457.646 Topics in Structural Reliability In-Class Material: Class 15

※ FERUM Example (SORM)

$$g(\mathbf{x}) = 1 - \frac{m_1}{s_1 y} - \frac{m_2}{s_2 y} - \left(\frac{P}{Ay}\right)^2 \le 0$$

$$\beta_{FORM} = 2.4661$$

(Curvature fitting)

$$\kappa_i \begin{cases} -1.548 \times 10^{-1} \\ -3.997 \times 10^{-2} \\ 8.903 \times 10^{-7} \end{cases}$$

 $\beta_{SORM} = 2.3506(T), \ 2.3596(B), \ 2.341(iB)$

(Point fitting)

+ -
$$-4.0358 \times 10^{-2}$$

 $a_i \begin{cases} -6.2969 \times 10^{-2} & -4.0358 \times 10^{-2} \\ -1.1986 \times 10^{-2} & -9.7461 \times 10^{-3} \\ -1.3778 \times 10^{-1} & -1.1050 \times 10^{-1} \end{cases}$

 $\beta_{SORM} = 2.3599(T), \ 2.3693(B), \ 2.3537(iB)$

See supplement, "Importance and Sensitivity Vectors" (by A. Der Kiureghian)

→ Main reference: Bjerager & Krenk (1989)

Solution FORM importance vector $\hat{\alpha}$

FORM approximation of the limit-state function

$$G(\mathbf{u}) \cong G(\mathbf{u}^*) + \nabla G(\mathbf{u}^*)(\mathbf{u} - \mathbf{u}^*)$$

=
$$= \qquad (\beta - \hat{\alpha}\mathbf{u})$$
$$G'(\mathbf{u}) = \frac{G(\mathbf{u})^{FO}}{\|\nabla G(\mathbf{u}^*)\|} =$$

Seoul National University Dept. of Civil and Environmental Engineering

 $\begin{cases} \alpha_i & \text{positive} \implies u_i & \text{capacity or demand} \\ \\ \alpha_i & \text{negative} \implies u_i & \text{capacity or demand} \end{cases}$

Question) Importance of $u_i \stackrel{?}{=}$ Importance of X_i

- i) Independent : $u_i = \Phi^{-1} \left[F_{X_i} \left(x_i \right) \right]$ OK
- ii) Dependent: e.g., Nataf

NOT OK

$$\mathbf{u} = \mathbf{L}_{0}^{-1} \mathbf{z} = \mathbf{L}_{0}^{-1} \begin{cases} \Phi^{-1} \left[F_{X_{1}} \left(x_{1} \right) \right] \\ \vdots \\ \Phi^{-1} \left[F_{X_{n}} \left(x_{n} \right) \right] \end{cases}$$

$$\therefore \ \hat{\alpha}_i \ \text{does NOT} \left(\begin{array}{c} \text{Measure importance} \\ \text{Indicate the nature} \end{array} \right) \ \text{of} \ x_i \ \text{'s}$$

.

when X_i 's are

Instructor: Junho Song junhosong@snu.ac.kr

(Question: contribution/nature of x_i **? Not** u_i 's **)**

Transform to "normal equivalent" of x

Why?Want to keep () distributionWant to recover ()

 $\mathbf{u}^{FO}(\mathbf{x})$?

$$\begin{cases} \mathbf{u} = \mathbf{u}(\mathbf{x}^{*}) + J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^{*}) \\ \hat{\mathbf{x}} = \mathbf{x}^{*} + J_{\mathbf{u},\mathbf{x}}^{-1}(\mathbf{u} - \mathbf{u}^{*}) \end{cases}$$
(*)

Note: Jacobians evaluated at $\mathbf{x} =$

$$\hat{\mathbf{X}} \sim N(\hat{\mathbf{M}}, \hat{\boldsymbol{\Sigma}})$$

$$\begin{cases} \hat{\mathbf{M}} = \\ \hat{\boldsymbol{\Sigma}} = \end{cases}$$

Substituting (*) into $G'(\mathbf{u}) = \beta - \hat{\alpha}\mathbf{u}$,

$$G'(\mathbf{u}) = G''(\hat{\mathbf{x}}) = \beta - \hat{\alpha} [\mathbf{u}^* + J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^*)]$$
$$= \beta - \hat{\alpha} \mathbf{u}^* - \hat{\alpha} J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^*)$$
$$= -\hat{\alpha} J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}} - \mathbf{x}^*)$$

$$\sigma_{G^*}^{2} = (-\hat{\boldsymbol{\alpha}} J_{\mathbf{u},\mathbf{x}}) \hat{\boldsymbol{\Sigma}} (-J_{\mathbf{u},\mathbf{x}}^{T} \hat{\boldsymbol{\alpha}}^{T})$$

$$= \hat{\boldsymbol{\alpha}} J_{\mathbf{u},\mathbf{x}} J_{\mathbf{u},\mathbf{x}}^{-1} (J_{\mathbf{u},\mathbf{x}}^{-1})^{T} J_{\mathbf{u},\mathbf{x}}^{T} \hat{\boldsymbol{\alpha}}^{T}$$

