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457.646 Topics in Structural Reliability

In-Class Material: Class 15

3 FERUM Example (SORM)

2
g =1-M_Me [P g
sy Sy Ay

Brogy = 2.4661

(Curvature fitting)

-1.548x10™

K, 1-3.997x107 I
' i En, T8

8.903x107
/ \

Bsorw = 2.3506(T), 2.3596(B), 2.341(iB)
P, > P,

(Point fitting) Bsorm < Prorm
+

—6.2969x1072 —-4.0358x107
~1.1986x107 -9.7461x10°®
-1.3778x107* -1.1050x107*

a.

Bsorm = 2.3599(T), 2.3693(B), 2.3537(iB)

See supplement, “Importance and Sensitivity Vectors” (by A. Der Kiureghian)

= Main reference: Bjerager & Krenk (1989)

FORM importance vector @

FORM approximation of the limit-state function

G(u)=G(u")+VG(u")(u-u’)

- (B~du)

(2 BW™
S e
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Note oo?=( )E( )

Contribution (percentage) of U,
to the total (variability)

of the limit-state function G'(u)

@ of aiz = measure of relative importance (contribution to the uncertainty) of
u,’s
@ of @, = nature of U,’s e.g., g(X)=R-S
G'(u)=p-au=p-

«; positive = u, capacity or demand

a, nhegative = U; capacity or demand

?
Question) Importance of u; = Importance of X,
i ) Independent : u, :CD’l[FXi (%, )J OK

ii) Dependent: e.g., Nataf NOT OK

. a, does NOT Measure importance | of X's

Indicate the nature

when X,’s are
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Form importance vector ¥ (Question: contribution/nature of x,? Not u,'s)

G(u) =0

\ % = x"%(u): linearized function

Transform to “normal equivalent” of x

Why? Want to keep ( ) distribution

Want to recover ( )
u(x)?
u= u(x)+J, (X-x) §
. o g *)
X= x+J(u-u)
Note: Jacobians evaluated at x =
X ~N(M,X)

> Z)
Il

|

Substituting (*) into  G'(u) =p—au,
G'(u)=G"(X) =Bp—a[u” +J,,(X—x)]
=p-au —aJ,, (X-x)

=-aJ,, (X=X
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65" = (=63, )2(=J,, ")
=6J,, 3., (0,3, e

u,x = ux

= =| I =
£- DD+ (£-DD)
diagonal off-diagonal

ol.= &), (DD)J,a" +

Instructor: Junho Song
junhosong@snu.ac.kr

Contribution of each X; ?

al,, (X-DD)J,,"a" =1

Contribution from variances afi Contribution from covariances COV[X;, X;]

Then, how about using &JU’X[A) instead of @?

But not normalized yet.

Y=

i ) Magnitude of i/iz — contribution (importance) of X, or X

ii) Sign of ¥, —nature of X, or X

Note : G'(X) =—6J, ,(X—X)

typer.v X

Y, positive —

¥; negative —

typer.v X

Note : when x are independent, a=7?

2=, )0, ") =DD+(:-DD)

D=

alJ,,D

- Jw.,0] )

% FERUM Example (¢ and §)
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FORM importance vectors: a, y

Generalized Reliability Importance Measure (GRIM; Kim and Song, 2018)

See supplement “Generalized Reliability Importance Measure”

B

FORM parameter sensitivities of f3: %

(Bjerager & Krenk, 1989; See Supp)

6 £ 0€0,: parametersin , 9(x;0,)
M (PY
e.g. g(x;eg):l—M—u—(Fuj <0 0,={M, P,
-0e€0,: parameters in f, (x;0,)

eg. o,u,p, A E D

@ Case 0e0, (distribution) 3% Derivations — see Supplement

dap i ou(x’,0)
do 09

Obtain a by FORM analysis

ou(

Derive 8—29) from u(x,0) and evaluate it at x=Xx"

