Structural Reliability Analysis (SRA) System

- Reliability methods developed to handle system failure domains
- : "System" reliability methods
- Part 5: Structural Reliability under Epistemic Uncertainty

$$P_f = \int_{g(\mathbf{x}; \) \le 0} f_{\mathbf{x}}(\mathbf{x}; \) \ d\mathbf{x}$$

Part 6: Simulation Methods

- \Rightarrow Monte Carlo simulations
- ⇒ Efficient Sampling methods

$$Y = g(\mathbf{x})$$

Part 8: Applications

II. Basic theory of Probability and Statistics

1. Set Theory

Why do we need 'set theory' in uncertainty analysis?

- Uncertainty: a () of possible () e.g. toss a coin roll a dice weight of a car

- **Probability:** numerical measure of the () of an event (i.e. a group of outcomes) of interest () the other possible outcomes
- e.g. "unfair coin"

- Uncertainty analysis starts with () the collection of all possible outcomes
- Principles of set theory are essential tool for this task.

2. Definitions

(a) **Sample space** (): the set of () possible outcomes **Sample point** (): an () outcome

Criteria	Sample space	Examples		
Continuous?	"Discrete": () quantities	# of typhoons at city A in a year S={ }		
	"Continuous": () quantities	% of congested traffic in Seoul S={ }		
Can count	"Finite" :() ()and()	S = { }		
sample points?	"Infinite" :() ()or()	S = { } S = { }		

- (b) **Event** (): any collection of sample () or any () of sample space
 - e.g. Baseball: outcomes of each "at-bat"
 - S=
 - discrete or continuous?
 - infinite or finite?
 - "A hitter reaches a base"

E=

- (c) Some notable events
 - () event: E=
 - Occurs with certainty
 - () event: E= - cannot occur
 - **Complementary** event of *E*:() or ()
 - An event that contains () the sample points that are () in E

- e.g. "at-bat" outcomes
 - E: "a hitter reaches a base"

$$\overline{E} =$$

-e.g. $\overline{S} =$, $\overline{\phi} =$

(d) **Venn diagram**: (points and events

) representation of the sample space, sample

) & (

* GUI-based interactive learning tools for Venn diagrams (and other statistical concepts) are available at http://www.stat.berkeley.edu/~stark/Java/Html/

457.646 Topics in Structural Reliability In-Class Material: Class 02

) reliability analysis

- ① "Union" of events: $E_1 \qquad E_2$
 - An event that contains all the sample points that are in E_1 E_2

- e.g., Concrete mixing
- E_1 : shortage of water E (concrete can't be produced) =

=

 E_i

- E_2 : shortage of sand
- E_3 : shortage of gravel
- E_4 : shortage of cement
- e.g., Wind
- E_1 : blown off due to pressure $E = E_1$ E_2
- E_2 : missile-like flying objects
- e.g., Bridge pier under EQ
- E_1 : reaches displacement capacity $E = E_1 \qquad E_2$
- E_2 : reaches shear capacity
- $A \cup S = A \cup \phi =$
 - $A \cup A =$
 - If $A \subset B$, then $A \cup B =$

② "intersection" of events $E_1 = E_2$ or

: an event that contains all the sample points that are both in $E_1 = E_2$

Exposed to pollutant E =

Operation Rules

Commutative Rule	$E_1 \cup E_2 =$
	$E_1E_2 =$
Associative Rule	$(E_1 \cup E_2) \cup E_3 = =$
	$(E_1 E_2) E_3 = =$
Distributivo Pulo	$(E_1 \cup E_2)E_3 =$
Distributive Rule	$(E_1 E_2) \cup E_3 =$
De Morgan's Rule	$\boxed{\frac{\left(\bigcup_{i=1}^{l}E_{i}\right)}{\left(\bigcap_{i=1}^{l}E_{i}\right)}} =$

Relationship between events

① Mutually Exclusive events: $E_1E_2 =$

- Cannot occur together
- e.g. E_1 and $\overline{E_1}$
- $E_1 \cdots E_n$ and $\overline{E_i}$, $i \in \{1, \cdots, n\}$

