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M1586.002500 Information Engineering for Civil & Environmental Engineers
In-Class Material: Class 07
Linear Regression (ISL Chapter 3)

1. Extensions of Linear Regression Model
Two important restrictive assumptions of the linear regression:

- ‘Additive’ assumption: the effect of changes in X; on the response Y is i of
the values of the other predictors

- ‘Linear’ assumption: the change in the response Y due to a one-unit change in X; is
c , regardless of the value of X;

(a) Can we remove the additive assumption by modifying the linear regression model?
Y =Bo+B1X1 + B2Xo + €

One way of extending this model to allow for i effects is to include a third
predictor, called an interaction term, i.e.

Y = B0+ B1X1 + BoXo + B3X1 Xy + €
Rewritten as
Y =Bo+ (By+ BaXo)Xy + BoXy + €= Bo+ Xy + BoXy e
where, B = B; + B3X,
3, changes with X,, — the effect of X; on Y is no longer ¢

Note: The hierarchical principle states that if we include an interaction term (X, X,) in
a model, we should also include the main effects (X, or X;), even if the p-values
associated with their coefficients are not significant. It does not make sense to talk
about interaction effect while ignoring that of the predictors.

Tibrary(MASS) # Boston data in MASS

Im.fitl = Tm(medv~]stat+age, data=Boston)

Tm.fit2 = Im(medv~lstat*age, data=Boston)

summary (Im. fitl)

summary(Im.fit2) #compare r.squared and RSE to see interaction effects

# install.packages("ISLR")

Tibrary(ISLR) # Carseats data in ISLR

summary(Carseats) # Car seats sales data at 400 stores (see ShelvelLoc)
attach(Carseats)

contrasts(ShelveLoc) # dummy variables introduced for ShelvelLoc

Im.fit3 = Im(Sales ~ . + Income:Advertising + Price:Age, data=Carseats)
summary (Im.fit3)
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(b) What about linear assumption? Can we remove it by modifying linear regression too?

— Thep regression is a simple extension of the linear relationship
between response and predictor to nonlinear one

Comparison between 1st, 2nd and 5-th order regression models of mpg with respect to
horsepower in Auto data set, what can be inferred from this?

mpg = f, + f1horsepower + €
mpg = B, + B;horsepower + B,horsepower? + €
mpg = B, + B horsepower + --- + Sshorsepower® + €

o
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attach(Boston)

Im.fit_pl = Tm(medv ~ Istat, data=Boston)

Im.fit_p2 = Tm(medv ~ Istat + I(IstatA2), data=Boston)
summary (Im. fit_pl)

summary (Im.fit_p2)

anova(Im.fit_pl, Im.fit_p2)

# ANOVA: analysis of variance

# if p value is small, the second model is significantly better

# https:/ébo?kdown.org/ndphi]]ips/YaRrr/comparing—regression—mode]s—with—
anova.htm

Tm.fit_p5 = Im(medv ~ poly(lstat,5))
# 5-degree polynomial regression model
anova(lm.fit_p2,Im.fit_p5)
summary(Im.fit_pl)$r.squared

summary (Im.fit_p2)$r.squared

summary (Im.fit_p5)$r.squared

2. Potential Problems regarding Linear Regression
(a) Non-linearity of the response-predictor relationships

- [Problem] The basic assumption of the model is not satisfied
— All of the conclusions drew from the fit are suspicious

- [Diagnosis] Residual plots (simple: e; = y; — y; versus x;, multiple: e; versus ;)
Ideally, the residual plot should show no discernible pattern
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Residual Plot for Quadratic Fit
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Residual plots versus fitted variables from Auto data set

(b) Correlation of error terms

satisfied

Left: a strong pattern in the residuals indicates non-linearity in the relationship

[Solution] Using non-linear transformations of the predictors, e.g. logX, VX, X2

Right: little pattern in the residuals - quadratic term improves the fit to the data

[Problem] An assumption that error terms €4, €,, -*+, €, are uncorrelated is not

— estimated standard errors tend to underestimate the true standard errors
— confidence and prediction intervals will be narrower than the actual ones

[Diagnosis] Usually occurs in time series problem. In residuals plot as a function of

time, if the error terms are positively correlated, then tracking is observed

[Solution] Many methods exist that take account of correlations in the error terms
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Residual plots with different levels of correlation p between error terms
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Top panel: no evidence of a time-related trend in the residuals
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Bottom panel: a clear pattern in the residuals; adjacent residuals tend to take on

similar values.