$$= = \| \| \|^{2} = Contribution of each \hat{x}_{i} ?$$

 $\hat{\boldsymbol{\Sigma}} = \hat{\boldsymbol{D}}\hat{\boldsymbol{D}} + (\hat{\boldsymbol{\Sigma}} - \hat{\boldsymbol{D}}\hat{\boldsymbol{D}})$

diagonal off-diagonal

$$\sigma_{G}^{2} = \hat{\boldsymbol{\alpha}} J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{D}}\hat{\mathbf{D}}) J_{\mathbf{u},\mathbf{x}}{}^{T} \hat{\boldsymbol{\alpha}}^{T} + \hat{\boldsymbol{\alpha}} J_{\mathbf{u},\mathbf{x}}(\hat{\boldsymbol{\Sigma}} - \hat{\mathbf{D}}\hat{\mathbf{D}}) J_{\mathbf{u},\mathbf{x}}{}^{T} \hat{\boldsymbol{\alpha}}^{T} = 1$$

Contribution from variances $\sigma_{\hat{x}_i}^2$ Contribution from covariances $COV[\hat{x}_i, \hat{x}_j]$

Then, how about using $\hat{\alpha}J_{u,x}\hat{\mathbf{D}}$ instead of $\hat{\alpha}$?

But not normalized yet.

- i) Magnitude of $\hat{\gamma}_i^2 \rightarrow$ contribution (importance) of \hat{x}_i or x_i
- ii) Sign of $\hat{\gamma}_i \rightarrow$ nature of \hat{x}_i or x_i

Note:
$$G'(\hat{\mathbf{x}}) = -\hat{\boldsymbol{\alpha}}J_{\mathbf{u},\mathbf{x}}(\hat{\mathbf{x}}-\mathbf{x}^*)$$

- $\hat{\gamma}_i$ positive \rightarrow _____ type r.v x_i
- $\hat{\gamma}_i$ negative \rightarrow _____ type r.v x_i

Note : when x are independent, $\hat{\alpha} = \hat{\gamma}$?

$$\hat{\boldsymbol{\Sigma}} = (\boldsymbol{J}_{\mathbf{u},\mathbf{x}}^{-1})(\boldsymbol{J}_{\mathbf{u},\mathbf{x}}^{-1})^{T} = \hat{\mathbf{D}}\hat{\mathbf{D}} + (\hat{\boldsymbol{\Sigma}} - \hat{\mathbf{D}}\hat{\mathbf{D}})$$

$$\hat{\mathbf{D}} =$$

$$\hat{\boldsymbol{\gamma}} = \frac{\hat{\boldsymbol{\alpha}} \boldsymbol{J}_{\mathbf{u},\mathbf{x}} \hat{\mathbf{D}}}{\left\| \hat{\boldsymbol{\alpha}} \boldsymbol{J}_{\mathbf{u},\mathbf{x}} \hat{\mathbf{D}} \right\|} =$$

*** FERUM Example** ($\hat{\alpha}$ and $\hat{\gamma}$)

457.646 Topics in Structural Reliability In-Class Material: Class 16

- FORM importance vectors: $\hat{\alpha}$, $\hat{\gamma}$
- © Generalized Reliability Importance Measure (GRIM; Kim and Song, 2018)

See supplement "Generalized Reliability Importance Measure"

© FORM parameter sensitivities of β : $\frac{\partial \beta}{\partial \theta}$ (Bjerager & Krenk, 1989; See Supp)

$$\theta \quad \int_{\Theta_{g}} \theta \in \boldsymbol{\theta}_{g}: \quad \text{parameters in} \qquad , \quad g(\mathbf{x}; \boldsymbol{\theta}_{g})$$

$$e.g. \quad g(\mathbf{x}; \boldsymbol{\theta}_{g}) = 1 - \frac{M}{M_{u}} - \left(\frac{P}{P_{u}}\right)^{2} \le 0 \qquad \boldsymbol{\theta}_{g} = \{M_{u} \mid P_{u} \mid \boldsymbol{\theta}_{u} \in \boldsymbol{\theta}_{f}: \qquad \text{parameters in} \quad f_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}_{f})$$

$$e.g. \quad \sigma, \mu, \rho, \lambda, \xi, b$$

① Case $\theta \in \mathbf{0}_{f}$ (distribution) \mathbb{X} Derivations \rightarrow see Supplement

$$\frac{d\beta}{d\theta} = \hat{\boldsymbol{\alpha}} \frac{\partial \mathbf{u}(\mathbf{x}^*, \theta)}{\partial \theta}$$

