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M1586.002500 Information Engineering for CE Engineers 

In-Class Material: Class 15 

Linear Model Selection and Regularization (ISL Chapter 6) 

 
1. Ridge regression 

(a) In linear model, the least-squares-fitting estimates 𝛽0, 𝛽1, … , 𝛽𝑝 by minimizing RSS 

 

RSS =  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

 

𝑛
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(b) Ridge regression is very similar to least squares, except that the coefficients are 
estimated by minimizing the following objective function 
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2

𝑝

𝑗=1

 

 
where λ ≥ 0 is a tuning parameter. 
 

(c) Shrinkage penalty: 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  

Ridge regression seeks coefficient estimates that make the shrinkage penalty small as 
well as RSS  it has the effect of shrinking the estimates of 𝛽𝑗 towards zero 

(d) For best, selecting a good value for λ is critical  selecting tuning parameter 

(e) Why/how does Ridge regression improve over Least Squares?  Ridge regression’s 
advantage over least squares is rooted in the bias-variance trade-off: 

𝜆 increases  bias increases (variance decreases) 

(f) In general, ridge regression works well in the following situations 
 The least squares estimate have low bias and high variance 

 The number of variables is larger than the number of observations 𝑝 > 𝑛 

 
The Standardized ridge regression coefficients for Credit data 

=0: Least 
squares 

Large  

l2 norm by LS 
l2 norm by Ridge 
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(g) it is important to standardize the predictors as follows before the Ridge regression �̃�𝑖𝑗 =
𝑥𝑖𝑗

√
1

𝑛
∑ (𝑥𝑖𝑗−�̅�𝑗)

2𝑛
𝑖=1

 

While the standard least squares coefficients are scale equivalent, those by Ridge 
regression is NOT scale invariant because of the shrinkage penalty term. 

(h) Computational advantage of Ridge regression over best subset selection (2𝑝 models): 

construct a single model for each 𝜆. 

 

library(ISLR) 
Hitters=na.omit(Hitters)  
 
x=model.matrix(Salary~.,Hitters)[,-1]  
#Creating x in which all qualitative variables are automatically 

transformed into dummy variables  
y=Hitters$Salary 
 
######################################## 
# Ridge fittings for a range of lambda # 
######################################## 
library(glmnet) 
grid=10^seq(10,-2,length=100) 
ridge.mod=glmnet(x,y,alpha=0,lambda=grid)  
# Perform ridge regression (alpha=0: ridge, alpha=1: lasso) 
# lambda = 10^2 ~ 10^-2 
# Note: glmnet, by default, automatically standardizes the predictors 
# If you want to avoid standardization, use "standardize = FALSE" 
dim(coef(ridge.mod)) 
 
#case 1: larger lambda(=11498) 
ridge.mod$lambda[50] 
coef(ridge.mod)[,50] 
sqrt(sum(coef(ridge.mod)[-1,50]^2)) #beta_norm decreases 
 
#case 2: smaller lambda(=705) 
ridge.mod$lambda[60] 
coef(ridge.mod)[,60] 
sqrt(sum(coef(ridge.mod)[-1,60]^2)) #beta_norm increases 
 
#can use 'predict' to obtain ridge regression for new lambda(=50) 
predict(ridge.mod,s=50,type="coefficients")[1:20,] 

 
2. The Lasso 
 

(a) The penalty term in Ridge regression will shrink all of the coefficients towards zero, but 

it will not set any of them exactly to zero (unless λ is infinite) 
 all 𝑝 predictors exist in the final models, which is an obvious disadvantage for model 
interpretation 

(b) The Lasso is a recent alternative to ridge regression that overcomes the disadvantage 
The coefficients are estimated by minimizing the following objective function 
 

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

 

𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝
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(c) The difference between Lasso and Ridge regression is penalty term 
    penalty of the Lasso  𝑙1 penalty 

    penalty of Ridge regression  𝑙2 penalty 

(d) The 𝑙1 penalty has the effect of forcing some of the coefficient estimates to be exactly 

zero when the tuning parameter λ is sufficiently large (the Lasso performs “variable 
selection” as well) 
 the Lasso are generally much easier to interpret than Ridge regression (the Lasso 
yields sparse models) 