(c) Non-constant variance of error terms

[Problem] The assumption that error terms have constant variance, i.e. Var(e;) =

o2, is not satisfied

[Diagnosis] In residual plot, non-constant variances in the errors
(heteroscedasticity), from the presence of a funnel shape in the residual plot.

[Solution] Transform the response Y using a concave function such as logY or VY
— results in a greater amount of shrinkage of the larger responses

What else? e.g. weighted least squares (larger weight on samples with smaller

residuals)
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(d) Outliers: points at which y; is far from the value predicted by the model

[Problem] Even if an outlier does not have much effect on the least squares fit, it
can cause dramatic increase in RSE and decrease in R?

[Diagnosis] Residual plot can be one way to identify clear outliers
In practice, a plot of “studentized residuals”, i.e. €;/SE, is used

— Observations whose studentized residuals are greater than 3 in absolute value:

possible outliers
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- [Solution] Remove outliers but with a caution (might indicate a deficiency with the
model, e.g. a missing predictor)

(e) High-leverage points: unusual value for predictor x;

- [Problem] It can cause a sizable impact on the estimated regression line. For this
reason, it is important to identify high leverage observations
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- [Diagnosis] Leverage statistic is used to quantify an observation’s leverage value,
for a simple linear regression

b= 1 (x; — %)?
‘Tn Z?:l(xj — X)?

Note: % < h; <1, average leverage = pTH
- [Solution] Remove predictor x; that has significantly larger leverage than average

(f) Collinearity: Two or more predictor variables are closely related to one another

- [Problem] It can pose problems, since it is difficult to determine how each one is
separately associated with the response
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Scatter plots of predictors: not collinear (left), and highly collinear (right)
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Contours of RSS: not collinear (left), and highly collinear (right)

If predictors are highly collinear, a small change in the data could cause the least
squares estimates to move anywhere along narrow valley. This results in a great deal
of uncertainty in the coefficient estimates.

Collinearity reduces the accuracy of the estimates of the regression coefficients, it
causes the standard error for ﬁj to grow and the absolute value of the t-statistic to

decrease.

Coefficient  Std. error t-statistic p-value

Intercept —173.411 43.828 —3.957 < 0.0001

Model 1 age —2.292 0.672 —3.407 0.0007
limit 0.173 0.005 34496 < 0.0001

Intercept —377.537 45.254 —8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012

- [Diagnosis 1] Look at the correlation matrix (simple way)
— Estimated standard errors tend to underestimate the true standard errors. This
can be detected by inspection of the correlation matrix

Multicollinearity: It is possible for collinearity to exist between three or more variables
even if no pair of variables has a particularly high correlation.

- [Diagnosis 2] Compute the variance inflation factor (VIF) to assess the
multicollinearity. It is the variance of ﬁ’j when fitting the full model divided by the

variance of BJ- if fit on its own (smallest value 1, i.e. no collinearity):

1

VIF(f)) = ———
7 1-REx

where RX X_j is the R? from a regression of X; onto all of the other predictors
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R§j|X_j ~ 1 - Collinearity is present > Large VIF

- [Solution] Drop one of the problematic variables (>5 or 10) from the regression or
combine the collinear variables together into a single predictor

Tibrary(MASS) # Boston data in MASS

Im.fit = Tm(medv~., data=Boston)

install.packages('car') # "Companion to Applied Regression" package

install.packages('cellranger') #should install 'cellranger' package before
loading 'car' Tibrary

Tibrary(car)

vif(Im.fit) # compute variance inflation factor

3. K-Nearest Neighbors Regression (KNN Regression)
(a) Parametric VS Non-parametric method

Parametric method (e.g. Linear regression)