= Vector version V, B=aJ,, (X ,0;)

e.g. X~ s.i. Normal
u=L"D"(X-M)
=D(X-M)

ul= , u2 =
ou,

o _ 2O ey
0o, 0o,


file:///C:/Users/Choi/Documents/junhosong@snu.ac.kr

Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

@ Case 6<0, (limit-state function)

dp _ 1 og(x’,0)
do [v.ew o) o6

. FORM \ derive from g(x)

= Vector version

1 .
V., =——V X,0
GQB ‘VUG(U*'B)H (-)gg( g)
e.g.
M P
9(x,0,) =1-2t— (=) <
(MR,
99
0 o9, .
a_ =B )=
00 00

oP
Parameter Sensitivities of failure probability P, :a—ef ?

Recall P, = ®( )

dP,
do

Vector version:

VoPr =~ 0(-B)V,p

Parameter sensitivities w.r.t. alternative parameters

ef :ef(ef')

— O- —
x In z—0.5In[1+ (=)*
2 Lo 3 u [ (u)]

Q/In[1+(5)2]
L H _

ef 9f(ef)
-—

W, o
Vef.B:VefB'
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% FERUM Input File for CRC CH14 Example (with Parameter)

clear probdata femodel analysisopt gfundata randomfield systems results
output filename

output filename = 'output Chl4 Example param.txt';

2.5e5 2.5e5*0.3 2.5e5 0 0 0 0 01;

probdata.marg 1
1 1.25e5 1.25e5*0.3 1.25¢5 0 0 0 0 01;
5
6

(1
probdata.marg (2, :

(3 2.5e6 2.5e6*0.2 2.5¢e6 0 0 0 0 0];

(4 4.0e7 4.0e7%0.1 4.0e7 0 0 0 0 077

probdata.marg
probdata.marg

—_——— —
| ([l
—_———

probdata.correlation = [

or oo

oo w

~ooo

coow
~

O w o o
N,
~.

probdata.parameter = distribution parameter (probdata.marg);

analysisopt.ig max = 100;
analysisopt.il max = 5;
analysisopt.el = 0.001;
analysisopt.e2 = 0.001;
analysisopt.step code = 0;
analysisopt.grad flag = 'DDM';
analysisopt.sim point = 'dspt';

analysisopt.stdv_sim = 1;
analysisopt.num sim = 100000;
analysisopt.target cov = 0.05;

1
1

gfundata(l) .evaluator = 'basic';

gfundata(l) .type = 'expression';

gfundata(l) .parameter = 'yes'; % "We have a parameter in the limit-state
function"

gfundata(l) .thetag = [0.03]; % default value of Sl
gfundata (1) .expression = 'l-x(1)/gfundata (1) .thetag(l)/x(4)-

x(2)/0.015/x(4)-(x(3)/0.190/x(4))"2";

gfundata(l) .dgdg = { '-1/gfundata(l).thetag(l)/x(4)" ;
'-1/0.015/x(4) ';
'-2*x(3)/0.190"2/x(4)"2";

'x (1) /gfundata (1) .thetag (1) /x(4)"2+x(2)/0.015/x(4)"2+2*x(3)"2/0.190"2/x (4
)~3'};

gfundata (1) .dgthetag = {'x(1)/x(4)/gfundata (1) .thetag(l)"2"}; %
Derivative w.r.t. S1

femodel = 0;
randomfield.mesh = 0;
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Importance Vectors Using Parameter Sensitivities

= Use VB and VB to quantify importance of random variables?

%»% — more to than
O O,
@ Importance vector &
0=V,B-D
_{@. BB
oy , OH, ’ ou,

Why?