Obtain $\hat{\alpha}$ by FORM analysis

Derive
$$\frac{\partial \mathbf{u}(\mathbf{x}, \theta)}{\partial \theta}$$
 from $\mathbf{u}(\mathbf{x}, \theta)$ and evaluate it at $\mathbf{x} = \mathbf{x}^*$
 \Rightarrow Vector version $\nabla_{\theta_f} \beta = \hat{\alpha} J_{\mathbf{u}, \theta_f}(\mathbf{x}^*, \theta_f)$
e.g. $\mathbf{x} \sim \text{ s.i. Normal}$
 $\mathbf{u} = \mathbf{L}^{-1} \mathbf{D}^{-1} (\mathbf{X} - \mathbf{M})$
 $= \mathbf{D}^{-1} (\mathbf{X} - \mathbf{M})$

 $u_1 =$, $u_2 =$...

$$\frac{\partial u_1}{\partial \sigma_1} = \qquad \qquad \therefore \frac{\partial u_1}{\partial \sigma_1} (\mathbf{x}^*) =$$

Seoul National University Dept. of Civil and Environmental Engineering

② Case $\theta \in \mathbf{\theta}_{g}$ (limit-state function)

$$\frac{d\beta}{d\theta} = \frac{1}{\left\| \nabla_{\mathbf{u}} G(\mathbf{u}^*, \theta) \right\|} \frac{\partial g(\mathbf{x}^*, \theta)}{\partial \theta}$$

\$\scale FORM \$\scale \$ derive from \$g(\mathbf{x})\$

⇒ Vector version

$$\nabla_{\boldsymbol{\theta}_{g}} \beta = \frac{1}{\left\| \nabla_{\mathbf{u}} G(\mathbf{u}^{*}, \boldsymbol{\theta}) \right\|} \nabla_{\boldsymbol{\theta}_{g}} g(\mathbf{x}^{*}, \boldsymbol{\theta}_{g})$$

e.g.

$$g(\mathbf{x}, \mathbf{\theta}_{g}) = 1 - \underbrace{\frac{M}{M_{u}}}_{\theta_{g}} - (\frac{P}{P_{u}})^{2} \leq 0$$
$$\frac{\partial g}{\partial \theta} = \qquad \qquad \therefore \frac{\partial g}{\partial \theta}(\mathbf{x}^{*}) =$$

)

Parameter Sensitivities of failure probability 0

$$P_f: \frac{\partial P_f}{\partial \theta}$$
 ?

Recall
$$P_f = \Phi($$
$$\frac{dP_f}{dP_f} = 0$$

$$\frac{1}{d\theta}$$

Vector version:

$$\nabla_{\theta} P_f = -\phi(-\beta)\nabla_{\theta}\beta$$

Parameter sensitivities w.r.t. alternative parameters

$$\begin{split} \boldsymbol{\theta}_{f} &= \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\lambda}, \boldsymbol{\xi} & \boldsymbol{\mu}, \boldsymbol{\sigma} \\ \boldsymbol{\lambda}, \boldsymbol{\xi} & \boldsymbol{\mu}, \boldsymbol{\sigma} \\ \boldsymbol{\theta}_{f} & \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\theta}_{f} & \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\nabla}_{\boldsymbol{\theta}_{f}}, \boldsymbol{\beta} &= \nabla_{\boldsymbol{\theta}_{f}} \boldsymbol{\beta} \cdot \end{split}$$

$$\boldsymbol{e.g.} \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\xi} \end{bmatrix} = \begin{bmatrix} \ln \boldsymbol{\mu} - 0.5 \ln[1 + (\frac{\boldsymbol{\sigma}}{\boldsymbol{\mu}})^{2}] \\ \sqrt{\ln[1 + (\frac{\boldsymbol{\sigma}}{\boldsymbol{\mu}})^{2}]} \\ \boldsymbol{\theta}_{f} & \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\theta}_{f} & \boldsymbol{\theta}_{f} \left(\boldsymbol{\theta}_{f} \right) \\ \boldsymbol{\mu}, \boldsymbol{\sigma} \end{split}$$

% FERUM Input File for CRC CH14 Example (with Parameter)

```
clear probdata femodel analysisopt gfundata randomfield systems results
output filename
output filename = 'output Ch14 Example param.txt';
probdata.marg(1,:) = [1]
                         2.5e5 2.5e5*0.3
                                            2.5e5 0 0 0 0 0];
probdata.correlation = [1.0 \ 0.5 \ 0.3 \ 0.0;
                   0.5 1.0 0.3 0.0;
                   0.3 0.3 1.0 0.0;
                   0.0 \ 0.0 \ 0.0 \ 1.0];
probdata.parameter = distribution parameter(probdata.marg);
                  = 100;
analysisopt.ig max
                   = 5;
analysisopt.il max
                   = 0.001;
analysisopt.e1
                  = 0.001;
analysisopt.e2
analysisopt.step code = 0;
analysisopt.grad flag = 'DDM';
analysisopt.sim_point = 'dspt';
analysisopt.stdv sim = 1;
analysisopt.num_sim = 100000;
analysisopt.target cov = 0.05;
gfundata(1).evaluator = 'basic';
gfundata(1).type = 'expression';
gfundata(1).parameter = 'yes'; % "We have a parameter in the limit-state
function"
gfundata(1).thetag = [0.03]; % default value of S1
gfundata(1).expression = '1-x(1)/gfundata(1).thetag(1)/x(4)-
x(2)/0.015/x(4) - (x(3)/0.190/x(4))^{2'};
gfundata(1).dgdq = \{ '-1/gfundata(1).thetag(1)/x(4)' ;
                 '-1/0.015/x(4)';
                 '-2*x(3)/0.190^2/x(4)^2';
x(1)/qfundata(1).thetaq(1)/x(4)^{2+x(2)}/0.015/x(4)^{2+2*x(3)}/2/0.190^{2}/x(4)
)^3'};
gfundata(1).dgthetag = {'x(1)/x(4)/gfundata(1).thetag(1)^2'; %
Derivative w.r.t. S1
femodel = 0;
randomfield.mesh = 0;
```

