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M1586.002500 Information Engineering for Civil & Environmental Engineers 

In-Class Material: Class 07 

Linear Regression (ISL Chapter 3) 

 
1. Extensions of Linear Regression Model 

 Two important restrictive assumptions of the linear regression: 

- ‘Additive’ assumption: the effect of changes in 𝑋𝑗 on the response Y is i________ of 

the values of the other predictors 

- ‘Linear’ assumption: the change in the response Y due to a one-unit change in 𝑋𝑗 is 

c________, regardless of the value of 𝑋𝑗 

(a) Can we remove the additive assumption by modifying the linear regression model?  

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜖 

One way of extending this model to allow for i__________ effects is to include a third 
predictor, called an interaction term, i.e. 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2 + 𝜖 

Rewritten as 

Y = 𝛽0 + (𝛽1 + 𝛽3𝑋2)𝑋1 + 𝛽2𝑋2 + 𝜖 = 𝛽0 + �̃�1𝑋1 + 𝛽2𝑋2 + ϵ 

where, �̃�1 = 𝛽1 + 𝛽3𝑋2 

�̃�1 changes with 𝑋2, → the effect of 𝑋1 on 𝑌 is no longer c________ 

Note: The hierarchical principle states that if we include an interaction term (𝑋1𝑋2) in 

a model, we should also include the main effects (𝑋1 or 𝑋2), even if the p-values 
associated with their coefficients are not significant. It does not make sense to talk 
about interaction effect while ignoring that of the predictors. 

 

library(MASS) # Boston data in MASS 
lm.fit1 = lm(medv~lstat+age, data=Boston) 
lm.fit2 = lm(medv~lstat*age, data=Boston) 
summary(lm.fit1) 
summary(lm.fit2) #compare r.squared and RSE to see interaction effects 

 
 

# install.packages("ISLR") 
library(ISLR) # Carseats data in ISLR 
summary(Carseats) # Car seats sales data at 400 stores (see ShelveLoc) 
attach(Carseats) 
contrasts(ShelveLoc) # dummy variables introduced for ShelveLoc 
 
lm.fit3 = lm(Sales ~ . + Income:Advertising + Price:Age, data=Carseats) 
summary(lm.fit3) 
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(b) What about linear assumption? Can we remove it by modifying linear regression too? 

→ The p_________ regression is a simple extension of the linear relationship 

between response and predictor to nonlinear one 

Comparison between 1st, 2nd and 5-th order regression models of mpg with respect to 
horsepower in Auto data set, what can be inferred from this? 

  {

mpg = 𝛽0 + 𝛽1horsepower + 𝜖                                             

mpg = 𝛽0 + 𝛽1horsepower + 𝛽2horsepower2 + 𝜖         

mpg = 𝛽0 + 𝛽1horsepower + ⋯ + 𝛽5horsepower5 + 𝜖

 

 
 

attach(Boston) 
lm.fit_p1 = lm(medv ~ lstat, data=Boston) 
lm.fit_p2 = lm(medv ~ lstat + I(lstat^2), data=Boston) 
summary(lm.fit_p1) 
summary(lm.fit_p2) 
 
anova(lm.fit_p1, lm.fit_p2) 
# ANOVA: analysis of variance 
# if p value is small, the second model is significantly better 
# https://bookdown.org/ndphillips/YaRrr/comparing-regression-models-with-

anova.html 
 
lm.fit_p5 = lm(medv ~ poly(lstat,5)) 
# 5-degree polynomial regression model 
anova(lm.fit_p2,lm.fit_p5) 
summary(lm.fit_p1)$r.squared 
summary(lm.fit_p2)$r.squared 
summary(lm.fit_p5)$r.squared 

 
2. Potential Problems regarding Linear Regression 

(a) Non-linearity of the response-predictor relationships 

- [Problem] The basic assumption of the model is not satisfied 

→ All of the conclusions drew from the fit are suspicious 

- [Diagnosis] Residual plots (simple: 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 versus 𝑥𝑖, multiple: 𝑒𝑖 versus �̂�𝑖) 
Ideally, the residual plot should show no discernible pattern 
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Residual plots versus fitted variables from Auto data set 

- Left: a strong pattern in the residuals indicates non-linearity in the relationship 

- [Solution] Using non-linear transformations of the predictors, e.g. log X , √𝑋, 𝑋2 

- Right: little pattern in the residuals  quadratic term improves the fit to the data 

(b) Correlation of error terms 

- [Problem] An assumption that error terms 𝜖1, 𝜖2, ⋯ , 𝜖𝑛 are uncorrelated is not 
satisfied 

→ estimated standard errors tend to underestimate the true standard errors 

→ confidence and prediction intervals will be narrower than the actual ones 

- [Diagnosis] Usually occurs in time series problem. In residuals plot as a function of 
time, if the error terms are positively correlated, then tracking is observed 

- [Solution] Many methods exist that take account of correlations in the error terms 

 

Residual plots with different levels of correlation ρ between error terms 
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- Top panel: no evidence of a time-related trend in the residuals 

- Bottom panel: a clear pattern in the residuals; adjacent residuals tend to take on 
similar values. 