+ X;'s Can have different units & dimensions (therefore p,'s) = make it

dimensionless

* Assume variations in p; oc
+ Changein B when g change by

@ Importance vector 1

n=V,5-D
(B B B
0o, ' 0o, " 0o,

Changein B when o; change by

@ Upgrade worth 1,

l,=—V,P.D,
[ ep oP,
| o8, 00,

- Der Kiureghian, Ditlevsen & Song (2007)

- Song & Kang (2009)

D,=| Af
N

Change in 6; that can be
achieved by unit
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Use of sensitivity / Importance Vectors

(VoB) (@yon

@ To identify important rv’s

@ To update B for small increment
P
= + > —- A6,
Bnew Bold Z 89, i
@ Reliability Based Design Optimization

= % needed to facilitate the use of ( )-based optimizers

@ To compute PDF of a function y(x)

R (0) =P(Y(x)<0)
=P(Y(X)—6<0) here consider Y(x)-0 as the limit state function g(x,0)
= ®(-B(0))
dF, (6
(0= gpon P

® To help gain insight of the reliability problem
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System reliability?

austin
houston

san
antonio

Failure event Eys
Abnormal flight (engine) E UE,
Emergency EE,
Landing at nearby airport E.E,UEE,

> P(Esys)?




System reliability in structural engineering

«—}L‘%-—G § g 0 H—
) E:/ §C81 &P, (8) DB, a (11) FB,
) DS, (10)TB
« 0 Q 5>
@Ds, (5)CB, (?) o, (9) DB, (12) FB,

Eqsen = EiE, UE,E; UE,E, UE,E, UE,E, U
E.E, UE,E, UE.E, UE,E, UE,E, U
E11E12 U E1E3E5 U E1E3E7 U@ U
E2 E3E4 U E2 E3E6 U EZ E3E8 U E4E10E12 U
EG E10E12 U EB E10E12 U ES ElOEll U E7 ElOEll U
E9 ElOEll U E1E3 E10E12 U E2 E3 E10E11

Esystem = (El ﬂ EZ)U(E3 ﬂ E4)U(E3 ﬂ ES)

p://nees.uiuc.edu

= f(D,®)
1= f(E[D]. E[@)
]= Vi Tzvf

c— E[ Lsystem]
Var[L,

system ]

Lsystem

E[L

system

Var[L,

system

P(Lyen > €) 21— cp[




Outline

I. System reliability: definitions, existing methods and
challenges

II. Bounds of system reliability by linear programming
(‘LP bounds’)

ITII. Matrix-based system reliability (MSR) method



I. System Reliability:

- definitions, existing methods and challenges



Definition of system: (1) series system

» System fails if any of its component events occur

Esystem = g Ei

» Systems with no redundancy
» Examples: 1) statically determinate structure

2) electrical substation with single-transmission-line

©)
3¢ —n I SR
© @ O @
DS CB PT DB FB
RuS)  RyS)  (ReSy)  (R,S) (Rs:S5)
@ | @ =

Song, J., and A. Der Kiureghian (2003, JEM ASCE) Song, J., and A. Der Kiureghian (2003, ICASP9)



Definition of system: (2) parallel system

» System fails only if every component event occurs

Esystem = Q Ei

» Systems with maximum redundancy
» Examples: 1) a bunch of wires or cables.

2) electrical substation with equipment items in parallel.

CB1

Song, J., and

A. Der Kiureghian CB2

(2003, JEM
ASCE)

CB3

CB4

CB5

El = infinity

l




Definition of system: (3) general system

» System that is neither series or parallel system

1) Cut-set system:

K K
Esystem = UCk = U Ei

- a series system of sub-parallel systems k=1 k=1ieC,

2) Link-set system:

)
-
m

L
- a parallel system of sub-series systems Eyysiem = ﬂ L
I=1 I=1 ieL,

Song, J., and
A. Der Kiureghian
(2003, JEM ASCE)

lx T
M

Esystem = (El ﬂ EZ)U(E3 ﬂ E4)U(E3 ﬂ ES)

k H .
Scenario 1 Scenario 2 Scenario 3 Component failure events and failure paths




(3) General system

(contd.)

