457.646 Topics in Structural Reliability In-Class Material: Class 17

© FORM approximation (Hohenbichler & Rackwitz 1983)

 $=1-P(\bigcap_{i=1}^{m} \leq)$ $=1-\Phi_{m}(, \dots, ; \mathbf{R})$

Joint normal CDF of $\mathbf{Z} \sim N(\mathbf{0}; \mathbf{R})$

Where $\Phi_m(\boldsymbol{\beta};\mathbf{R}) = \int_{-\infty}^{\beta_1} \cdots \int_{-\infty}^{\beta_m} \varphi_m(\mathbf{Z};\mathbf{R}) d\mathbf{z}$

→ better linearization point? "joint design point" Hard to find or may not exist

Note: One could find such important domain using an adaptive sampling technique

Kurtz, N., and J. Song (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. *Structural Safety*. Vol. 42, 35-44.

③ General system?

 \Rightarrow No direct FORM approximation

Risk-quantification of Complex Systems by Matrix-based System Reliability Method

Junho Song

Department of Civil and Environmental Engineering Seoul National University

Matrix-based Formulation

Matrix-based formulation of system failure:

$$P(E_{sys}) = \mathbf{c}^{\mathrm{T}}\mathbf{p}$$

* Example:
$$P(E_1E_2 \cup E_3) = p_1 + p_2 + p_3 + p_4 + p_5$$

= $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$.
 $\begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 \end{bmatrix}^{\mathrm{T}}$

- c: "event" vector ~ describes the system event of interest
- **p: "probability**" vector
 - \sim likelihood of component joint failures

Identification of event vector, c

Matrix-based event operations:

$$\mathbf{c}^{\overline{E}} = \mathbf{1} - \mathbf{c}^{E}$$

$$\mathbf{c}^{E_{1}\cdots E_{n}} = \mathbf{c}^{E_{1}} \cdot \mathbf{c}^{E_{2}} \cdot \mathbf{c}^{E_{n}}$$

$$\mathbf{c}^{E_{1} \cup \cdots \cup E_{n}} = \mathbf{1} - (\mathbf{1} - \mathbf{c}^{E_{1}}) \cdot \mathbf{c}^{E_{2}} \cdot \mathbf{c}^{E_{n}}$$

- Efficient and easy to implement by matrix-based computing languages, e.g. Matlab®, Octave
- Can construct directly from event vectors of components and other system events
- Can develop/use problem-specific algorithms to identify event vectors

Identification of event vector, c

• Event vectors for component events:

$$\mathbf{C}_{[1]} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{C}_{[i]} = \begin{bmatrix} \mathbf{C}_{[i-1]} & \mathbf{1} \\ \mathbf{C}_{[i-1]} & \mathbf{0} \end{bmatrix} \quad \text{for } i = 2, \dots, n$$

- **0** and **1** denote the column vectors of 2⁽ⁱ⁻¹⁾ zeros and ones
- After C_[n] is constructed, the *i*-th column of the matrix is the event vector of the *i*-th component event.

Computation of probability vector, p

 Iterative matrix-based procedure for statistically independent (s.i.) components

Statistical dependence b/w components

By total probability theorem,

$$P(E_{sys}) = \int_{\mathbf{s}} P(E_{sys} | \mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$
$$= \int_{\mathbf{s}} \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$
$$= \mathbf{c}^{\mathrm{T}} \widetilde{\mathbf{p}}$$

- Utilize conditional s.i. of components given an outcome of random variables S causing component dependence e.g. Earthquake magnitude for a bridge system
- Event vector c is independent of this consideration ~ no need to construct the probability vector for new system events

"What if not explicitly identified?"

