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 FORM approximation (Hohenbichler & Rackwitz 1983) 

① Series system 
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② Parallel system 
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→ may have huge errors due to curvatures 

→   better linearization point?  

   “joint design point” 

   Hard to find or may not exist 

Note: One could find such important domain using an adaptive sampling technique 

Kurtz, N., and J. Song (2013). Cross-entropy-based adaptive importance sampling 

using Gaussian mixture. Structural Safety. Vol. 42, 35-44. 

 

③ General system? 

⇒ No direct FORM approximation 
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Matrix-based Formulation

 Matrix-based formulation of system failure:
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 c: “event” vector
~ describes the system event of interest

 p: “probability” vector
~ likelihood of component joint failures



Identification of event vector, c

 Matrix-based event operations:

 Efficient and easy to implement by matrix-based 
computing languages, e.g. Matlab® , Octave

 Can construct directly from event vectors of components 
and other system events

 Can develop/use problem-specific algorithms to identify 
event vectors



Identification of event vector, c

 Event vectors for component events:

 0 and 1 denote the column vectors of 2(i-1) zeros and 
ones

 After C[n] is constructed, the i-th column of the matrix is 
the event vector of the i-th component event.
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Computation of probability vector, p

 Iterative matrix-based procedure for
statistically independent (s.i.) components
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Statistical dependence b/w components

 By total probability theorem,

 Utilize conditional s.i. of components given an outcome 
of random variables S causing component dependence
e.g. Earthquake magnitude for a bridge system

 Event vector c is independent of this consideration ~ no 
need to construct the probability vector for new system 
events
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“What if not explicitly identified?”

 Example: approximation by Dunnett-Sobel (DS) 
correlation matrix (1955)

 Zi, i=1,…,n are conditional s.i. given S=s

 Fit the given correlation matrix with a DS correlation matrix 
with the least square error

 Generalized DS model (Song and Kang, Structural Safety)
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Conditional prob./importance measure

 Conditional probability Importance Measure (CIM)
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 Once the system reliability is done, only additional task is to 
find the event vector for a new system event



Parameter sensitivity of system reliability

 Statistically independent components

 Statistically dependent components
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parameter related to 
common source.

* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System 

Reliability Method,” Structural Safety, Vol. 31(2), 148-156.
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Appl. I: Connectivity of a transportation network

 Post-earthquake disconnection from the critical facility

 Fragilities for bridges (Gardoni et al. 2003)

 Deterministic attenuation relationship used

 For given magnitude, the bridge component failures are 
conditional s.i.

single -bent

two-bent

* Kang, W.-H., J. Song, and P. Gardoni (2008) “Matrix-based system reliability method and applications to bridge 

networks,” Reliability Engineering & System Safety, Vol. 93, 1584-1593.



Connectivity of a transportation network
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Connectivity of a transportation network

)()( T mEP sys pc

Conditional probability of disconnection of counties Prob (No. of failed bridges ≥ k)
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Connectivity of a transportation network

)(min(max) T mpc

Bounds on P(City 5 disconnected) Importance measure of components
w.r.t. the likelihood of at least a disconnection(No information on Bridge 12)
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Appl. II: Damage of a bridge structural system

 Nielson (2005) developed analytical fragilities of bridge 
components such as bearings, abutments and columns

 Identified the statistical dependence between demands

 Probability that at least one component fails (series system)

 Performed MCS to account for component dependence

©  B.G. Nielson (2005)
©  B.G. Nielson (2005)

* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System 

Reliability Method,” Structural Safety, Vol. 31(2), 148-156.



Damage of a bridge structural system
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* Fitting by DS-class corr. matrix: average of percentage error ~ 3%



Damage of a bridge structural system
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Appl. III: Progressive failure of a truss structure
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* Song, J. and W.-H. Kang “System Reliability and Sensitivity under Statistical Dependence by Matrix-based System 

Reliability Method,” Structural Safety, Vol. 31(2), 148-156.



Progressive failure of a truss structure
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Disjoint link sets (36→11)

7 systems with 6 components

Perfect correlation



Progressive failure of a truss structure
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Appl. IV: Multi-scale SRA of lifeline networks

* Song, J., and S.-Y. Ok (2010). Multi-scale system reliability analysis of lifeline networks under earthquake hazards. Earthquake 

Engineering and Structural Dynamics, Vol. 39(3), 259-279.