» Example: electrical substations (cut-set systems)

T35 | ST
DS CB,,..CB, PT DB FB
(Ry,S)) (g 2-3Rk+1’ (Ri2r Sir2) (Riz Sisa) (Ricea +Sea)
2 9kl
«— {1 % g [ ] [ F>—
(1) DS, (4) CB, ©) PT, (8) DB, 2 (11) FB,
(3) DS, (10) TB
-« (] § % [ ]  F>—>
2) DS 5)CB 9) DB 12) FB
(2bs, (5CB, 0P, (9) DB, (12) FB,
Song, J., and A. Der Kiureghian (2003, ICASP9)

P(Esystem) =
P[E1 U (Ez E;-- Ek+1) U E.2 U Ey.s U Ek+4]

* 5 cut sets, k+4 components

P(Esystem) =

P(EE,UE,E;UE,E,UE,E;UEE,UEE, U
E.E, UEE; UE,E;UEE,UE,E,, U
E,E.,E;UEEE, UEEE UE,EE,U
E,E.E; UE,E;E;UE,E,(E,, UE.EE,,U
E¢EoEr, U EsE 0B UE, EoEn UEE,E;, U
E E;E0E, UE, EsEoE)

* 25 cut sets, 12 components



“component” reliability vs “system” reliability

> Component reliability analysis: P(E;) = P(g,(X)<0)= J'f

g(X)=<0

A

1) FORM/SORM

2) Response surface method
3) Monte Carlo simulations
4) Importance samplings

v

> System reliability analysis: P(E, ..) = P(|J(g;(x) <0)= j £, (x)dx
1) Complexity

2) Dependence between component events
3) Lack of information

~ synthesize components reliabilities
or perform simulations /,

Series System Parallel System General System

v




Existing methods: (1) inclusion-exclusion formula

* Series system
P(UE j ZP(E )— Z ZP(E )+ +(D"'P(EE, -E,)
i=1 i=l j=i+l
* Parallel system
P(ﬂ Eijzl— P(U Ej:l— P(E)+---
i=1 i=1 i=1
* Cut-set system

P(Ocj ZP(C) ZZP(C,CJ)Jr +(-D"'P(C.C,---C,)

i=1l j=i+l

» the number of terms increase exponentially; 2" -1
» requires all the joint probabilities: P(E), P(EE;), P(E;EE)), ...

» useful only if component events are statistically independent: P(E;E;) = P(E)P(E;)
~ need marginal probabilities only



** Dependence and system reliability

» A parallel system with 1~10 components with P(E;) = 0.01
~ e.g. n=5: 1019 (independent) ~102 (perfectly dependent)

0 Parallel system: Prob. of failure of each component = 0.01
10 T T T T T T T T

No. of components = 1

=
o
N

=
o
A

System Failure
Probability

Prob. of failure of the system
=
o

=
o
&

10-10 / ) )

| | L

| | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation coeff. between failure events

Details: Supplement # 11 Level of Dependence



Existing methods: (2) simulations

P(Esystem) = ID fX (X)dX
IR _#(xeD)
| o.. ) — #(X)

v

~ Count the number of samples in the system
. failure domain and estimate the ratio.

» Monte Carlo simulations, importance sampling, directional sampling, etc.
» Independent random variables: easily generated.

» Dependent random variables: need joint probability density function
~ not available in many cases.

> Independence assumption will lead to errors in estimating system reliability



Existing methods: (3) bounding formulas

It is desirable to derive bounds on system probability which involve
low-order component probabilities:

v Uni-component probabilities: P(E;) =P,
v’ Bi-component probabilities:  P(E;E;) =P,

v’ Tri-component probabilities: P(EiEjEk) = Pijk

» Series System

1) Uni-component bounds (Boole 1854; Fréchet 1953) maxFP; <P (U _1Ei> < min (12 Pi)

- i=1

2) Bi-component bounds (Kounias 1968; Hunter 1976; Ditlevsen 1979)

n i-1
n
P1+zmax O,Pi—zPij SP(U )<P1+Z(P maxPl
i=2 =1 i=1 It

3) Tri-component bounds (Hohenbichler & Rackwitz 1983; Zhang 1993)

n i—-1 i—-1
n
J= i=

i=3 j=1
j#*k



Existing method: (3) bounding formulas (contd.)