 Example: approximation by Dunnett-Sobel (DS) correlation matrix (1955)

$$Z_i \sim N(\mathbf{0}, \mathbf{R}), \ \rho_{ij} = r_i \cdot r_j$$
$$Z_i = \sqrt{1 - r_i^2} \cdot U_i + r_i S,$$

- Z_i , i=1,...,n are conditional s.i. given S=s
- Fit the given correlation matrix with a DS correlation matrix with the least square error
- Generalized DS model (Song and Kang, Structural Safety)

$$Z_i \sim N(\mathbf{0}, \mathbf{R}), \quad \rho_{ij} = \Sigma_{k=1}^m (r_{ik} r_{jk})$$
$$Z_i = \sqrt{1 - \Sigma_{k=1}^m r_{ik}^2} \cdot U_i + \Sigma_{k=1}^m (r_{ik} S_k)$$

Conditional prob./importance measure

Conditional probability Importance Measure (CIM)

$$CIM_{i} = P(E_{i} | E_{sys}) = \frac{P(E_{i}E_{sys})}{P(E_{sys})}$$

Fussell-Vesely IM

$$FV_i = \frac{P(\bigcup_{k:C_k \supseteq E_i} C_k)}{P(E_{sys})}$$

- $P(E_{sys}')/P(E_{sys}) = (c'^T p) / (c^T p)$
- Once the system reliability is done, only additional task is to find the event vector for a new system event

Parameter sensitivity of system reliability

Statistically independent components

$$P(E_{sys}) = \mathbf{c}^{\mathrm{T}}\mathbf{p}$$

Statistically dependent components

* Song, J. and W.-H. Kang "System Reliability and Sensitivity under Statistical Dependence by Matrix-based System Reliability Method," *Structural Safety*, Vol. 31(2), 148-156.

Appl. I: Connectivity of a transportation network

* Kang, W.-H., J. Song, and P. Gardoni (2008) "Matrix-based system reliability method and applications to bridge networks," *Reliability Engineering & System Safety*, Vol. 93, 1584-1593.

rupture on the fault

- Post-earthquake disconnection from the critical facility
- Fragilities for bridges (Gardoni et al. 2003)
- Deterministic attenuation relationship used
- For given magnitude, the bridge component failures are conditional s.i.

Connectivity of a transportation network

Conditional probability of disconnection of cities

Probability of disconnection of cities

Connectivity of a transportation network

Conditional probability of disconnection of counties

Prob (No. of failed bridges $\geq k$)

Connectivity of a transportation network

Bounds on P(City 5 disconnected) (No information on Bridge 12)

$$P(E_i | E_{sys}) = \frac{P(E_i E_{sys})}{P(E_{sys})} = \frac{\mathbf{c'}^{\mathrm{T}} \widetilde{\mathbf{p}}}{\mathbf{c}^{\mathrm{T}} \widetilde{\mathbf{p}}}$$

Importance measure of components w.r.t. the likelihood of at least a disconnection

Appl. II: Damage of a bridge structural system

* Song, J. and W.-H. Kang "System Reliability and Sensitivity under Statistical Dependence by Matrix-based System Reliability Method," *Structural Safety*, Vol. 31(**2**), 148-156.

- Nielson (2005) developed analytical fragilities of bridge components such as bearings, abutments and columns
- Identified the statistical dependence between demands
- Probability that at least one component fails (series system)
- Performed MCS to account for component dependence

Damage of a bridge structural system

* Safety Factor
$$F_i = \ln C_i - \ln D_i$$

* Fragility

 $P(LS_i \mid IM) = P(F_i \le 0 \mid IM)$

$$= P\left(Z_{i} \leq -\frac{\mu_{F_{i}}}{\sigma_{F_{i}}} \mid IM\right)$$
$$= \Phi\left[-\frac{\mu_{F_{i}}(IM)}{\sigma_{F_{i}}(IM)}\right]$$

* Correlation

$$\rho_{Z_i Z_j} = \rho_{F_i, F_j} = \frac{(\zeta_{D_i} \cdot \zeta_{D_j})}{(\zeta_{C_i}^2 + \zeta_{D_i}^2)^{1/2} (\zeta_{C_j}^2 + \zeta_{D_j}^2)^{1/2}} \cdot \frac{\rho_{\ln D_i, \ln D_j}}{(\zeta_{C_i}^2 + \zeta_{D_j}^2)^{1/2}}$$

* Fitting by DS-class corr. matrix: average of percentage error $\sim 3\%$

Damage of a bridge structural system

System fragility (at least one)

P(No. of failed components \geq k)

Appl. III: Progressive failure of a truss structure

* Song, J. and W.-H. Kang "System Reliability and Sensitivity under Statistical Dependence by Matrix-based System Reliability Method," *Structural Safety*, Vol. 31(2), 148-156.