■ The union constitutes the sample space

* <u>MECE:</u>

2. Mathematics of Probability (measure of likelihood of event)

Approach	Description	Example : Prob. (a "Yut" stick shows the flat side)
Notion of Relative Frequency	Relative frequency based on empirical data, Prob. = (# of occurrences) / (# of observations)	
On a Priori Basis	Derived based on elementary assumptions on likelihood of events	
On Subjective Basis	Expert opinion ("degree of belief")	
Based on Mixed Information	Mix the information above to assign probability	

© Four approaches for assigning probability of events

Axioms of Probability

"Axioms": Statements or ideas which people <u>accept</u> as being the foundation of theory

I. P(E) = 0II. P(S) = 1III. M.E $E_1 \& E_2 : P(E_1 \cup E_2) = 1$

As a result,

1	$\leq P(E) \leq$	$(\because P(S) = P(\bigcup$) =	+	=)
2	$P(\phi) =$	$(\because P(S \cup \phi) =$	= +	- =)
3	$P(\overline{E}) =$	$(\because P(E \cup \overline{E}) =$	=)

(4)
$$P(E_1 \cup E_2) = P(E_1)$$
 $P(E_2)$ $P(E_1E_2)$

"Addition Rule"

- Venn Diagram
- Formal Proof

$$\begin{array}{c} \overbrace{E_1 \cup E_2}^{\mathbf{S} \cdot \mathbf{E_2}} \\ P(E_1 \cup E_2) = P(E_1 \cup \overline{E_1}E_2) = P(E_1) + P(\overline{E_1}E_2) \\ P(E_2) = P(E_1E_2) + P(\overline{E_1}E_2) \end{array}$$

"Inclusion-Exclusion Rule"

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum \sum P(E_{i}E_{j}) + \sum \sum P(E_{i}E_{j}E_{k}) + \dots + (-1)^{n-1} \times P(E_{1}\cdots E_{n})$$

* "Inverse version" derived in Appendix A of Der Kiureghian et al. (2007)

Conditional Probability & Statistical Independence

- ① Conditional Probability
 - Conditional probability of given

 $P(E_1 | E_2) \equiv$

- ③ "Multiplication Rule": $P(E_1E_2) =$

$$(:: P(E_1 | E_2) =)$$

- $P(E_1 E_2 E_3) =$

-
$$P(E_1 \cdots E_n) =$$

- ④ All the other prob. rules should be applicable to conditional probabilities as long as all the prob. are defined within the same space
 - $-P(E_1 \cup E_2 | E_3) =$
 - $P(E_1E_2|E_3) =$
 - $P(\overline{E_1}|E_3) =$
- 5 **Statistical Independence:** The occurrence of one event does not affect the likelihood of the other event
 - $P(E_1|E_2) =$
 - $P(E_2|E_1) =$
 - $P(E_1E_2) =$
 - cf. Mutually Exclusive $P(E_1E_2) = 0$

Total Prob. Theorem

Setting: E_1, E_2, \dots, E_n : ______ events

 $P(E) \rightarrow$ Not easy to get directly $P(E \mid E_i) \rightarrow$ Easier to get $P(E) = \sum_{i=1}^{n}$

Proof:

Examples:

(1) Seismic hazard analysis:

P(E) =

FIG. 3.1 TYPE 1 SOURCE (BASIC CASE)

Der Kiureghian, A. (1976). *A line source-model for seismic risk analysis*, Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, USA.

(2) Probability of structural failure under an uncertain input intensity: Fragility

Bayes Theorem

$$P(E_i|E) = \frac{P(E|E_i)}{E_i}$$

- Decision making
- Parameter estimation
- Inference

Example)

purified

Measure of cleanness, X (0 : contaminated ~ 100 : clean)

	$P(E_i)$	$P(X \le 20 E_i)$
1	0.1	0.9
2	0.3	0.2
3	0.6	0.01

 $X \le 20 \Rightarrow$ Which one failed?

$$P(E_i | X \le 20) =$$