(e) As in Ridge regression, selecting a good value for 𝜆 is critical  selecting tuning 
parameter 

(f) One can show that the Lasso and Ridge regression coefficient estimates solve the 

following optimization problems (for every value of 𝜆, there is some 𝑠 to give same 
coefficient estimates)  
 
Ridge regression 

minimize
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

}     subject to    ∑ 𝛽𝑗
2 ≤ 𝑠

𝑝

𝑗=1

 

The Lasso 

minimize
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

}     subject to    ∑|𝛽𝑗| ≤ 𝑠

𝑝

𝑗=1

 

Best Subset Selection 

minimize
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

}     subject to    ∑ 𝐼(𝛽𝑗 ≠ 0) ≤ 𝑠

𝑝

𝑗=1

 

 

 
Contours of the error and constraint function for the lasso (left) and ridge regression (right) 

(g) Comparing the Lasso and Ridge regression 
Model Interpretation: the Lasso > Ridge regression 
Prediction accuracy: the Lasso ( ? ) Ridge regression  depends on the problems 
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(h) The Lasso implicitly assumes that a number of the coefficients are truly equal to zero 
Usually, if all 𝑝 predictors were related to the response the Ridge regression 
outperforms the Lasso 

(i) Bayesian interpretation for Ridge regression and the Lasso 
 

𝑝(𝛽|𝑋, 𝑌) ∝ 𝑓(𝑌|𝑋, 𝛽)𝑝(𝛽|𝑋) = 𝑓(𝑌|𝑋, 𝛽)𝑝(𝛽)  (∵ 𝑋 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑) 
𝑌 = 𝛽0 + 𝑋1𝛽1 + ⋯ + 𝑋𝑝𝛽𝑝 + 𝜖 

 

Assume 𝜖 is independent and normally distributed, and 𝑝(𝛽) = ∏ 𝑔(𝛽𝑗)
𝑝
𝑗=1  

 
If 𝑔 is a Gaussian distribution with mean of zero and standard deviation of 𝜆, 

 the posterior mode for 𝛽 = Ridge regression solution (It is also the posterior mean) 
 
If 𝑔 is a double-exponential (Laplace) distribution with mean of zero and scale 

parameter of 𝜆, 

 the posterior mode for 𝛽 = the Lasso solution (However, it is not the posterior mean)  
 

 
Gaussian prior (left) and double-exponential prior (Right) 

 
3. Selecting the tuning parameter 
 

(a) Implementing Ridge regression and the Lasso requires a method for selecting a value 
for the tuning parameter 𝜆 (or equivalently the value of the constraint 𝑠 in another 
formulations for two approaches) 

(b) Cross-validation provides a simple way to tackle this problem  we can choose a grid 
of λ values, and compute the cross-validation error for each value of λ, then select the 
tuning parameter value for which the cross-validation error is the smallest 
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Cross validation error and standardized coefficients for the lasso 

(c) The left-hand panel of the figure above displays the cross-validation error of the Lasso, 
while the right-hand panel displays the coefficient estimates of the Lasso 

(d) The vertical dashed line indicate the point at which the cross-validation error is 
smallest 

The two colored lines in the right-hand panel represent the two predictors related to 
the response, while the grey lines represent the unrelated predictors (these often are 
called as signal and noise variables respectively) 

(e) Cross-validation together with the Lasso has correctly identified the two signal 
variables in the model 

In contrast, the least squares solution assigns coefficient estimates to both signal and 
noise variables 
 

Ridge regression using cross-validation (In case the Lasso, change alpha to 1) 

# Test MSE of Ridge regression models 
set.seed(1) 
train=sample(1:nrow(x),nrow(x)/2) # alternative way to sample 
test=(-train) 
y.test=y[test] 
 
ridge.mod = glmnet(x[train,],y[train],alpha=0,lambda=grid,thres=1e-12) 
 