 $P(\overline{E}_{sys}) = P[\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6} \cup (E_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6})(\overline{E}_{7}\overline{E}_{8}\overline{E}_{9}\overline{E}_{10}\overline{E}_{11})$ $\cup (\overline{E}_{1}E_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6})(\overline{E}_{12}\overline{E}_{13}\overline{E}_{14}\overline{E}_{15}\overline{E}_{16}) \cup \cdots$ $\cup (\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}E_{6})(\overline{E}_{32}\overline{E}_{33}\overline{E}_{34}\overline{E}_{35}\overline{E}_{36})]$

Progressive failure of a truss structure

 $P(\overline{E}_{sys}) = P[\overline{E}_1\overline{E}_2\overline{E}_3\overline{E}_4\overline{E}_5\overline{E}_6 \cup (E_1\overline{E}_2\overline{E}_3\overline{E}_4\overline{E}_5\overline{E}_6)(\overline{E}_7\overline{E}_8\overline{E}_9\overline{E}_{10}\overline{E}_{11})]$ $\bigcup (\overline{E}_1 E_2 \overline{E}_3 \overline{E}_4 \overline{E}_5 \overline{E}_6) (\overline{E}_{12} \overline{E}_{13} \overline{E}_{14} \overline{E}_{15} \overline{E}_{16}) \bigcup \cdots$ $\bigcup (\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}E_{6})(\overline{E}_{32}\overline{E}_{33}\overline{E}_{34}\overline{E}_{35}\overline{E}_{36})]$

Disjoint link sets $(36 \rightarrow 11)$

 $P(\overline{E}_{sys}) = P(\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6}) + P(E_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}\overline{E}_{6}\overline{E}_{7}\overline{E}_{8}\overline{E}_{9}\overline{E}_{10}\overline{E}_{11})$ $\cdots + P(\overline{E}_{1}\overline{E}_{2}\overline{E}_{3}\overline{E}_{4}\overline{E}_{5}E_{6}\overline{E}_{32}\overline{E}_{33}\overline{E}_{34}\overline{E}_{35}\overline{E}_{36})$

7 systems with 6 components

Progressive failure of a truss structure

- System collapse fragility curve given abnormal load
- Verified through MCS
- Importance of members (components)
- Sensitivity of fragility w.r.t. design parameters

Appl. IV: Multi-scale SRA of lifeline networks

* Song, J., and S.-Y. Ok (2010). Multi-scale system reliability analysis of lifeline networks under earthquake hazards. *Earthquake Engineering and Structural Dynamics*, Vol. 39(**3**), 259-279.

"Divide and Conquer" approach

- Lower-scale system reliability analyses are performed for "supercomponents" and followed by higher-scale system reliability analyses
- Proposed to facilitate the use of LP bounds method (Song and Der Kiureghian, 2003) for large-size systems
- MSR method is a good tool for SRA at multiple scales

Advantages

- Multi-scale modeling of a system seeing big picture without disregarding the details
- Helps identify important components and parameters at multiple scales
- Collaborative risk management
- Facilitates parallel computing

Example: MLGW gas network

- Gas pipeline network of Memphis Light, Gas, and Water (MLGW), Shelby County, TN
- A simplified network in Chang et al. (1996) was modified based on comments from R. Bowker (MLGW)
- 37-node and 40-arc network: nodes representing pipelines and stations
- Earthquake hazard scenarios: Epicenter at N35.54°-W90.43° at Blytheville, AR
- Fragilities of pipelines and stations HAZUS-MH
- PGV and PGA maps from MAEviz