Importance Vectors Using Parameter Sensitivities

 $\Rightarrow~$ Use $~\nabla_M\beta~$ and $~\nabla_D\beta~$ to quantify importance of random variables?

$$\frac{\partial \beta}{\partial \mu_1} \gg \frac{\partial \beta}{\partial \mu_2} \rightarrow$$
 more to than

(1) Importance vector $\boldsymbol{\delta}$

$$\boldsymbol{\delta} = \nabla_{\mathbf{M}} \boldsymbol{\beta} \cdot \mathbf{D}$$
$$= \begin{bmatrix} \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\mu}_{1}} \cdot & , \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\mu}_{2}} \cdot & \cdots , \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\mu}_{n}} \cdot \end{bmatrix}$$

Why?

- X_i 's Can have different units & dimensions (therefore μ_i 's) \Rightarrow make it dimensionless
- Assume variations in $\mu_i \propto$
- Change in β when μ_i change by
- 2 Importance vector η

$$\mathbf{\eta} = \nabla_{\mathbf{D}} \boldsymbol{\beta} \cdot \mathbf{D}$$
$$= \begin{bmatrix} \frac{\partial \boldsymbol{\beta}}{\partial \sigma_1} \cdot &, \frac{\partial \boldsymbol{\beta}}{\partial \sigma_2} \cdot &, \cdots, & \frac{\partial \boldsymbol{\beta}}{\partial \sigma_n} \end{bmatrix}$$

Change in $\beta \,$ when $\, \sigma_{_{\it i}} \,$ change by

 \bigcirc Upgrade worth I_{θ}

$$\mathbf{I}_{\boldsymbol{\theta}} = -\nabla_{\boldsymbol{\theta}} P_{f} \mathbf{D}_{\boldsymbol{\theta}}$$
$$= \begin{bmatrix} -\frac{\partial P_{f}}{\partial \theta_{1}} & \cdots, & -\frac{\partial P_{f}}{\partial \theta_{n}} \end{bmatrix}$$

- Der Kiureghian, Ditlevsen & Song (2007)
- Song & Kang (2009)

Change in θ_i that can be achieved by unit _____

Ise of sensitivity / Importance Vectors

$$(\nabla_{\theta}\beta)$$
 $(\hat{\alpha},\hat{\gamma}\delta \mathbf{q})$

- ① To identify important rv's
- (2) To update β for small increment

$$\beta_{new} \cong \beta_{old} + \sum_{i} \frac{\partial \beta}{\partial \theta_{i}} \cdot \Delta \theta_{i}$$

③ Reliability Based Design Optimization

$$\Rightarrow \frac{\partial \beta}{\partial \theta}$$
 needed to facilitate the use of ()-based optimizers

④ To compute PDF of a function $y(\mathbf{x})$

$$F_{Y}(\theta) = P(Y(\mathbf{x}) \le \theta)$$

= $P(Y(\mathbf{x}) - \theta \le 0)$ here consider $Y(\mathbf{x}) - \theta$ as the limit state function $g(\mathbf{x}, \theta)$
 $\simeq \Phi(-\beta(\theta))$

$$f_{Y}(\theta) = \frac{dF_{y}(\theta)}{d\theta} = -\varphi(-\beta(\theta))\frac{d\beta}{d\theta}$$

⑤ To help gain insight of the reliability problem

457.646 Topics in Structural Reliability

IV. System Reliability

Junho Song

Professor Department of Civil and Environmental Engineering Seoul National University

System reliability?

austin houst	on
san O antonio	
Contraction	arch.com

Failure event	E_{sys}	
Abnormal flight (engine)	$E_1 \cup E_2$	
Emergency	$E_1 E_2$	$P(E_{sys})$?
Landing at nearby airport	$E_1\overline{E}_2 igcup \overline{E}_1E_2$	