» Parallel System

- Uni-component bounds (Boole 1854; Fréchet 1953)

n
n
max <0,2Pi —(n— 1)) <P (ﬂ Ei) < minP;
i=1 t=1 l

- No higher-order bounds available.

Note: De Morgan’s rule can be used to convert a parallel system to a series
system, allowing use of bi- and tri-component bounding formulas for series
systems.

» General System

- No bounding formulas exist.



Existing methods: (4) FORM approximation

u, Vv, 4
P(E = j f. (X)dX
( SYStem) D X( ) B P(Esys) ~ (I)(_B, R)
1
\ > P2 } u= ‘. \7
u 1 IR , : 1
} ' P12 / o B
: Integration in

Original system FORM analysis for stan?:lard normal
reliability problem each component

space

» For parallel and series system

» Find the corresponding volume in standard normal space based on FORM
analyses of component events

» Errors depend on the level of nonlinearity and complexity of domain.



System reliability: challenges

» Complexity of system problems
- large number of components, component states, cut sets, link sets, etc.
- difficulty in identifying cut sets or link sets
- computational challenges (speed and memory)

» Dependence between component states
- “environmental dependence” or “common source effect”
- members and materials by the same manufacturer or supplier
- analysis as “independent components” is simple, but may be misleading.

» Diversity/Lack of available information on components
- missing information
- various types of information
- should be flexible in obtaining information



II. Bounds on System Reliability by

Linear Programming (‘LP Bounds’)



Bounds by linear programming (LP)

Probabilities of basic MECE events: p, =P(e), 1=1 2,...,2"

1. The system failure probability P(Egysiem) = ZE: p,=c'p
re.c system

2. Axioms of probability: i p,=1 and p, =0, Vi

i=1
3.  Available information on P(E)= 2.p,=P (2P, <P)
T re cE;
component probabilities P(EE,) = Z p, =P, 2P, <P) -

re, SEE;

- - - - - T
minimize (Maximize)c . -
( ) P Linear Programming

subjectto  a,p=Db, Problem
a,p=b,

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. Journal of Engineering
Mechanics, ASCE, 129(6): 627-636.



Merits of LP approach

v" Bounds for general systems.

v' Any type of information on component probabilities can be used.
- Equality: P;; = 0.02
- Inequality: P;; <0.01, 0.05<P;<0.07, P; <P,
- Partial: P, = 0.01, , P;=0.03

v" Finds the narrowest possible bounds for the given information.
(This is not guaranteed for existing formulas for series systems
involving bi- or higher-order component probabilities.)

v' Can be used to compute importance and sensitivity measures, and
updated system reliability.



Application to structural system reliability

Statically determinate truss (series system) Daniels’ parallel system Cantilever beam — bar (general system)

X % o X %
El = infinity S0m e 20m ¥
l L
n n
Esystem = U Ei Esystem = ﬂ Ei
i=1 ) i=1
10 T T T
1. Narrowest bounds ol
2. Incomplete set of probabilities :
3. Inequality-type information § gl
10°F E{)ZIIZ Daniels (Exact)
‘ == Uni-component bounds (Boole, LP)
————— Bi-component bounds (LP)
KHD bounds
10" : : :
5 6 7 8

Load, L

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming. Journal of Engineering
Mechanics, ASCE, 129(6): 627-636.



