457.646 Topics in Structural Reliability In-Class Material: Class 05

* See supplementary material on bivariate normal joint PDF

© Covariance & Correlation Coefficient

- Partial descriptors or measures for _____ dependence
- ① Covariance
 - (a) Definition:

$$Cov[X,Y] \equiv E[$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dy dx$$

c.f. c.o.v. $\delta =$

Instructor: Junho Song

junhosong@snu.ac.kr

(b)
$$Cov[X,Y] = -$$

(c)
$$Cov[X,Y] > 0$$
 ______ linear dependence

⇒ Not useful to measure/compare the strength of the linear dependence. Why?

② Correlation Coefficient

(a) Dimensionless measure of linear dependence

$$\rho_{xy} \equiv ----$$

(b)
$$\leq \rho_{xy} \leq$$

Instructor: Junho Song junhosong@snu.ac.kr

Proof: Consider

$$f(a) = \iint [a(x - \mu_X) - (y - \mu_Y)]^2 f_{XY}(x, y) dx dy$$

$$= a^2 Var[X] - 2a \cdot Cov[X, Y] + Var[Y] \qquad 0$$

$$\therefore D/4 = (Cov[X, Y])^2 - Var[X] \cdot Var[Y] \qquad 0$$

$$\therefore \frac{[Cov(X, Y)]^2}{Var[X] \cdot Var[Y]} \le$$

(c) What does $\rho_{XY} =$ & $\rho_{XY} =$ mean?

 $\leq \rho_{xy} \leq$

Consider the case D=

$$f(a) = Var[X] \left(a - \frac{Cov[X,Y]}{Var[X]}\right)^2 + \dots$$

$$f(a) = 0$$
 at $a = \frac{C \text{ ov}[X, Y]}{Var[x]} = a^*$

Substituting this into f(a),

$$f(a^*) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [(x - \mu_X) - (y - \mu_Y)]^2 f_{XY}(x, y) dx dy = 0$$

 \therefore for $\forall (x, y)$, the following (deterministic/probabilistic) and (linear/nonlinear) relationship between X and Y holds:

(d)
$$\rho_{XY} = 0 \Leftrightarrow Cov[X,Y] = 0$$

"No linear dependence"

"In"

(e) "Uncorrelated" vs "Statistical Independence"

$$\rho_{XY} = 0 \qquad \rightarrow \qquad f_{XY}(x, y) =$$

$$(E[XY] =) \leftarrow \qquad f_{XY}(x, y) =$$

 \rightarrow ?

Suppose Y= X^2 and X has a symmetric distribution in [-a,a]

$$E[XY] = E[X] = Cov[X, Y] =$$

←?

W Vector/matrix formulation for multiple RVs

$$\mathbf{X} = \begin{cases} X_1 \\ \vdots \\ X_n \end{cases} \qquad \mathbf{\mu_X} = \begin{cases} \mu_{X_n} \\ \vdots \\ \mu_{X_n} \end{cases} \qquad \mathbf{\Sigma_{XX}} = \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \vdots \\ sym & & \dots & \sigma_n^2 \end{bmatrix}$$

$$\text{() vector () vector} = \mathbf{E}[\mathbf{X}] \qquad \qquad \text{() matrix}$$

$$\Sigma_{XX} = E[(X - M_X)(X - M_X)^T] = E[XX^T] - M_X M_X^T$$

$$= DRD$$

where

$$\mathbf{D} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$
 diagonal matrix of ______

$$\mathbf{R} = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} \\ & 1 & \\ & & \ddots & \\ sym & & 1 \end{bmatrix} = \begin{bmatrix} & & \end{bmatrix}$$
 matrix