System reliability in structural engineering

$$\begin{split} E_{system} &= E_1 E_2 \bigcup E_4 E_5 \bigcup E_4 E_7 \bigcup E_4 E_9 \bigcup E_5 E_6 \bigcup \\ E_6 E_7 \bigcup E_6 E_9 \bigcup E_5 E_8 \bigcup E_7 E_8 \bigcup E_8 E_9 \bigcup \\ E_{11} E_{12} \bigcup E_1 E_3 E_5 \bigcup E_1 E_3 E_7 \bigcup E_1 E_3 E_9 \bigcup \\ E_2 E_3 E_4 \bigcup E_2 E_3 E_6 \bigcup E_2 E_3 E_8 \bigcup E_4 E_{10} E_{12} \bigcup \\ E_6 E_{10} E_{12} \bigcup E_8 E_{10} E_{12} \bigcup E_5 E_{10} E_{11} \bigcup E_7 E_{10} E_{11} \bigcup \\ E_9 E_{10} E_{11} \bigcup E_1 E_3 E_{10} E_{12} \bigcup E_2 E_3 E_{10} E_{11} \end{split}$$

$$L_{system} = f(\mathbf{D}, \boldsymbol{\Theta})$$

$$E[L_{system}] \cong f(E[\mathbf{D}], E[\boldsymbol{\Theta}])$$

$$Var[L_{system}] \cong \nabla f^{T} \boldsymbol{\Sigma} \nabla f$$

$$P(L_{system} \ge c) \cong 1 - \Phi\left(\frac{c - E[L_{system}]}{\sqrt{Var[L_{system}]}}\right)$$

Outline

- I. System reliability: definitions, existing methods and challenges
- II. Bounds of system reliability by linear programming ('LP bounds')
- III. Matrix-based system reliability (MSR) method

I. System Reliability:

- definitions, existing methods and challenges

Definition of system: (1) series system

System fails if any of its component events occur

$$E_{\text{system}} = \bigcup_{i=1}^{n} E_i$$

- Systems with no redundancy
- Examples: 1) statically determinate structure

2) electrical substation with single-transmission-line

Song, J., and A. Der Kiureghian (2003, ICASP9)

Song, J., and A. Der Kiureghian (2003, JEM ASCE)

Definition of system: (2) parallel system

System fails only if every component event occurs

$$E_{\text{system}} = \bigcap_{i=1}^{n} E_{i}$$

- Systems with maximum redundancy
- > Examples: 1) a bunch of wires or cables.

2) electrical substation with equipment items in parallel.

Definition of system: (3) general system

System that is *neither series or parallel* system

- 1) Cut-set system:
 - a series system of sub-parallel systems
- 2) Link-set system:
 - a parallel system of sub-series systems

* Component failure events and failure paths

$$E_{\text{system}} = \bigcup_{k=1}^{K} C_k = \bigcup_{k=1}^{K} \bigcap_{i \in C_k} E_i$$

$$E_{\text{system}} = \bigcap_{l=1}^{L} L_l = \bigcap_{l=1}^{L} \bigcup_{i \in L_l} E_i$$

(3) General system (contd.)

Example: electrical substations (cut-set systems)

 $P(E_{system}) =$ $P[E_1 \cup (E_2 E_3 \cdots E_{k+1}) \cup E_{k+2} \cup E_{k+3} \cup E_{k+4}]$

* 5 cut sets, k+4 components

Song, J., and A. Der Kiureghian (2003, ICASP9)

$$\begin{split} P(E_{system}) &= \\ P(E_{1}E_{2} \bigcup E_{4}E_{5} \bigcup E_{4}E_{7} \bigcup E_{4}E_{9} \bigcup E_{5}E_{6} \bigcup E_{6}E_{7} \bigcup \\ E_{6}E_{9} \bigcup E_{5}E_{8} \bigcup E_{7}E_{8} \bigcup E_{8}E_{9} \bigcup E_{11}E_{12} \bigcup \\ E_{1}E_{3}E_{5} \bigcup E_{1}E_{3}E_{7} \bigcup E_{1}E_{3}E_{9} \bigcup E_{2}E_{3}E_{4} \bigcup \\ E_{2}E_{3}E_{6} \bigcup E_{2}E_{3}E_{8} \bigcup E_{4}E_{10}E_{12} \bigcup E_{6}E_{10}E_{12} \bigcup \\ E_{8}E_{10}E_{12} \bigcup E_{5}E_{10}E_{11} \bigcup E_{7}E_{10}E_{11} \bigcup E_{9}E_{10}E_{11} \bigcup \\ E_{1}E_{3}E_{10}E_{12} \bigcup E_{2}E_{3}E_{10}E_{11}) \end{split}$$

* 25 cut sets, 12 components

"component" reliability vs "system" reliability

► Component reliability analysis: $P(E_i) = P(g_i(\mathbf{X}) \le 0) = \int_{g(\mathbf{X}) \le 0} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$

- 1) FORM/SORM
- 2) Response surface method
- 3) Monte Carlo simulations
- 4) Importance samplings

- 1) Complexity
- 2) Dependence between component events
- 3) Lack of information
- synthesize components reliabilities or perform simulations