Application to electrical substation systems

« Component failure event, E

3¢ E,={InR,—InA-InS;<0},i=1,....n
(1 DS, | (4)CB ©) PT (8) DB, (11) FB, A = LN(mean=0.15, c.0.v.=0.5) PGA
(3) DS, . - (10) TB S; = LN(mean=1, c.0.v.=0.2) local site effect
_ 2 g _ R; = LN(mean,c.o.v.,corr.) equipment capacity
- - = DS: Disconnect Switch (0.4, 0.3, 0.3)
(2)DbS, (5 CB, ) PT (9) DB, (12) FB, CB: Circuit Breaker (0.3, 0.3, 0.3)
2 PT. Power Transformer (0.5, 0.5, 0.5)

DB: Drawout Breaker (0.4, 0.3, 0.3)
TB: Tie Breaker (1.0, 0.3, 0.3)
FB: Feeder Breaker (1.0, 0.3, 0.3)

Two-transmission-line substations

Case Uni-comp. Bi-comp. Tri-comp. M.C. 6=0.01
As shown in figure 1.13x1012~0.202 0.0436~0.146 0.0616~0.0942 0.0752
No information available on TB (E,) 1.82x1011~0.202 0.0436~0.146 0.0615~0.0943 N/A
No information available on CB; (E,) 1.26x10°~0.202 0.0267~0.147 0.0395~0.1360 N/A
Upper bound available on CB,, P,<0.01 5.19x10°~0.120 0.0267~0.0995 0.0395~0.0701 N/A

* Song, J., and A. Der Kiureghian (2003). Bounds on system reliability by linear programming and applications to
electrical substations. Proc. of ICASP9, San Francisco, USA, July 6-9.



Multi-scale system reliability analysis

Input 11

18 27 33
34
5] 19 28 ..
20 29
(8]
21
22

[6]

Input 1

Substation 1 Substation 2

23 32

24 [9]
[ 25

26 36
35

Substation 3 52
43 53

Output

62 &8 o
637 “— - L
64 18]
56 65
57 66
58 67
%59

[10] 45

Substation 4
[13]
[15]

47 [12]
39 48

®

14

40 49 (el

ny Qa 50 e
42 51 e

System of four electrical substations

[16] 60

61

Input 111

(n =59:| 5.76x10" design variables

» System decomposition

- consider a subset of the components of
a system as “super-components”

- bounds on marginal and joint probabilities
of the super-components are computed
by LP approach

- the computed bounds are used as
constraints in solving the LP problem for
the entire system

- reduced to 35 LP problems, the largest of
which has| 215 = 32,768 variables

» multi-scale system modeling

- helps the analyst see the “big picture,”
while not disregarding system details

- particularly effective when many similar
subsystems exist

- allows different teams of analysts to work
on different subsystems (parallel computing)



System reliability updating

In the analysis of system reliability, it is often of interest to compute the
conditional probability of a system or subsystem event, given that another

system or subsystem event is known or presumed to have occurred.

>

« Examples: P(E; | Eyqen) P(E | Eygen), 1C.

:P(—AB) :M ~ Nonlinear function of p’s

"B TS

» The bounds on the conditional probabilities can be obtained after a few iterations

of a parameterized LP problem (Dinkelbach 1967).

optimal solution, p

minimize/maximize (Ciz —ACx)P T ¢’ p
subject to ap=b A= C/frBf)
a,p =b, )
parameter, A

* Der Kiureghian, A. and J. Song (2008). Multi-scale reliability analysis and updating of complex systems by use of linear
programming. Journal of Reliability Engineering & System Safety, 93(2): 288-297.



System reliability updating (contd.)

Substation 4 68
62 s Output
63 [17] --- L
64
—e@

[18]

56 65

s ()s7 Oess

58 67

59

[16] 60
61

Updated failure probabilities of equipment items in Substation 4

Type - Equipment No. P(E) | P(E | Eys) P(E |_ESys )
DS 56, 58, 62, 64 0.00371 0.243 ~0.375 0.000431 ~ 0.00125
59, 61, 65, 67 0.00371 0.175~0.372 0.000431 ~ 0.00182
68 0.00371 0.331 ~0.468 0
CB 57,63 0.00953 | 0.506 ~ 0.660 0.00345 ~ 0.00458
60, 66 0.00953 0.338 ~ 0.623 0.00357 ~ 0.00613

PT 69 .1 0.00232 0.206 ~0.292 | . 0




Identification of critical components and cut sets

» LP approach can identify components and cut sets which make significant
contributions to the system failure probability by iteratively solving

parameterized LP’s.

