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 FORM approximation (Hohenbichler & Rackwitz 1983) 

① Series system 
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② Parallel system 
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→ may have huge errors due to curvatures 

→   better linearization point?  

   “joint design point” 

   Hard to find or may not exist 

Note: One could find such important domain using an adaptive sampling technique 

Kurtz, N., and J. Song (2013). Cross-entropy-based adaptive importance sampling 

using Gaussian mixture. Structural Safety. Vol. 42, 35-44. 

 

③ General system? 

⇒ No direct FORM approximation 
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Matrix-based Formulation

 Matrix-based formulation of system failure:

pc
T)( sysEP

1
e

1
E

2
E 3

E

S

2
e

3
e

4
e

5
e

6
e

7
e

8
e

* Example: 

T

87654321

54321321

][                          

]0   0  0   1  1   1    1   1[                       

)(

pppppppp

pppppEEEP





 c: “event” vector
~ describes the system event of interest

 p: “probability” vector
~ likelihood of component joint failures



Identification of event vector, c

 Matrix-based event operations:

 Efficient and easy to implement by matrix-based 
computing languages, e.g. Matlab® , Octave

 Can construct directly from event vectors of components 
and other system events

 Can develop/use problem-specific algorithms to identify 
event vectors



Identification of event vector, c

 Event vectors for component events:

 0 and 1 denote the column vectors of 2(i-1) zeros and 
ones

 After C[n] is constructed, the i-th column of the matrix is 
the event vector of the i-th component event.
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Computation of probability vector, p

 Iterative matrix-based procedure for
statistically independent (s.i.) components
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Statistical dependence b/w components

 By total probability theorem,

 Utilize conditional s.i. of components given an outcome 
of random variables S causing component dependence
e.g. Earthquake magnitude for a bridge system

 Event vector c is independent of this consideration ~ no 
need to construct the probability vector for new system 
events
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“What if not explicitly identified?”

 Example: approximation by Dunnett-Sobel (DS) 
correlation matrix (1955)

 Zi, i=1,…,n are conditional s.i. given S=s

 Fit the given correlation matrix with a DS correlation matrix 
with the least square error

 Generalized DS model (Song and Kang, Structural Safety)

,1 2 SrUrZ iiii 

jiiji rrNZ   ),,(~ R0

)(1

)(     ),,(~

1

2

1

1

kik

m

kiik

m

ki

jkik

m

kiji

SrUrZ

rrNZ







R0



Conditional prob./importance measure

 Conditional probability Importance Measure (CIM)
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 P(Esys’)/P(Esys) = (c’Tp) / (cTp) 

 Once the system reliability is done, only additional task is to 
find the event vector for a new system event



Parameter sensitivity of system reliability

 Statistically independent components

 Statistically dependent components
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* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System 

Reliability Method,” Structural Safety, Vol. 31(2), 148-156.
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Appl. I: Connectivity of a transportation network

 Post-earthquake disconnection from the critical facility

 Fragilities for bridges (Gardoni et al. 2003)

 Deterministic attenuation relationship used

 For given magnitude, the bridge component failures are 
conditional s.i.

single -bent

two-bent

* Kang, W.-H., J. Song, and P. Gardoni (2008) “Matrix-based system reliability method and applications to bridge 

networks,” Reliability Engineering & System Safety, Vol. 93, 1584-1593.



Connectivity of a transportation network
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Connectivity of a transportation network
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Connectivity of a transportation network
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Bounds on P(City 5 disconnected) Importance measure of components
w.r.t. the likelihood of at least a disconnection(No information on Bridge 12)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bridge
C

IM

pc

pc
~

~

)(

)(
)|(

T

T


sys

sysi

sysi
EP

EEP
EEP

6 6.5 7 7.5 8 8.5
10

-6

10
-5

10
-4

10
-3

Earthquake Magnitude, M

P
ro

b
a

b
il
it
y
 o

f 
D

is
c
o

n
n

e
c
ti
o

n

 

 

Exact

Bounds



Appl. II: Damage of a bridge structural system

 Nielson (2005) developed analytical fragilities of bridge 
components such as bearings, abutments and columns

 Identified the statistical dependence between demands

 Probability that at least one component fails (series system)

 Performed MCS to account for component dependence

©  B.G. Nielson (2005)
©  B.G. Nielson (2005)

* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System 

Reliability Method,” Structural Safety, Vol. 31(2), 148-156.



Damage of a bridge structural system
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Damage of a bridge structural system
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Appl. III: Progressive failure of a truss structure
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* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System 

Reliability Method,” Structural Safety, Vol. 31(2), 148-156.