Existing methods: (1) inclusion-exclusion formula

* Series system

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(E_{i}E_{j}) + \dots + (-1)^{n-1} P(E_{1}E_{2} \cdots E_{n})$$

* Parallel system

$$P\left(\bigcap_{i=1}^{n} E_{i}\right) = 1 - P\left(\bigcup_{i=1}^{n} \overline{E}_{i}\right) = 1 - \sum_{i=1}^{n} P(\overline{E}_{i}) + \cdots$$

* Cut-set system

$$P\left(\bigcup_{i=1}^{n} C_{i}\right) = \sum_{i=1}^{n} P(C_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(C_{i}C_{j}) + \dots + (-1)^{n-1} P(C_{1}C_{2} \cdots C_{n})$$

> the number of terms increase exponentially; $2^n - 1$

- ▶ requires all the joint probabilities: $P(E_i)$, $P(E_iE_j)$, $P(E_iE_jE_k)$, ...
- > useful only if component events are statistically independent: $P(E_iE_j) = P(E_i)P(E_j)$ ~ need marginal probabilities only

** Dependence and system reliability

> A parallel system with 1~10 components with $P(E_i) = 0.01$

~ e.g. n=5: 10^{-10} (independent) ~ 10^{-2} (perfectly dependent)

Existing methods: (2) simulations

$$P(E_{\text{system}}) = \int_{D} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
$$\cong \frac{\#(\mathbf{x} \in D)}{\#(\mathbf{x})}$$

~ Count the number of samples in the system failure domain and estimate the ratio.

- > Monte Carlo simulations, importance sampling, directional sampling, etc.
- > Independent random variables: easily generated.
- Dependent random variables: need joint probability density function ~ not available in many cases.
- > Independence assumption will lead to errors in estimating system reliability

Existing methods: (3) bounding formulas

It is desirable to derive **bounds** on system probability which involve low-order component probabilities:

✓ Uni-component probabilities: $P(E_i) = P_i$ ✓ Bi-component probabilities: $P(E_iE_j) = P_{ij}$ ✓ Tri-component probabilities: $P(E_iE_jE_k) = P_{ijk}$

Series System

- 1) Uni-component bounds (Boole 1854; Fréchet 1953) $\max_{i} P_i \leq P\left(\bigcup_{i=1}^{n} E_i\right) \leq \min\left(1, \sum_{i=1}^{n} P_i\right)$
- 2) Bi-component bounds (Kounias 1968; Hunter 1976; Ditlevsen 1979)

$$P_1 + \sum_{i=2}^n \max\left(0, P_i - \sum_{j=1}^{i-1} P_{ij}\right) \le P\left(\bigcup_{i=1}^n E_i\right) \le P_1 + \sum_{i=2}^n (P_i - \max_{j < i} P_{ij})$$

3) Tri-component bounds (Hohenbichler & Rackwitz 1983; Zhang 1993)

$$P_{1} + P_{2} - P_{12} + \sum_{i=3}^{n} \max\left(0, P_{i} - \sum_{j=1}^{i-1} P_{ij} + \max_{\substack{k \in \{1, 2, \dots, i-1\} \\ j \neq k}} \sum_{\substack{j=1 \\ j \neq k}}^{i-1} P_{ijk}\right) \le P\left(\bigcup_{\substack{k=1 \\ k=1}}^{n} E_{k}\right) \le P_{1} + P_{2} - P_{12} + \sum_{i=3}^{n} \left[P_{i} - \max_{\substack{k \in \{2, 3, \dots, i-1\} \\ j < k}} \left(P_{ik} + P_{ij} - P_{ijk}\right)\right]$$

Existing method: (3) bounding formulas (contd.)

Parallel System

- Uni-component bounds (Boole 1854; Fréchet 1953)

$$\max\left(0, \sum_{i=1}^{n} P_i - (n-1)\right) \le P\left(\bigcap_{i=1}^{n} E_i\right) \le \min_i P_i$$

- No higher-order bounds available.
- **Note:** De Morgan's rule can be used to convert a parallel system to a series system, allowing use of bi- and tri-component bounding formulas for series systems.

General System

- No bounding formulas exist.

Existing methods: (4) FORM approximation

- For parallel and series system
- Find the corresponding volume in standard normal space based on FORM analyses of component events
- > Errors depend on the level of nonlinearity and complexity of domain.

System reliability: challenges

Complexity of system problems

- large number of components, component states, cut sets, link sets, etc.
- difficulty in identifying cut sets or link sets
- computational challenges (speed and memory)
- Dependence between component states
 - "environmental dependence" or "common source effect"
 - members and materials by the same manufacturer or supplier
 - analysis as "independent components" is simple, but may be misleading.
- Diversity/Lack of available information on components
 - missing information
 - various types of information
 - should be flexible in obtaining information

II. Bounds on System Reliability by Linear Programming ('LP Bounds')

Bounds by linear programming (LP)

Probabilities of basic MECE events: $p_i \equiv P(e_i)$

$$P_i \equiv P(e_i), i = 1, 2, ..., 2^n$$

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. *Journal of Engineering Mechanics*, ASCE, 129(6): 627-636.