Failure prob. of pipeline segments

 $\alpha = L_{corr} / \Delta L$

- Failure probability of the *i*-th segment of a pipeline $P_i = 1 - \exp(-v_i \cdot \Delta l_i)$
- Failure occurrence rate of a pipeline (HAZUS-MH: FEMA 2003) $v_i = k \cdot (PGV_i)^{\gamma}$
- Uncertainty in PGV (Adachi & Ellingwood, 2007)

$$PGV_i = PGV_i \times \varepsilon_i$$
Lognormal r.v. (median = 1, c.o.v. = 0.6)

- → Attenuated PGV (Fernandez and Rix 2006)
- Spatial Correlation (Wang & Takada, 2005)

 $\rho_{\ln PGV_i, \ln PGV_j} = \rho_{\ln \varepsilon_i, \ln \varepsilon_j} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\| / L_{corr})$

Generalized Dunnett-Sobel (Song and Kang, 2008)

 $Z_i = \ln \varepsilon_i / \zeta_i \sim N(\mathbf{0}, \mathbf{R}) \rightarrow \text{Find gDS that fits best}$

 (←) Discretization error choose number of segments considering corr. length

Multi-scale SRA using MSR Method

$$P(E_{sys}) = \mathbf{c}^{\mathrm{T}}\mathbf{p}$$
$$\frac{\partial P(E_{sys})}{\partial \theta} = \mathbf{c}^{\mathrm{T}}\frac{\partial \mathbf{p}}{\partial \theta} = \mathbf{c}^{\mathrm{T}}\hat{\mathbf{P}}\frac{\partial \mathbf{P}}{\partial \theta}$$

→ MSR analysis using failure probability and sensitivity of links $P_i, \frac{\partial P_i}{\partial \theta}$ $i = 1,...,n_{link}$

Lower-scale

$$P_{1} = \mathbf{c}_{1}^{\mathrm{T}} \mathbf{p}_{1}$$
$$\frac{\partial P_{1}}{\partial \theta} = \mathbf{c}_{1}^{\mathrm{T}} \frac{\partial \mathbf{p}_{1}}{\partial \theta} = \mathbf{c}_{1}^{\mathrm{T}} \hat{\mathbf{P}}_{1} \frac{\partial \mathbf{P}_{1}}{\partial \theta}$$

→ MSR analysis using failure probability and sensitivity of segments $P_{(i)}$, $\frac{\partial P_{(i)}}{\partial \theta}$ $i=1,...,n_{seg}$

Correlation between pipelines

Risk at multiple scales

Higher-scale: service nodes

Prob. of Disconnection at Node 2

Simplified MLGW Gas Network (37-node)

Gate Station

Other Station

Probabilistic inference and sensitivity

2000

 \sim

•••••• Link 8 •••••• Link 21

Conditional Probabilities

Parameter Sensitivity

Simplified MLGW Gas Network (37-node)

31

36

24

30

1500 1500 11000

Gate Station

Regulator

Other Stat
 Link Node

- Conditional probability of link failure probability given observed system event (e.g. disconnection)
- Sensitivity of system failure probability with respect to parameters in PGV-based model for failure occurrence rate: $v_i = k \cdot (PGV_i)^{\gamma}$

Appl. V: Post-hazard flow capacity of a network

Example: Modified Sioux-Falls network Red: bridges; Circles: Starting & Ending points

- □ Traffic flow capacity between two points in a network → determined by combinations of bridge damage
 - **q** : a vector of network flow capacity for bridge failure combinations (obtained by maximum flow capacity analysis)

 $\boldsymbol{\mu}_{Q} = \boldsymbol{q}^{\mathrm{T}} \boldsymbol{p} : \text{average post-hazard flow} \\ \text{capacity}$

$$\sigma_Q^2 = (\mathbf{q} \cdot \mathbf{q})^{\mathrm{T}} \mathbf{p} - (\mathbf{q}^{\mathrm{T}} \mathbf{p})^2$$