Progressive failure of a truss structure

)])((                  

 ))((                  

))(([)(

3635343332654321

1615141312654321

1110987654321654321

EEEEEEEEEEE

EEEEEEEEEEE

EEEEEEEEEEEEEEEEEPEP sys







)(                  

)()()(

3635343332654321

1110987654321654321

EEEEEEEEEEEP

EEEEEEEEEEEPEEEEEEPEP sys







Disjoint link sets (36→11)

7 systems with 6 components

Perfect correlation



Progressive failure of a truss structure
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 System collapse fragility curve given abnormal load

 Verified through MCS

 Importance of members (components)

 Sensitivity of fragility w.r.t. design parameters



Appl. IV: Multi-scale SRA of lifeline networks

* Song, J., and S.-Y. Ok (2010). Multi-scale system reliability analysis of lifeline networks under earthquake hazards. Earthquake 

Engineering and Structural Dynamics, Vol. 39(3), 259-279.

 “Divide and Conquer” approach

 Lower-scale system reliability analyses 
are performed for “supercomponents” 
and followed by higher-scale system 
reliability analyses

 Proposed to facilitate the use of LP 
bounds method (Song and Der 
Kiureghian, 2003) for large-size systems

 MSR method is a good tool for SRA at 
multiple scales

 Advantages

 Multi-scale modeling of a system –
seeing big picture without disregarding 
the details

 Helps identify important components 
and parameters at multiple scales

 Collaborative risk management

 Facilitates parallel computing 



Example: MLGW gas network
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Simplified MLGW Gas Network (37-node)
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 Gas pipeline network of Memphis Light, Gas, and Water (MLGW), Shelby County, TN

 A simplified network in Chang et al. (1996) was modified based on comments from R. 
Bowker (MLGW)

 37-node and 40-arc network: nodes representing pipelines and stations

 Earthquake hazard scenarios: Epicenter at N35.54o-W90.43o at Blytheville, AR

 Fragilities of pipelines and stations – HAZUS-MH

 PGV and PGA maps from MAEviz



Failure prob. of pipeline segments
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 Failure probability of the i-th segment of a pipeline

 Failure occurrence rate of a pipeline (HAZUS-MH: FEMA 2003)

 Uncertainty in PGV (Adachi & Ellingwood, 2007)

Lognormal r.v. (median = 1, c.o.v. = 0.6)

Attenuated PGV (Fernandez and Rix 2006)
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Multi-scale SRA using MSR Method
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Correlation between pipelines
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Failure probability of Link 25

Risk at multiple scales
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Simplified MLGW Gas Network (37-node)
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Probabilistic inference and sensitivity
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 Conditional probability of link failure probability 
given observed system event (e.g. disconnection)

 Sensitivity of system failure probability with respect 
to parameters in PGV-based model for failure 
occurrence rate:
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Appl. V: Post-hazard flow capacity of a network

Example: Modified Sioux-Falls network
Red: bridges; Circles: Starting & Ending points

 Traffic flow capacity between two points in a 

network  determined by combinations of 

bridge damage

: a vector of network flow capacity for

bridge failure combinations (obtained by

maximum flow capacity analysis)

: average post-hazard flow 

capacity

: variance of post-hazard flow capacity

: probability that flow capacity is lower 

than a

q

T

Q  q p

2 T T 2( .* ) ( )Q  q q p q p

:

( )
i

i

i q a

P Q a p
 

  

Bridge fragility



Multi-state Fragility

 Fragility curves (Gardoni et al. 2002, 2003)

P(Complete failure) = 0.3×Pf

P(Heavy damage) = 0.45×Pf

P(Moderate damage) = 0.25×Pf

P(No damage) = 1-Pf

F(Complete failure) = 0

F(Heavy damage) = 0.3×Full capacity

F(Moderate damage) = 0.7×Full capacity

F(No damage) = 1.0×Full capacity

⇒ Only two states, “connected” or “disconnected”



Uncertainty quantification of flow capacity
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 Capacity distribution for a given 
seismic intensity (M=7.0)
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 Statistical parameters of flow 

capacity (M=6.0~8.5)
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Analysis Results

 Probability with number of failed bridges
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Analysis Results

 Conditional flow capacity (For 10th bridge, M=7.0)

Parameter Value

Mean 6591.9 (8076.3)

Standard deviation 1268.9 (1056.6)

C.O.V. 0.1925 (0.1308)

 Importance measure for all bridges (M=7.0)
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Analysis Results