- * Σ_{xx} and R_{xx} are ____ and ____
 - $\mathbf{a}^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{X} \mathbf{X}} \mathbf{a} > 0 \ (\forall \mathbf{a} \neq \mathbf{0})$ If no perfect linear dependence (a simple proof: $Y = \mathbf{a}^{\mathrm{T}} \mathbf{X}$, $\sigma_y^2 = \mathbf{a}^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{X} \mathbf{X}} \mathbf{a} > 0$)
 - $\mathbf{a}^T \Sigma_{\mathbf{X} \mathbf{X}} \mathbf{a} = \mathbf{0}$ for $\exists \mathbf{a}$ if there exist linear dependence among \mathbf{X}

e.g.
$$X_1 = 2X_2$$
, $Y = 1 \cdot X_1 - 2X_2 = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = 0$

$$\sigma_Y^2 = \mathbf{a}^T \mathbf{\Sigma}_{XX} \mathbf{a} = 0$$

457.646 Topics in Structural Reliability In-Class Material: Class 06

Instructor: Junho Song

junhosong@snu.ac.kr

II-6. Functions of Random Variables (See Supp. 03)

Consider Y = g(X)

- (1) For input X: distribution model $\mathrm{f}_X(x)$ or expectations $(M_X,\ \Sigma_{XX})$ available
- (2) For output Y: distribution model () or expectations (,)?

Examples:

- (1) Regional/inventory loss: $L = \sum_{i=1}^{n} V_i D_i \rightarrow \text{linear function}$
- (2) Wind-induced pressure: $P = \frac{1}{2}C_{\rho}\rho V^2$

Mathematical expectation of linear functions

$$Y_k = a_{k,0} + \sum_{i=1}^n a_{k,i} X_i, \quad k = 1,...,m$$

- ① Algebraic formula $(n \le 3)$: See Supp.3
- ② Matrix formula:

For
$$\mathbf{Y} = \mathbf{A}_0 + \mathbf{A}\mathbf{X}$$

where

$$\mathbf{Y} = \begin{cases} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{m} \end{cases}, \quad \mathbf{A}_{0} = \begin{cases} a_{1,0} \\ a_{2,0} \\ \vdots \\ a_{m,0} \end{cases}, \quad \mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \text{ and } \mathbf{X} = \begin{cases} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{cases}$$

$$M_Y =$$

$$\Sigma_{YY} =$$

\clubsuit Proof of Positive-definiteness of Σ_{XX}

Consider
$$Y = \mathbf{a}^{\mathrm{T}}\mathbf{X}$$
 $(\mathbf{A}_0 = \mathbf{A} = \mathbf{A})$

Using the formula above,

$$\Sigma_{YY} = \sigma_Y^2 =$$

❖ Linear transformation for <u>standardization</u>, i.e.,

Instructor: Junho Song junhosong@snu.ac.kr

&

Suppose X has and

Find $\mathbf{Y} = \mathbf{A}_0 + \mathbf{A}\mathbf{X}$

such that $M_Y =$ and $\Sigma_{YY} =$

 $M_{Y} = A_{0} + AM_{X} =$ (1)

 $\Sigma_{YY} = A\Sigma_{XX}A^T =$ (2)

Since Σ_{XX} is positive semi-definite, $\Sigma_{XX} = L_{\Sigma}L_{\Sigma}^T$ (e.g. by _____ decomposition)

=I and Therefore,

 $A = \rightarrow Substitute to ()$

 $A_0 =$

In summary,

Y =

Alternatively,

$$\Sigma_{XX} = D_X R_{XX} D_X$$

$$=$$

$$= L_{\Sigma} L_{\Sigma}^{T}$$

Therefore, $L_{\Sigma} =$ and $L_{\Sigma}^{-1} = \,$

Y =

ightarrow This version is preferred because of numerical stability in decomposition ($|\rho| \leq 1$).

Mathematical expectation of nonlinear functions

$$Y_k = g_k(x), \ k = 1, \cdots, m$$

Taylor series expansion around the mean point, $x = M_X$

$$Y_k \cong g_k(\mathbf{M}_X) + \frac{\partial g_k}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{M}_X} (\mathbf{x} - \mathbf{M}_X) + \cdots$$

Matrix form

$$Y \cong g(\boldsymbol{M}_{\boldsymbol{X}}) + \boldsymbol{J}_{\boldsymbol{Y},\boldsymbol{X}}\Big|_{\boldsymbol{x} = \boldsymbol{M}_{\boldsymbol{Y}}} (\boldsymbol{X} - \boldsymbol{M}_{\boldsymbol{X}})$$