Merits of LP approach

- \checkmark Bounds for general systems.
- \checkmark Any type of information on component probabilities can be used.
 - Equality: $P_{ij} = 0.02$
 - Inequality: $P_{ij} \le 0.01, \ 0.05 \le P_i \le 0.07, P_3 \le P_2$
 - Partial: $P_1 = 0.01$, $P_2 = ?$, $P_3 = 0.03$
- Finds the *narrowest* possible bounds for the given information.
 (This is not guaranteed for existing formulas for series systems involving bi- or higher-order component probabilities.)
- Can be used to compute importance and sensitivity measures, and updated system reliability.

Application to structural system reliability

Statically determinate truss (series system)

1.

2.

3.

Daniels' parallel system

Cantilever beam – bar (general system)

10

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. *Journal of Engineering Mechanics*, ASCE, 129(6): 627-636.

Load, L

6

Application to electrical substation systems

• Component failure event, E_i

\mathcal{T}		$E_i = \{ \ln R_i -$	$-\ln A - \ln S_i \leq 0$	$\}, i = 1,, n$
──── <u></u> ─── <u></u>		ι ι	·	-
(1) DS_1 (4) CB_1 (6) DT_1 (8) DB_1	(11) FB ₁	A = LN(mear)	n=0.15, c.o.v.=0.5)	PGA
$\langle (3) DS_3 \rangle$	↓ ¥ (10) TB	$S_i = LN$ (mear	n=1, c.o.v.=0.2) loc	cal site effect
		$R_i = LN(mea$	n,c.o.v.,corr.) equij	pment capacity
		DS: Disconn	ect Switch (0.4, 0.	.3, 0.3)
(2) DS_2 (5) CB_2 (9) DB_2	(12) FB ₂	CB: Circuit E	Breaker (0.3, 0.3, 0).3)
$(7) PI_2$		PT: Power T	ransformer (0.5, 0	.5, 0.5)
Two-transmission-line subst	tations	DB: Drawou	t Breaker (0.4, 0.3	, 0.3)
		TB: Tie Brea	ker (1.0, 0.3, 0.3)	
		FB: Feeder I	Breaker (1.0, 0.3, 0	0.3)
Case	Uni-comp.	FB: Feeder I Bi-comp.	Breaker (1.0, 0.3, (Tri-comp.	0.3) M.C. δ=0.01
Case As shown in figure	Uni-comp. 1.13x10 ⁻¹² ~0.202	FB: Feeder I Bi-comp. 0.0436~0.146	Breaker (1.0, 0.3, 0 Tri-comp. 0.0616~0.0942	0.3) M.C. δ=0.01 0.0752
Case As shown in figure o information available on TB (E_{10})	Uni-comp. 1.13x10 ⁻¹² ~0.202 1.82x10 ⁻¹¹ ~0.202	FB: Feeder I Bi-comp. 0.0436~0.146 0.0436~0.146	Breaker (1.0, 0.3, 0 Tri-comp. 0.0616~0.0942 0.0615~0.0943	0.3) M.C. δ=0.01 0.0752 N/A
Case As shown in figure information available on TB (E_{10}) information available on CB ₁ (E_4)	Uni-comp. 1.13x10 ⁻¹² ~0.202 1.82x10 ⁻¹¹ ~0.202 1.26x10 ⁻⁹ ~0.202	FB: Feeder I Bi-comp. 0.0436~0.146 0.0436~0.146 0.0267~0.147	Breaker (1.0, 0.3, 0 Tri-comp. 0.0616~0.0942 0.0615~0.0943 0.0395~0.1360	0.3) M.C. δ=0.01 0.0752 N/A N/A
-	(1) DS_1 (4) CB_1 (6) PT_1 (8) DB_1 (3) DS_3 (2) DS_2 (5) CB_2 (7) PT_2 (9) DB_2 Two-transmission-line subst	(1) DS_1 (4) CB_1 (6) PT_1 (8) DB_1 (11) FB_1 (3) DS_3 (10) TB (2) DS_2 (5) CB_2 (7) PT_2 (9) DB_2 (12) FB_2 Two-transmission-line substations	$(1) DS_{1} (4) CB_{1} (6) PT_{1} (8) DB_{1} (11) FB_{1} (10) TB (10) TB (10) TB (12) FB_{2} (2) DS_{2} (5) CB_{2} (7) PT_{2} (9) DB_{2} (12) FB_{2} $	$(1) DS_{1} (4) CB_{1} (6) PT_{1} (8) DB_{1} (11) FB_{1} (10) TB (10)$

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming and applications to electrical substations. *Proc. of ICASP9*, San Francisco, USA, July 6-9.