#case 1: using lambda(=0), i.e. Least Squares 
ridge.pred=predict(ridge.mod,s=0,newx=x[test,]) 
mean((ridge.pred-y.test)^2) 
#case 2: using lambda(=4) 
ridge.pred = predict(ridge.mod,s=4,newx=x[test,]) 
mean((ridge.pred-y.test)^2) # MSE for test set 
#case 3: using lambda(=10^10) 
ridge.pred=predict(ridge.mod,s=1e10,newx=x[test,]) 
mean((ridge.pred-y.test)^2) 
 
# Tuning lambda by cross validation 
set.seed(1) 
cv.out = cv.glmnet(x[train,],y[train],alpha=0) # 10-fold CV(default) 
plot(cv.out) 
bestlam = cv.out$lambda.min 
 

=0: Least squares Large  
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# Test MSE 
ridge.pred = predict(ridge.mod, s=bestlam, newx) 
test_MSE =mean((ridge.pred-y.test)^2) # better than lambda=4 case 
 
# Coefficients for full data 
out = glmnet(x,y,alpha=0) 
plot(out) 
predict(out,type="coefficients",s=bestlam)[1:20,] 

 

 Ridge regression The Lasso 

Selected 𝜆 212 16.78 

Test MSE 96,016 100,740 

 

Coefficients estimates using full data for all 𝝀 

Ridge regression The Lasso 

  
 

Coefficients estimates using full data for selected 𝝀 
Ridge regression 

(Intercept)        AtBat         Hits        HmRun         Runs          RBI  

  9.88487157   0.03143991   1.00882875   0.13927624   1.11320781   0.87318990  

       Walks        Years       CAtBat        CHits       CHmRun        CRuns  

  1.80410229   0.13074383   0.01113978   0.06489843   0.45158546   0.12900049  

        CRBI       CWalks      LeagueN    DivisionW      PutOuts      Assists  

  0.13737712   0.02908572  27.18227527 -91.63411282   0.19149252   0.04254536  

      Errors   NewLeagueN  

 -1.81244470   7.21208394  

 
The Lasso 

(Intercept)        AtBat         Hits        HmRun         Runs          RBI  

  19.5223995    0.0000000    1.8701714    0.0000000    0.0000000    0.0000000  

       Walks        Years       CAtBat        CHits       CHmRun        CRuns  

   2.2187934    0.0000000    0.0000000    0.0000000    0.0000000    0.2072852  

        CRBI       CWalks      LeagueN    DivisionW      PutOuts      Assists  

   0.4127984    0.0000000    1.7591970 -103.5051402    0.2206884    0.0000000  

      Errors   NewLeagueN  
   0.0000000    0.0000000 
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M1586.002500 Information Engineering for CE Engineers 

In-Class Material: Class 16 

Linear Model Selection and Regularization (ISL Chapter 6) 

 
1. Dimension Reduction Methods 
 

(a) All variance-control methods introduced in this chapter (linear model selection and 
regularization) use the original predictors, 𝑋1, 𝑋2, … 𝑋𝑝. 

 
(b) Can we transform the original predictors to 𝑍1, 𝑍2, … , 𝑍𝑀 where 𝑀 < 𝑝, and then fit least 

squares using the transformed variables?  Dimension Reduction methods 
 

(c) Transformation of predictors: linear combinations of original predictors 𝑋𝑗 

 

𝑍𝑚 = ∑ 𝜙𝑗𝑚𝑋𝑗

𝑝

𝑗=1

, 𝑚 = 1, … , 𝑀 

 
  where 𝑀 < 𝑝. In a matrix-form, the transformation is described as 𝐙 = 𝚽𝐗 

 
Can be considered as a special case of the original linear regression model 

  

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

+ 𝜖𝑖 

                                       = 𝜃0 + ∑ 𝜃𝑚𝑧𝑖𝑚

𝑀

𝑚=1

+ 𝜖𝑖, 𝑖 = 1, … , 𝑛 

 
with constraint 
 

∑ 𝜃𝑚𝑧𝑖𝑚

𝑀

𝑚=1

= ∑ 𝜃𝑚 ∑ 𝜙𝑗𝑚𝑥𝑖𝑗

𝑝

𝑗=1

𝑀

𝑚=1

= ∑ ( ∑ 𝜃𝑚𝜙𝑗𝑚

𝑀

𝑚=1

) 𝑥𝑖𝑗

𝑝

𝑗=1

= ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 

 