(c) Non-constant variance of error terms 

- [Problem] The assumption that error terms have constant variance, i.e. Var(𝜖𝑖) =
𝜎2, is not satisfied 

- [Diagnosis] In residual plot, non-constant variances in the errors 
(heteroscedasticity), from the presence of a funnel shape in the residual plot. 

- [Solution] Transform the response Y using a concave function such as log 𝑌 or √𝑌 

→ results in a greater amount of shrinkage of the larger responses 

What else? e.g. weighted least squares (larger weight on samples with smaller 
residuals) 

 

(d) Outliers: points at which 𝑦𝑖 is far from the value predicted by the model 

- [Problem] Even if an outlier does not have much effect on the least squares fit, it 

can cause dramatic increase in RSE and decrease in 𝑅2 

- [Diagnosis] Residual plot can be one way to identify clear outliers                   
In practice, a plot of “studentized residuals”, i.e. 𝜖𝑖/𝑆𝐸, is used 

→ Observations whose studentized residuals are greater than 3 in absolute value: 

possible outliers 

 

Red: before removing the outlier 
Blue: after removing the outlier 
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- [Solution] Remove outliers but with a caution (might indicate a deficiency with the 
model, e.g. a missing predictor) 

(e) High-leverage points: unusual value for predictor 𝑥𝑖 

- [Problem] It can cause a sizable impact on the estimated regression line. For this 
reason, it is important to identify high leverage observations 

-  

 

- [Diagnosis] Leverage statistic is used to quantify an observation’s leverage value, 
for a simple linear regression  

ℎ𝑖 =
1

𝑛
+

(𝑥𝑖 − �̅�)2

∑ (𝑥𝑗 − �̅�)2𝑛
𝑗=1

 

Note: 
1

𝑛
≤ ℎ𝑖 ≤ 1,   𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 =

𝑝+1

𝑛
           

- [Solution] Remove predictor 𝑥𝑖 that has significantly larger leverage than average 

(f) Collinearity: Two or more predictor variables are closely related to one another 

- [Problem] It can pose problems, since it is difficult to determine how each one is 
separately associated with the response 

 

Scatter plots of predictors: not collinear (left), and highly collinear (right) 

Red: before removing the outlier 
Blue: after removing the outlier 
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Contours of RSS: not collinear (left), and highly collinear (right) 

If predictors are highly collinear, a small change in the data could cause the least 
squares estimates to move anywhere along narrow valley. This results in a great deal 
of uncertainty in the coefficient estimates. 

Collinearity reduces the accuracy of the estimates of the regression coefficients, it 

causes the standard error for �̂�𝑗 to grow and the absolute value of the t-statistic to 

decrease. 

 

- [Diagnosis 1] Look at the correlation matrix (simple way) 

→ Estimated standard errors tend to underestimate the true standard errors. This 

can be detected by inspection of the correlation matrix  
 
Multicollinearity: It is possible for collinearity to exist between three or more variables 
even if no pair of variables has a particularly high correlation. 
 

- [Diagnosis 2] Compute the variance inflation factor (VIF) to assess the 

multicollinearity. It is the variance of �̂�𝑗 when fitting the full model divided by the 

variance of �̂�𝑗 if fit on its own (smallest value 1, i.e. no collinearity): 

 

VIF(�̂�𝑗) =
1

1 − 𝑅𝑋𝑗|𝑋−𝑗

2  

         

where 𝑅𝑋𝑗|𝑋−𝑗

2  is the 𝑅2 from a regression of 𝑋𝑗 onto all of the other predictors 
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𝑅𝑋𝑗|𝑋−𝑗

2 ≈ 1  Collinearity is present  Large VIF 

- [Solution] Drop one of the problematic variables (>5 or 10) from the regression or 
combine the collinear variables together into a single predictor 

 

library(MASS) # Boston data in MASS 
lm.fit = lm(medv~., data=Boston)  
install.packages('car') # "Companion to Applied Regression" package 
install.packages('cellranger') #should install 'cellranger' package before 

loading 'car' library 
library(car) 
vif(lm.fit) # compute variance inflation factor 

 
 
3. K-Nearest Neighbors Regression (KNN Regression) 

(a) Parametric VS Non-parametric method 

Parametric method (e.g. Linear regression)                                                            

- Easy to fit, small number of coefficients, simple interpretation, need strong 
assumptions, if assumptions is far from truth, poor performance 

 
Non-parametric method (e.g. KNN regression) 

- Do not need assumptions, more flexible, complex interpretation 

(b) Estimation of KNN regression 
 

Given K and a prediction point 𝑥0, identify the K training observations that are closest 

to 𝑥0, represented by 𝒩0 and use the average of all the training responses in 𝒩0 
 

𝑓(𝑥0) =
1

𝐾
∑ 𝑦𝑖

𝑥𝑖∈𝒩0

 