Instructor: Junho Song junhosong@snu.ac.kr

① First-order approximation

(Scalar: See supp.)

$$\mathbf{M}_{\mathbf{Y}}^{FO} = \mathbf{g}()$$
 $\mathbf{\Sigma}_{\mathbf{YY}}^{FO} =$

- ② Second-order approximation
- ⇒ Can use 2nd order approximation from Taylor series expansion
- \Rightarrow Not useful because higher-order moments are needed (γ, κ, \cdots)
- 3 Accuracy of FO/SO approximation

Sources of large errors in approx.

- $\sigma_{\scriptscriptstyle X}$
- Nonlinearity in g(x)

Example: $\mathbf{U} = \mathbf{K}^{-1}\mathbf{P}$ (Frame structure)

Operived Distribution of Functions

Consider $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ where $\mathbf{Y} = \{Y_1, \cdots, Y_m\}$ and $\mathbf{X} = \{X_1, \cdots, X_n\}$

Given: $f_X(x) \rightarrow f_Y(y)$?

- ① m = n, one-to-one mapping
 - a) Discrete

$$P_{\mathbf{Y}}(y_1, \dots, y_n)$$
 $P_{\mathbf{X}}(x, \dots, x_n)$

b) Continuous

$$f_{\mathbf{X}}(y_1,\dots,y_n)$$
 $f_{\mathbf{X}}(x_1,\dots,x_n)$

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \cdot |\det$$

$$= f_{\mathbf{X}}(\mathbf{x}) \cdot |\det$$

$$|^{-1}$$

$$\mbox{"Jacobian"} \mathbf{J}_{\mathbf{y},\mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & & & \vdots \\ \frac{\partial y_n}{\partial x_1} & \cdots & \cdots & \frac{\partial y_n}{\partial x_n} \end{bmatrix}$$

Consider y = g(x), x = h(y)

$$m = n = 1$$

$$f_Y(y) = f_X$$
 (x)
$$= f_X(y) \left| \frac{dh(y)}{dy} \right|$$

Example: $X \sim N(0, 1^2)$

a)
$$Y = g(X) = aX + b$$

One-to-one mapping?

_____ Distribution

$$\mu_Y =$$

$$\sigma_v =$$

$$f_{T_1}(t_1) = \alpha \cdot \exp(-\alpha t_1), \ t_1 > 0$$

$$f_{T_2}(t_2) = \beta \cdot \exp(-\beta t_2), \ t_2 > 0$$

 T_1, T_2 : statistically independent

Joint PDF of
$$\begin{cases} Y_1 = T_1 + T_2 \\ Y_2 = T_1 - T_2 \end{cases}$$
 ?

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{T}}(\mathbf{t}) \left| \det \mathbf{J}_{\mathbf{y},\mathbf{t}} \right|^{-1}$$

$$\mathbf{J}_{\mathbf{y},\mathbf{t}} = \begin{bmatrix} \frac{\partial y_1}{\partial t_1} & \frac{\partial y_1}{\partial t_2} \\ \frac{\partial y_2}{\partial t_1} & \frac{\partial y_2}{\partial t_2} \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

$$\left| \det \mathbf{J}_{\mathbf{y}, \mathbf{t}} \right|^{-1} =$$

$$f_{\mathbf{Y}}(\mathbf{y}) =$$

Inverse relationship

$$\begin{cases} T_1 = \frac{1}{2}(Y_1 + Y_2) \\ T_2 = \frac{1}{2}(Y_1 - Y_2) \end{cases}$$

$$\therefore f_{\mathbf{Y}}(\mathbf{y}) = \frac{\alpha\beta}{2} \exp\left[-\frac{\alpha+\beta}{2}y_1 - \frac{\alpha-\beta}{2}y_2\right], \quad y_1 > 0, -y_1 < y_2 < y_1$$

Instructor: Junho Song junhosong@snu.ac.kr

- Range of **Y** derived from the condition $t_1, t_2 > 0 \ \& \ \mathbf{t} = \mathbf{h}(\mathbf{y})$