Multi-scale system reliability analysis

System of four electrical substations

 $(n = 59: 5.76 \times 10^{17} \text{ design variables})$

System decomposition

- consider a subset of the components of a system as "super-components"
- bounds on marginal and joint probabilities of the super-components are computed by LP approach
- the computed bounds are used as constraints in solving the LP problem for the entire system
- reduced to 35 LP problems, the largest of which has $2^{15} = 32,768$ variables
- multi-scale system modeling
 - helps the analyst see the "big picture," while not disregarding system details
 - particularly effective when many similar subsystems exist
 - allows different teams of analysts to work on different subsystems (parallel computing)

System reliability updating

In the analysis of system reliability, it is often of interest to compute the conditional probability of a system or subsystem event, given that another system or subsystem event is known or presumed to have occurred.

★ Examples:
$$P(E_i | E_{system})$$
, $P(E_i | \overline{E}_{system})$, etc.
 $P(B | A) = \frac{P(AB)}{P(A)} = \frac{\sum_{r \in AB} p_r}{\sum_{r \in A} p_r}$ ~ Nonlinear function of **p**'s

The bounds on the conditional probabilities can be obtained after a few iterations of a parameterized LP problem (Dinkelbach 1967).

* Der Kiureghian, A. and J. Song (2008). Multi-scale reliability analysis and updating of complex systems by use of linear programming. *Journal of Reliability Engineering & System Safety*, 93(2): 288-297.

System reliability updating (contd.)

Updated failure probabilities of equipment items in Substation 4

Туре	Equipment No.	$P(E_i)$		$P(E_i \mid E_{sys})$	$P(E_i \mid \overline{E}_{sys})$
DS	56, 58, 62, 64	0.00371		0.243 ~ 0.375	0.000431 ~ 0.00125
	59, 61, 65, 67	0.00371		0.175 ~ 0.372	0.000431 ~ 0.00182
	68	0.00371	ļ	0.331 ~ 0.468	0
CB	57, 63	0.00953		0.506 ~ 0.660	0.00345 ~ 0.00458
	60, 66	0.00953		0.338 ~ 0.623	0.00357 ~ 0.00613
PT	69	0.00232		0.206 ~ 0.292	. 0

Identification of critical components and cut sets

- LP approach can identify components and cut sets which make significant contributions to the system failure probability by iteratively solving parameterized LP's.
- Importance Measures (IM)

quantifies participation in system failure probability

- Fussell-Vesely:
- Risk Achievement Worth:
- Risk Reduction Worth:
- Boundary Probability:
- Fussell-Vesely Cutset IM:

$$FV_{i} = P(\bigcup_{k:E_{i} \subseteq C_{k}} C_{k}) / P(E_{system})$$
$$RAW_{i} = P(E_{system}^{(i)}) / P(E_{system})$$

$$RRW_i = P(E_{system}) / P(E_{system}^{(i)})$$

$$BP_i = P(E_{system}^{(i)}) - P(E_{system}^{(i)})$$

$$FVC_k = P(C_k) / P(E_{system})$$

Identification of critical components and cut sets (contd.)

* Song, J. and A. Der Kiureghian. Component importance measures by linear programming bounds on system reliability. *Proc. of ICOSSAR9*, Rome, Italy, June 19-23.

Sensitivity and optimal upgrade

General-purpose LP algorithms provide the sensitivity of an optimal solution with respect to the values in the right-hand side vector, b.

> Optimal upgrade of system reliability within the limit of upgrade cost (*in progress*)

 $\begin{array}{ll} \min_{\mathbf{x}} \max_{\mathbf{p}} & \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{x}) \\ \text{subject to} & \mathbf{a}_{1} \mathbf{p} = \mathbf{b}_{1}(\mathbf{x}), & \mathbf{a}_{2} \mathbf{p} \ge \mathbf{b}_{2}(\mathbf{x}) \\ & \mathbf{Q} \mathbf{x} \le \mathbf{q}, & \mathbf{m}^{\mathrm{T}} \mathbf{x} \le m_{c} \\ & \mathbf{x} : \text{binary integers} \end{array}$

- ~ minimize the upper bound of P_{sys}
- ~ component failure probabilities: f(actions)
- ~ constraints on the actions (workability, cost)
- ~ indicators for upgrade actions (1: yes, 0: no)

LP Bounds approach and decision-making

457.646 Topics in Structural Reliability In-Class Material: Class 16

General system by cut set formulation

3

Link set: a subset of components whose joint () assures () of the system

}

 $L = \{$

② "Minimum" link sets ~ link sets with no r_____ component

 $L_{\min} = \{ \}$

③ "Disjoint" Link set

$$L_{disj} = \{ \}$$

$$\star (\overline{E}_{sys}) = \bigcup_{k=1}^{Nlink} L_k \qquad = \bigcup_{k=1}^{Nlink} \bigcap_{i=L_k} \overline{E}_i$$

De morgan's law

$$\therefore E_{sys} = \bigcap_{k=1}^{Nlink} \left(\bigcup_{i=L_k} \right)$$