The dimension of problems is reduced from 𝑝 + 1 to 𝑀 + 1 
 
If the constants 𝜙1𝑚, 𝜙2𝑚, … , 𝜙𝑝𝑚 are chosen wisely, then such dimension reduction 

approaches using 𝜃𝑚 can outperform least squares regression using 𝛽𝑗 because the 

constraint 𝛽𝑗 = ∑ 𝜃𝑚𝜙𝑗𝑚
𝑀
𝑚=1  introduces additional b________ but reduces v_________. 

 
(d) Two common steps of all dimension reduction methods 

① The transformed predictors 𝑍1, 𝑍2, … , 𝑍𝑀 are obtained 

② The model is fitted using these 𝑀 + 1 predictors 
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2. Principal Components Analysis (PCA) 
  

(a) A popular approach for deriving a low-dimensional set of features from a large set of 
original variables (a popular tool for unsupervised learning in Chapter 10) 

  
(b) First principal component: the direction along which the observations vary the most 

 

𝑍1 = ∑ 𝜙𝑗1(𝑋𝑗 − �̅�𝑗)

𝑝

𝑗=1

 

where 𝜙𝑗1 is the principal component loading, which is defined as 

𝚽1 = (𝜙11, , … , 𝜙𝑝1)
T

= argmax
‖𝚽1‖=1

(Var[𝑍1]) = argmax
‖𝚽1‖=1

(𝚽1
TΣ𝐗𝐗𝚽1) 

 

The first principal component vector is the line that is as close as possible to the data, 

i.e. minimizing the distance between the data and line 

  

The first principal component (green) and first principal component score (dashed) 

 
(c) Principal component score: the value of the first principal component 𝑍1 at each point. 

The principal component score at the 𝑖th point is 
 

𝑧𝑖1 = ∑ 𝜙𝑗1(𝑥𝑖𝑗 − �̅�𝑗)

𝑝

𝑗=1

 

 
Principal component scores are single number summaries of the predictor 
combinations (showing strong correlation with the predictors) 

mailto:junhosong@snu.ac.kr


Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 

 

 3 

 
 

(d) Further components (𝑚 ≤ 𝑝) 
 

𝚽𝑚 = (𝜙1𝑚, , … , 𝜙𝑝𝑚)
T

= argmax
‖𝚽𝑚‖=1

(Var[𝑍𝑚]) = argmax
‖𝚽𝒎‖=1

(𝚽𝑚
T Σ�̂�𝒎�̂�𝒎

𝚽𝑚) 

where �̂�𝑚 = 𝑿(𝑰 − ∑ 𝚽𝑘𝚽𝑘
T𝑚−1

𝑘=1 ) 

 

 
 

(e) Each succeeding component is orthogonal to the preceding components 
 

𝚽𝑖 ⊥ 𝚽𝑗 (𝑖 ≠ 𝑗) 

 
(f) Standardization 

 
In order to prevent high-variance variables from playing a larger role, the 
standardization is needed to ensure that all variables are on the same scale. 
 

�̃�𝑖𝑗 =
𝑥𝑖𝑗

√1
𝑛

∑ (𝑥𝑖𝑗 − �̅�𝑗)
2𝑛

𝑖=1
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3. [Method 1] Principal Component Regression (PCR) 
 

(a) Constructing the first 𝑀 principal components (𝑍1, 𝑍2, … , 𝑍𝑀) and then using these 
components as the predictors in a linear regression model 

 
(b) Assumption: a small number of principal components suffice to explain most of the 

variability in the data, as well as the relationship with the response 
 

(c) If the assumption underlying PCR holds, a least squares model with 𝑀 principal 

components will lead to better results than a least squares model with 𝑝 original 
predictors 
 

(d) The optimal value of 𝑀, i.e. the optimal number of principal components used in 
regression can be chosen by cross-validation 
 

 
Mean squared error by PCR, Ridge and Lasso for a simulated data set 

 
 