: variance of post-hazard flow capacity

$$P(Q < a) = \sum_{\forall i: q_i < a} p_i$$

: probability that flow capacity is lower than *a*

Multi-state Fragility

Fragility curves (Gardoni *et al.* 2002, 2003)

⇒ Only two states, "connected" or "disconnected"

 $\begin{array}{l} \mathsf{P}(Complete\ failure) = 0.3 \times P_f \\ \mathsf{P}(Heavy\ damage) = 0.45 \times P_f \\ \mathsf{P}(Moderate\ damage) = 0.25 \times P_f \\ \mathsf{P}(No\ damage) = 1 - P_f \end{array}$

 $\begin{array}{l} F(Complete \ failure) = 0 \\ F(Heavy \ damage) = 0.3 \times Full \ capacity \\ F(Moderate \ damage) = 0.7 \times Full \ capacity \\ F(No \ damage) = 1.0 \times Full \ capacity \end{array}$

Uncertainty quantification of flow capacity

 Capacity distribution for a given seismic intensity (M=7.0)

□ Statistical parameters of flow capacity (M=6.0~8.5)

$$\mu_{Q} = \mathbf{p}^{\mathrm{T}} \mathbf{f}$$

$$\sigma_{Q} = (\mathbf{p}^{\mathrm{T}} (\mathbf{f} \cdot \mathbf{f}) - \mu_{Q}^{2})^{1/2}$$

$$\delta_{Q} = \sigma_{Q} / \mu_{Q}$$

Probability with number of failed bridges

Analysis Results

Conditional flow capacity (For 10th bridge, M=7.0)

Analysis Results

Flow capacity with deterioration

□ Assumptions

 $P(T, Complete failure) = P(Complete failure) \times (1.0+0.0005 \times T^2)$ $P(T, Heavy damage) = P(Heavy damage) \times (1.0+0.015 \times T)$ $P(T, Moderate damage) = P(Moderate damage) \times (1.0-0.015 \times T)$ P(T, No damage) = 1 - P(T, Complete failure) - P(T, Heavy damage) - P(T, Moderate damage)

, where T:[Years]

$$\boldsymbol{\mu}_{\mathcal{Q}}(t) = \mathbf{q}^{\mathrm{T}} \mathbf{p}(t)$$

 $\sigma_Q(t) = \sqrt{(\mathbf{q} \cdot \mathbf{q})^{\mathrm{T}} \mathbf{p}(t) - \mu_Q^2(t)}$

Extension to multi-hazard environment

* Lee, Y.-J., J. Song, P. Gardoni, and H.-W. Lim. (2010). Post-hazard flow capacity of bridge transportation network considering structural deterioration of bridges, *Structure and Infrastructure Engineering*, Accepted for Publication.

- More realistic assumptions
 - Multi-state fragility estimates w.r.t. drift capacity levels
 - Attenuation relationship (PSA & PGV)
 - Deterioration fragility estimates (Choe *et al.* 2007)
 - Multi-state flow capacity level proportional to number of open lanes
 Deterioration scenarios
- Area-to-area flow capacity
- Further analysis for uncertain earthquake magnitude

Progress of Structural Deterioration (Corrosion) by Sea Air

Analysis Results

Application VI: FE system reliability analysis

* Lee, Y.-J., J. Song, and E.J. Tuegel (2008). Finite element system reliability analysis of a wing torque box. *Proc. 10th AIAA NDA*, April 7-10, Schaumburg, IL.

- FE reliability analysis: component vs. system
 - System-level risk is a logical function of multiple component events characterized by failure modes, locations and load cases
 - Using MSR methods, the system-level risk and parameter sensitivities are estimated based on the results of FE "component" reliability analysis.