 

 
                        K=1                                                              K=9 
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 Small K: Flexible fit     Bias          Variance 
 
 Large K: Smooth fit     Bias          Variance 
 
Optimal value for K depends on the bias-variance tradeoff. Recall (Class 03) 
 

E [(𝑦 − 𝑓)
2

] = [Bias(𝑓)]
2

+ Var(𝑓) + Var(𝜖) 

 
(c) Comparison of linear regression with KNN regression 

 
Case 1) True relationship between 𝑋 and 𝑌 is linear 
 

 

 
 
The parametric approach outperforms the nonparametric approach 

 
 
 
 
 
 
 
 

Linear Regression 

KNN 

K=1 K=9 

Linear Regression 
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Case 2) True relationship between 𝑋 and 𝑌 is strongly non-linear 
 

 
 

The nonparametric approach outperforms the parametric approach 
 
            In general, a parametric model is superior to nonparametric model if the assumptions 

are valid. 
 

(d) Curse of dimensionality (in KNN regression) 
 
 

 
 

In high-dimensional problems, a given observation 𝑥0 may have no nearby neighbors 
 “curse of dimensionality” (i.e. sparse coverage of the high-dimensional predictor 
space by data)  leading to a poor prediction of 𝑓(𝑥0) 

 

K=1 & K=9 
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M1586.002500 Information Engineering for Civil & Environmental Engineers 

In-Class Material: Class 08 

Linear Regression (ISL Chapter 3) 

 
1. K-Nearest Neighbors Regression (KNN Regression) 

(a) Parametric VS Non-parametric method 

Parametric method (e.g. Linear regression)                                                            

- Easy to fit, small number of coefficients, simple interpretation, need strong 
assumptions, if assumptions is far from truth, poor performance 

 
Non-parametric method (e.g. KNN regression) 

- Do not need assumptions, more flexible, complex interpretation 

(b) Estimation of KNN regression 
 

Given K and a prediction point 𝑥0, identify the K training observations that are closest 
to 𝑥0, represented by 𝒩0 and use the average of all the training responses in 𝒩0 
 

𝑓(𝑥0) =
1

𝐾
∑ 𝑦𝑖
𝑥𝑖∈𝒩0

 

 

 
                        K=1                                                              K=9 
 
 
 Small K: Flexible fit     Bias          Variance 
 
 Large K: Smooth fit     Bias          Variance 
 
Optimal value for K depends on the bias-variance tradeoff. Recall (Class 03) 
 

E [(𝑦 − 𝑓)
2
] = [Bias(𝑓)]

2
+ Var(𝑓) + Var(𝜖) 
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(c) Comparison of linear regression with KNN regression 
 

Case 1) True relationship between 𝑋 and 𝑌 is linear 
 

 

 
 
The parametric approach outperforms the nonparametric approach 
 
Case 2) True relationship between 𝑋 and 𝑌 is strongly non-linear 
 

 

Linear Regression 

KNN 

K=1 K=9 

Linear Regression 

K=1 & K=9 
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The nonparametric approach outperforms the parametric approach 
 
            In general, a parametric model is superior to nonparametric model if the assumptions 

are valid. 
 

install.packages('FNN') # To use 'knn.reg' in 'FNN' package 
library('FNN') 
library('ISLR') 
 
Auto_s_hp = Auto[order(Auto$horsepower),] #Sort Auto dataset w.r.t. 

horsepower 
knn.mpg.hp1 = knn.reg(train=Auto_s_hp$horsepower, test=NULL, 

y=Auto_s_hp$mpg, k=1, algorithm=c("kd_tree","cover_tree","brute")) 
knn.mpg.hp9 = knn.reg(train=Auto_s_hp$horsepower, test=NULL, 

y=Auto_s_hp$mpg, k=9, algorithm=c("kd_tree","cover_tree","brute")) 
knn.mpg.hp15 = knn.reg(train=Auto_s_hp$horsepower, test=NULL, 

y=Auto_s_hp$mpg, k=15, algorithm=c("kd_tree","cover_tree","brute")) 
 
plot(horsepower,mpg) 
lines(horsepower,knn.mpg.hp1$pred,type='l',col='blue') 
lines(horsepower,knn.mpg.hp9$pred,type='l',col='red') 
lines(horsepower,knn.mpg.hp15$pred,type='l',col='green') 

 

(d) Curse of dimensionality (in KNN regression) 
 

 
 
In high-dimensional problems, a given observation 𝑥0 may have no nearby neighbors 
 “curse of dimensionality” (i.e. sparse coverage of the high-dimensional predictor 
space by data)  leading to a poor prediction of 𝑓(𝑥0) 

 
 

mailto:junhosong@snu.ac.kr