  

The cross-validation MSE obtained using PCR on the Credit data 

(e) PCR with 𝑀 = 𝑝 is equivalent to performing least squares 

Lasso (solid) 

Ridge (dotted) 
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Principal Component Regression 

library(ISLR) 
Hitters=na.omit(Hitters)  
 
x=model.matrix(Salary~.,Hitters)[,-1]  
y=Hitters$Salary 
set.seed(1) 
train=sample(1:nrow(x),nrow(x)/2) 
test=(-train) 
y.test=y[test] 
 
library(pls) # to use "pcr" command 
 
# (1) PCR with 10-fold Cross Validation 
set.seed(2) 
pcr.fit = pcr(Salary~.,data=Hitters,scale=TRUE,validation="CV") 
# default: 10-fold CV 
summary(pcr.fit) # CV score is 'root' mean square 
validationplot(pcr.fit,val.type="MSEP") # plotting the MSE 
 
# (2) Fit PCR model with train data set 
set.seed(1) 
pcr.fit = pcr(Salary~.,data=Hitters,subset=train,scale=TRUE, 

validation="CV") 
validationplot(pcr.fit,val.type="MSEP") 
# minimum test error at M=7 
 
pcr.pred = predict(pcr.fit,x[test,],ncomp=7) 
mean((pcr.pred-y.test)^2) 
 
# fitting PCR on the full data set (using M=7) 
pcr.fit = pcr(y~x,scale=TRUE,ncomp=7)  
summary(pcr.fit)  

 

Cross-validation using whole set Cross-validation using train data  

  
 
 
  

Minimum CV error at M=16 
But similar to CV at M=1 
88% of variance explained by M=6 

Minimum CV error 
at M=7 
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4. [Method 2] Partial Least Squares (PLS) 
 

(a) PCR identified the principal directions in an unsupervised way, since the response is 
not used in the process 

 
(b) Drawback of PCR: there is no guarantee that the identified best directions for the 

original predictors will also be the best directions to use for predicting the response 
 

(c) Partial Least Squares (PLS): a supervised alternative to PCR 
 

argmin
𝑧𝑖1

∑(𝑦𝑖 − 𝛽0 − 𝑧𝑖1)2

𝑛

𝑖=1

= argmin
𝜙𝑗1

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝜙𝑗1𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

 

 
(d) The first direction of PLS is same as the simple linear regression of 𝑌 onto 𝑋𝑗 

 

𝑍1 = ∑ 𝜙𝑗1𝑋𝑗

𝑝

𝑗=1

= ∑ 𝛽𝑗𝑋𝑗

𝑝

𝑗=1

 

 

 
The first PLS direction (solid) and first PCR direction (dotted) for the Advertising data 

 
(e) The way to identify other directions of PLS 

 

① Each of the variables for 𝑍1 can be adjusted by regressing each variable on 𝑍1 and 
taking residuals 
 

② 𝑍2 can be computed by using this orthogonalized data in exactly the same fashion 

as 𝑍1 
 

③ Repeat the iterative approach 𝑀 times 
 

(f) As with PCR, the number of 𝑀 of PLS directions is a tuning parameter that is typically 
chosen by cross-validation 
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Partial Least Squares 

# (3) PLS regression (with train set) 
set.seed(1) 
pls.fit = plsr(Salary~.,data=Hitters,subset=train,scale=TRUE, 

validation="CV") 
summary(pls.fit) 
validationplot(pls.fit,val.type="MSEP") 
 
# evaluating the test set MSE using 𝑀 with the lowest cross-validation 

error 
pls.pred = predict(pls.fit,x[test,],ncomp=2) 
mean((pls.pred-y.test)^2) 
 
# performing PLS using the full data set using 𝑀 
pls.fit=plsr(Salary~.,data=Hitters,scale=TRUE,ncomp=2) 
summary(pls.fit) 

 

 
 

 Principal Component Regression Partial Least Squares 

Number of Components 7 2 

Test MSE 96,556.22 101,417.5 

Percentage of Variance 
of response explained by 

principal components  
46.69% 46.40% 
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