Example: FE-SRA of bridge pylon system

- Bridge pylon system
 - Consists of 2 arms each has 13 stiffeners and 23 diaphragms
 - Yielding failure considered in this example
 - Uncertainties in <u>Young's modulus</u>, <u>yield strength</u> and <u>scale factors of load</u> <u>cases</u> (dead, live, in-service wind and out-of-service wind loads) considered
 - Two load combinations considered: LC1 = D+L+Wi, LC2 = D+Wo

FE component reliability analysis

	Component event	Failure probability (\times 10 ⁻⁴)
(E_1 (LC1; 1 st spot on right body)	1.295
Components identified Truncated due to high correlation	E_2 (LC1; 1 st spot on left body)	1.295
	E_3 (LC1; 1 st spot on right stiffener)	0.606
	E_4 (LC1; 1 st spot on left stiffener)	0.606
	E_5 (LC2; 1 st spot on right body)	6.996
	E_6 (LC2; 1 st spot on left body)	6.996
	E_7 (LC2; 1 st spot on right stiffener)	2.445
	E_8 (LC2; 1 st spot on left stiffener)	2.445
	E_9 (LC1; 2 nd spot on right body)	0.430
	E_{10} (LC1; 2 nd spot on left body)	0.430
	E_{11} (LC2; 2 nd spot on right body)	4.044
	E_{12} (LC2; 2 nd spot on left body)	4.044

Identification of significant components

- Deterministic FE analysis using the mean values of random variables \rightarrow identify "hot spots" for each load combination
- FE reliability analysis for identified "hot spots" by FORM \rightarrow neglect if (1) Pf is too low or (2) highly correlated with other (more likely) component events

Correlation between components

Correlation b/w components are computed by $\rho_{ii} = \hat{\alpha}_i^{\mathrm{T}} \hat{\alpha}_i$

Correlation	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8
E_1	1	0.814	0.708	0.744	0.646	0.502	0.448	0.476
E_2		1	0.744	0.708	0.502	0.646	0.476	0.448
E_3			1	0.683	0.423	0.451	0.680	0.429
E_4				1	0.451	0.423	0.429	0.680
E_5					1	0.887	0.820	0.842
E_6						1	0.842	0.820
E_7		S	Symmetri	c			1	0.801
E_8								1

FE system reliability analysis by MSR

FE-SRA by MSR

- Probability of most dominant component: 6.996x10⁻⁴ vs. system failure probability 1.550x10⁻³ → component reliability analysis may underestimate the risk significantly
- Using component failure probability and sensitivity, the MSR method computes the system level parameter sensitivity
- Can analyze other system events just by replacing event vector c

$$P(E_{sys}) = P\left(\bigcup_{i=1}^{8} E_{i}\right) \cong P\left[\bigcup_{i=1}^{8} \beta_{i} - Z_{i} \le 0\right]$$
$$= \int_{\Omega} \varphi_{N}(\mathbf{z}; \mathbf{R}) d\mathbf{z}$$
$$= \int_{\mathbf{s}} \mathbf{c}^{\mathrm{T}} \mathbf{p}(\mathbf{s}) f_{\mathbf{s}}(\mathbf{s}) d\mathbf{s}$$

Random variables		$\delta_i = \frac{\partial P_1}{\partial \mu_i} \sigma_i$	$\eta_i = \frac{\partial P_1}{\partial \sigma_i} \sigma_i$
Young's modulus	Diaphragm (Left)	-0.0004	0
	Diaphragm (Right)	-0.0003	0
	Body (Left)	-0.6480	1.8018
	Body (Right)	-0.6624	1.8159
	Stiffener (Left)	0.3463	1.3114
	Stiffener (Right)	0.3558	1.3198
	Dead load	0.5130	0.0171
	Live load	2.1175	1.8348
Load scale factor	In-service wind load (In-plane)	2.9923	14.873
	In-service wind load (Out-of-plane)	0.4900	1.9121
	Out-of-service wind load (In-plane)	13.989	66.648
	Out-of-service wind load (Out-of-plane)	2.3301	8.599
Yield strength	Body (Left)	-8.0319	8.8381
	Stiffener (Left)	-2.5299	2.925
	Body (Right)	-8.0583	8.8729
	Stiffener (Right)	-2.5132	2.9001

App. VII: Reliability-Based Design Optimization

System RBDO by MSR method

RBDO of Truss system: Minimize the cross section areas under target failure probability of system collapse

Using MSR method, we can consider

- Effects of load re-distributions (sequential failures)
- Effects of correlation between components

Nguyen, T.H., J. Song, and G.H. Paulino (2010). "Single-loop system reliability-based design optimization using matrix-based system reliability method: theory and applications," J. of Mechanical Design, ASME, Vol. 132, 011005-1~11.