 Flow capacity with deterioration
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 Assumptions

P(T, Complete failure)

= P(Complete failure) × (1.0+0.0005× T2)

P(T, Heavy damage)

= P(Heavy damage) × (1.0+0.015× T)

P(T, Moderate damage)

= P(Moderate damage) × (1.0-0.015× T)

P(T, No damage) = 1 - P(T, Complete failure)

- P(T, Heavy damage)

- P(T, Moderate damage)

, where T:[Years]



Extension to multi-hazard environment
* Lee, Y.-J., J. Song, P. Gardoni, and H.-W. Lim. (2010). Post-hazard flow capacity of bridge transportation network considering 

structural deterioration of bridges, Structure and Infrastructure Engineering, Accepted for Publication.
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 More realistic assumptions
- Multi-state fragility estimates w.r.t. 

drift capacity levels

- Attenuation relationship (PSA & PGV)

- Deterioration fragility estimates (Choe 

et al. 2007)

- Multi-state flow capacity level

proportional to number of open lanes

- Deterioration scenarios

 Area-to-area flow capacity

 Further analysis for uncertain 

earthquake magnitude



Analysis Results
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Application VI: FE system reliability analysis

 FE reliability analysis: component vs. system

 System-level risk is a logical function of multiple component events 
characterized by failure modes, locations and load cases

 Using MSR methods, the system-level risk and parameter sensitivities
are estimated based on the results of FE “component” reliability analysis.

* Lee, Y.-J., J. Song, and E.J. Tuegel (2008). Finite element system reliability analysis of a wing torque box. Proc. 10th AIAA NDA, 

April 7-10, Schaumburg, IL.

1.Mechanical structures 
(single-nut piston)

2. Aerospace structures
(wing torque box)

3.Civil 
structures
(Bridge 
pylon)

1 2



Example: FE-SRA of bridge pylon system

 Bridge pylon system

 Consists of 2 arms – each has 13 stiffeners and 23 diaphragms

 Yielding failure considered in this example

 Uncertainties in Young’s modulus, yield strength and scale factors of load 
cases (dead, live, in-service wind and out-of-service wind loads) considered

 Two load combinations considered: LC1 = D+L+Wi, LC2 = D+Wo



FE component reliability analysis

 Identification of significant components
 Deterministic FE analysis using the mean values 

of random variables  identify “hot spots” for 
each load combination

 FE reliability analysis for identified “hot spots” by 
FORM  neglect if (1) Pf is too low or (2) highly 
correlated with other (more likely) component 
events

Component event Failure probability (× 10–4)

E1 (LC1; 1st spot on right body) 1.295

E2 (LC1; 1st spot on left body) 1.295

E3 (LC1; 1st spot on right stiffener) 0.606

E4 (LC1; 1st spot on left stiffener) 0.606

E5 (LC2; 1st spot on right body) 6.996

E6 (LC2; 1st spot on left body) 6.996

E7 (LC2; 1st spot on right stiffener) 2.445

E8 (LC2; 1st spot on left stiffener) 2.445

E9 (LC1; 2nd spot on right body) 0.430

E10 (LC1; 2nd spot on left body) 0.430

E11 (LC2; 2nd spot on right body) 4.044

E12 (LC2; 2nd spot on left body) 4.044

Correlation E1 E2 E3 E4 E5 E6 E7 E8

E1 1 0.814 0.708 0.744 0.646 0.502 0.448 0.476

E2 1 0.744 0.708 0.502 0.646 0.476 0.448

E3 1 0.683 0.423 0.451 0.680 0.429

E4 1 0.451 0.423 0.429 0.680

E5 1 0.887 0.820 0.842

E6 1 0.842 0.820

E7 Symmetric 1 0.801

E8 1

Components 

identified

Truncated due to 

high correlation

jiij
 ˆˆ T

 Correlation between components
 Correlation b/w components are computed by



FE system reliability analysis by MSR

 FE-SRA by MSR
 Probability of most dominant component: 

6.996x10-4 vs. system failure probability 1.550x10-3

 component reliability analysis may 
underestimate the risk significantly

 Using component failure probability and sensitivity, 
the MSR method computes the system level 
parameter sensitivity

 Can analyze other system events just by replacing 
event vector c
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Uni-bounds
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Random variables i
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