- Easy to fit, small number of coefficients, simple interpretation, need strong
assumptions, if assumptions is far from truth, poor performance

Non-parametric method (e.g. KNN regression)
- Do not need assumptions, more flexible, complex interpretation

(b) Estimation of KNN regression

Given K and a prediction point x,, identify the K training observations that are closest
to x,, represented by IV, and use the average of all the training responses in v,
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* Small K: Flexible fit Bias ‘ Variance t
* Large K: Smooth fit Biast Variance ‘

Optimal value for K depends on the bias-variance tradeoff. Recall (Class 03)

Py) . 12 N
E [(y - f) ] = [Blas(f)] + Var(f) + Var(e)
(c) Comparison of linear regression with KNN regression

Case 1) True relationship between X and Y is linear
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The parametric approach outperforms the nonparametric approach
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Case 2) True relationship between X and Y is strongly non-linear
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The nonparametric approach outperforms the parametric approach

In general, a parametric model is superior to nonparametric model if the assumptions

are valid.

(d) Curse of dimensionality (in KNN regression)
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In high-dimensional problems, a given observation x, may have no nearby neighbors
- “curse of dimensionality” (i.e. sparse coverage of the high-dimensional predictor
space by data) - leading to a poor prediction of f(x,)
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In-Class Material: Class 08
Linear Regression (ISL Chapter 3)

1. K-Nearest Neighbors Regression (KNN Regression)
(a) Parametric VS Non-parametric method

Parametric method (e.g. Linear regression)

- Easy to fit, small number of coefficients, simple interpretation, need strong
assumptions, if assumptions is far from truth, poor performance

Non-parametric method (e.g. KNN regression)
- Do not need assumptions, more flexible, complex interpretation

(b) Estimation of KNN regression

Given K and a prediction point x,, identify the K training observations that are closest
to x,, represented by NV, and use the average of all the training responses in 2V

- SmallK: Flexible fit  Bias JJ  Variance
* Large K: Smooth fit Biast Variance‘

Optimal value for K depends on the bias-variance tradeoff. Recall (Class 03)

E [(y - f)Z] = [Bias(}e)]2 + Var(f) + Var(e)
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(c) Comparison of linear regression with KNN regression

Case 1) True relationship between X and Y is linear
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The parametric approach outperforms the nonparametric approach

Case 2) True relationship between X and Y is strongly non-linear
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The nonparametric approach outperforms the parametric approach

In general, a parametric model is superior to nonparametric model if the assumptions
are valid.

install.packages('FNN') # To use 'knn.reg' in 'FNN' package
Tibrary('FNN")
Tibrary('ISLR")

Auto_s_hp = Auto[order(Auto$horsepower),] #Sort Auto dataset w.r.t.
horsepower

knn.mpg.hpl = knn.reg(train=Auto_s_hpS$horsepower, test=NULL,
y=Auto_s_hp$mpg, k=1, algorithm=c("kd_tree","cover_tree","brute"))

knn.mpg.hp9 = knn.reg(train=Auto_s_hp$horsepower, test=NULL,
y=Auto_s_hp$mpg, k=9, algorithm=c("kd_tree","cover_tree","brute"))

knn.mpg.hpl5 = knn.reg(train=Auto_s_hp$horsepower, test=NULL,
y=Auto_s_hp$mpg, k=15, algorithm=c("kd_tree","cover_tree","brute"))

plotChorsepower,mpg)

lines(Chorsepower,knn.mpg.hpl$pred, type=
Tines(horsepower,knn.mpg.hp9%pred, type=
Tines(horsepower, knn.mpg.hpl5%pred, type=

,col="blue")
,col="red")

I'II
|'Il
'1',col="green")

(d) Curse of dimensionality (in KNN regression)
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In high-dimensional problems, a given observation x, may have no nearby neighbors
- “curse of dimensionality” (i.e. sparse coverage of the high-dimensional predictor
space by data) - leading to a poor prediction of f(x,)
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