System RBTO by MSR method

RBTO of 2D or 3D continuum: Minimize the volume or compliance under target failure probability of *system* failure

Nguyen, T.H., Paulino, G.H., and Song, J., and Le, C.H., "A Computational Paradigm for Multiresolution Topology Optimization (MTOP)," *Structural and Multidisciplinary Optimization*, vol. 41(4), 525-539.

457.646 Topics in Structural Reliability In-Class Material: Class 18

Multivariate normal integrals

$$\mathbf{Z} \sim N(\mathbf{0}; \mathbf{R})$$

$$F(\mathbf{a},\mathbf{b};\mathbf{R}) = \int_{a_1}^{b_1} \cdots \int_{a_m}^{b_m} d\mathbf{z}$$

If $a_i = -\infty$, $i = 1, \dots, m$, it becomes Joint

$$\Phi_m(b_1,\cdots,b_m;\mathbf{R}) = \int_{-\infty}^{b_1}\cdots\int_{-\infty}^{b_m} d\mathbf{z}$$

$$m = 2$$
: $\Phi_2(b_1, b_2; \rho_{12}) =$

$$+\int_{0}^{\rho_{12}}\varphi_{2}(b_{1},b_{2};)d\rho$$

_____ assumption error by _____ assumption

Note: double-fold integral involving $(-\infty, b_i) \Rightarrow$ single-fold integral in $(0, \rho_{12})$

Note: $\rho_{12} > 0$: s.i assumption under/overestimate

 ρ_{12} < 0: s.i assumption under/overestimate

m = 3 Song & ADK (2005) double-fold integral

II) Sequentially Conditioned Importance Sampling (SCIS)

(Ambartzumian et al. 1998)

~sequentially sampling based on conditional PDF

given sampled value

~"scis.m" (developed by Prof. Young Joo Lee at UNIST available at <u>http://systemreliability.wordpress.com/software/</u>

of $\mathbf{Z} \sim N(0; \mathbf{R})$

III) Product of Conditional Marginals (Pandey & Sarkar 2002)

$$\Phi_m(\mathbf{b};\mathbf{R}) \cong \prod_{k=1}^m \Phi\left(\frac{b_k - \mu_{k|k-1}}{\sigma_{k|k-1}}\right)$$

- \rightarrow reasonable accuracy & very efficient
- \rightarrow parallel or series
- \rightarrow error \uparrow as $m \uparrow$
- \rightarrow Improved PCM (Yuan & Pandey 2006)

IV) Sequential Compounding Method (Kang & Song 2010)

- \rightarrow applicable to <u>general</u> system
- \rightarrow efficient and accurate
- \rightarrow handle large *m*
- $\rightarrow\,$ when the same component event appears multiple times $\,\rightarrow\,$ difficult

→ parameter sensitivity of system reliability using SCM (Chun, Song, and Paulino, 2015, *Structural Safety*)

- V) Matrix-based System Reliability (MSR) Method (Kang & Song 2008) (Kang et al. 2012)
- VI) Method by Genz (1992) <u>http://www.math.wsu.edu/faculty/genz/homepage</u> Transformations to uniform hypercube

- \rightarrow Parallel system
- \rightarrow Very accurate & efficient even for large-size system
- \rightarrow Integration by qusai-MCS
- \rightarrow mvncdf.m in Matlab

Genz, A., and Bretz, F. (2009) *Computation of Multivariate Normal and t Probabilities, Lecture Notes in Statistics*, Springer-Verlag, NY.