» Importance Measures (IM)

guantifies participation in system failure probability

- Fussell-Vesely:

- Risk Achievement Worth:

- Risk Reduction Worth:

- Boundary Probability:

- Fussell-Vesely Cutset IM:

FVI :P( U Ck)/P(Esystem)

kE| Qck

RAVV, =P ( Esgi/ltem ) /P ( Esystem )
R RVV, =P ( Esystem ) /P ( Es(:/ltem

BFl) = P(Es()i/gtem) _P(Es()i/gtem)

|:VCk = P(Ck)/ P(Esystem)



Identification of critical components and cut sets
(contd.)
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* Song, J. and A. Der Kiureghian. Component importance measures by linear programming bounds on system reliability.

Proc. of ICOSSAR9, Rome, Italy, June 19-23.




Sensitivity and optimal upgrade

» General-purpose LP algorithms provide the sensitivity of an optimal solution with
respect to the values in the right-hand side vector, b.

oh
o ¢ c o . T ae
minimize (maximize)c' p op i P
. Sys
subjectto  ap =b > aays > 0
a,p sz LP algorithm Chain rule J
LP problem for Sensitivity w.r.t. Sensitivity w.r.t.
system reliability failure probabilities design parameters

» Optimal upgrade of system reliability within the limit of upgrade cost (in progress)

min max c'p(x) ~ minimize the upper bound of P
X P

sys

subjectto a,p =b,(x), a,p >b,(x) ~ component failure probabilities: f(actions)

Qx<q, m' x <m ~ constraints on the actions (workability, cost)

X :binary integers ~ indicators for upgrade actions (1: yes, 0: no)



LP Bounds approach and decision-making

s consequence-based engrg.
R Life-cycle cost analysis

Identification of
Critical Components
and Cut sets

Priority in upgrade project
minimize (maximize)c'p (cost limit not considered)
subjectto  a,p=b,

ap=b,

System Reliability | Strategy for post-hazard

LP Bounds Approach Updating inspection/ recovery

Sensitivity of Plan for optimal upgrade
System Reliability | (cost limit considered)



Seoul National University Instructor: Junho Song
Dept. of Civil and Environmental Engineering junhosong@snu.ac.kr

457.646 Topics in Structural Reliability

In-Class Material: Class 16

General system by cut set formulation

2
4// E,s :cannot
2
travel from Ato B
Ae oB
1
3
(D Cut set: a subset of components whose joint constitutes the
of the system
C={ ¥
Esys =
@ “Minimum” cut sets ~ cut sets with no r components
C={ ¥
E =

Sys
=cut sets which cease to be a cut set if any of the components is

@ “Disjoint” cut sets P(E,,) =P(UC,)=2P(C,)

Sys

—_—  —
1
Cd|51 ={ }
= ¥
_ 2 3
E,. =E VEEE,
Ncut
Esys:UCk 123__
kel 000 E E-E
* Ncut 00X E-E-E
:L'ﬂEi 0XO0 F.E-5
k=1 ieC, X0O0 E-E-E
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General system by link set formulation

2
7

Ae

% o3
1 %

3
Link set: a subset of components whose joint ( ) assures ( ) of the
system
L={ }
“Minimum?” link sets ~ link sets with no r component
Lmin :{ }

“Disjoint” Link set

Ldisj ={ }

Nlink
* UL =
k=1

De morgan’s law

S By = N("ﬁk(u ]

k=1 \i=L,



file:///C:/Users/Choi/Documents/junhosong@snu.ac.kr