 1  

i

i

i

P





 1  

Diaphragm (Left) -0.0004 0 

Diaphragm (Right) -0.0003 0 

Body (Left) -0.6480 1.8018 

Body (Right) -0.6624 1.8159 

Stiffener (Left) 0.3463 1.3114 

Young’s 

modulus 

Stiffener (Right) 0.3558 1.3198 

Dead load 0.5130 0.0171 

Live load 2.1175 1.8348 

In-service wind load 

(In-plane) 
2.9923 14.873 

In-service wind load 

(Out-of-plane) 
0.4900 1.9121 

Out-of-service wind load 

(In-plane) 
13.989 66.648 

Load 

scale 

factor 

Out-of-service wind load 

(Out-of-plane) 
2.3301 8.599 

Body (Left) -8.0319 8.8381 

Stiffener (Left) -2.5299 2.925 

Body (Right) -8.0583 8.8729 

Yield 

strength  

Stiffener (Right) -2.5132 2.9001 

 
































s

S
ssspc

zRz

df

d

ZPEPEP

N

i

ii

i

isys

)()(            

);(            

0)(

T

8

1

8

1





High  probability

of failure 

>> Deterministic Optimization

>> Reliability-Based Design 
Optimization (RBDO) 

Low  probability

of failure 

( , )f Xd μ

Safe

Objective function    
increase

Unsafe

App. VII: Reliability-Based Design Optimization



RBDO of Truss system: Minimize the cross section areas under target failure probability of 
system collapse

Using MSR method, we can consider

• Effects of load re-distributions (sequential failures)

• Effects of correlation between components
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System RBDO by MSR method

Nguyen, T.H., J. Song, and G.H. Paulino (2010). “Single-loop system reliability-based design optimization using matrix-based system reliability method: theory 
and applications,” J. of Mechanical Design, ASME, Vol. 132, 011005-1~11.



RBTO of 2D or 3D continuum: Minimize the volume or compliance under target failure 
probability of system failure

System RBTO by MSR method
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Nguyen, T.H., Paulino, G.H., and Song, J., and Le, C.H., “A Computational Paradigm for Multiresolution Topology Optimization (MTOP),” Structural and 
Multidisciplinary Optimization, vol. 41(4), 525-539.
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 Multivariate normal integrals 

~ ( ; )NZ 0 R
  

( , )F a b;R  
1

1

               
m

m

bb

a a

d   z  

If ia   , 1, ,i m , it becomes Joint          of 𝐙~𝑁(0; R) 

1( , , )m mb b ;R  
1

               
mbb

d
 

   z  

 

I) Ditlevsen & Madsen (1996) 

2m  : 

12ρ

2 1 2 12 2 1 2

0

( , )                                 + φ ( , ;    ) ρb b b b d  ;  

                     ________ assumption   error by ________ assumption 

Note: double-fold integral involving ( , )ib  ⇒ single-fold integral in 12(0, )  

Note: 12 0  : s.i assumption under/overestimate 

 12 0  : s.i assumption under/overestimate 

※ 3m    Song & ADK (2005) double-fold integral 

 

II) Sequentially Conditioned Importance Sampling (SCIS) 

(Ambartzumian et al. 1998) 

~sequentially sampling based on conditional PDF 

 given sampled value 

~”scis.m” (developed by Prof. Young Joo Lee at UNIST 

available at http://systemreliability.wordpress.com/software/ 
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III) Product of Conditional Marginals (Pandey & Sarkar 2002) 

1

1 1

μ
( )

σ

m
k k k

m

k k k

b


 

 
   
 
 

b;R  

→ reasonable accuracy & very efficient 

→ parallel or series 

→ error↑ as m↑ 

→ Improved PCM (Yuan & Pandey 2006) 

 

IV) Sequential Compounding Method (Kang & Song 2010) 

 1 1 2 2 3 3( ) ( ) ( )Z Z Z          

 

     3,A A AZ               B BZ     

→ applicable to general system 

→ efficient and accurate 

→ handle large m 

→ when the same component event appears multiple times → difficult 

→ parameter sensitivity of system reliability using SCM (Chun, Song, and Paulino, 

2015, Structural Safety) 

 

V) Matrix-based System Reliability (MSR) Method (Kang & Song 2008) (Kang et al. 

2012) 

 

VI) Method by Genz (1992)  

Transformations to uniform hypercube  

http://www.math.wsu.edu/faculty/genz/homepage 
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→ Parallel system 

→ Very accurate & efficient even for large-size system 

→ Integration by qusai-MCS 

→ mvncdf.m in Matlab 

Genz, A., and Bretz, F. (2009) Computation of Multivariate Normal and t Probabilities, 

Lecture Notes in Statistics, Springer-Verlag, NY. 
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