 “Divide and Conquer” approach

 Lower-scale system reliability analyses 
are performed for “supercomponents” 
and followed by higher-scale system 
reliability analyses

 Proposed to facilitate the use of LP 
bounds method (Song and Der 
Kiureghian, 2003) for large-size systems

 MSR method is a good tool for SRA at 
multiple scales

 Advantages

 Multi-scale modeling of a system –
seeing big picture without disregarding 
the details

 Helps identify important components 
and parameters at multiple scales

 Collaborative risk management

 Facilitates parallel computing 



Example: MLGW gas network
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Simplified MLGW Gas Network (37-node)
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 Gas pipeline network of Memphis Light, Gas, and Water (MLGW), Shelby County, TN

 A simplified network in Chang et al. (1996) was modified based on comments from R. 
Bowker (MLGW)

 37-node and 40-arc network: nodes representing pipelines and stations

 Earthquake hazard scenarios: Epicenter at N35.54o-W90.43o at Blytheville, AR

 Fragilities of pipelines and stations – HAZUS-MH

 PGV and PGA maps from MAEviz



Failure prob. of pipeline segments
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Multi-scale SRA using MSR Method
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Correlation between pipelines
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Failure probability of Link 25

Risk at multiple scales
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Simplified MLGW Gas Network (37-node)
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Probabilistic inference and sensitivity
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Simplified MLGW Gas Network (37-node)
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Appl. V: Post-hazard flow capacity of a network

Example: Modified Sioux-Falls network
Red: bridges; Circles: Starting & Ending points

 Traffic flow capacity between two points in a 

network  determined by combinations of 

bridge damage

: a vector of network flow capacity for

bridge failure combinations (obtained by

maximum flow capacity analysis)

: average post-hazard flow 

capacity

: variance of post-hazard flow capacity

: probability that flow capacity is lower 

than a
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Multi-state Fragility

 Fragility curves (Gardoni et al. 2002, 2003)

P(Complete failure) = 0.3×Pf

P(Heavy damage) = 0.45×Pf

P(Moderate damage) = 0.25×Pf

P(No damage) = 1-Pf

F(Complete failure) = 0

F(Heavy damage) = 0.3×Full capacity

F(Moderate damage) = 0.7×Full capacity

F(No damage) = 1.0×Full capacity

⇒ Only two states, “connected” or “disconnected”



Uncertainty quantification of flow capacity
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Analysis Results

 Probability with number of failed bridges
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Analysis Results

 Conditional flow capacity (For 10th bridge, M=7.0)

Parameter Value

Mean 6591.9 (8076.3)

Standard deviation 1268.9 (1056.6)

C.O.V. 0.1925 (0.1308)

 Importance measure for all bridges (M=7.0)
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Analysis Results

 Flow capacity with deterioration
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P(T, Complete failure)

= P(Complete failure) × (1.0+0.0005× T2)

P(T, Heavy damage)

= P(Heavy damage) × (1.0+0.015× T)

P(T, Moderate damage)

= P(Moderate damage) × (1.0-0.015× T)

P(T, No damage) = 1 - P(T, Complete failure)

- P(T, Heavy damage)

- P(T, Moderate damage)

, where T:[Years]



Extension to multi-hazard environment
* Lee, Y.-J., J. Song, P. Gardoni, and H.-W. Lim. (2010). Post-hazard flow capacity of bridge transportation network considering 

structural deterioration of bridges, Structure and Infrastructure Engineering, Accepted for Publication.
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 More realistic assumptions
- Multi-state fragility estimates w.r.t. 

drift capacity levels

- Attenuation relationship (PSA & PGV)

- Deterioration fragility estimates (Choe 

et al. 2007)

- Multi-state flow capacity level

proportional to number of open lanes

- Deterioration scenarios

 Area-to-area flow capacity

 Further analysis for uncertain 

earthquake magnitude



Analysis Results
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Application VI: FE system reliability analysis

 FE reliability analysis: component vs. system

 System-level risk is a logical function of multiple component events 
characterized by failure modes, locations and load cases

 Using MSR methods, the system-level risk and parameter sensitivities
are estimated based on the results of FE “component” reliability analysis.

* Lee, Y.-J., J. Song, and E.J. Tuegel (2008). Finite element system reliability analysis of a wing torque box. Proc. 10th AIAA NDA, 

April 7-10, Schaumburg, IL.

1.Mechanical structures 
(single-nut piston)

2. Aerospace structures
(wing torque box)

3.Civil 
structures
(Bridge 
pylon)

1 2



Example: FE-SRA of bridge pylon system

 Bridge pylon system

 Consists of 2 arms – each has 13 stiffeners and 23 diaphragms

 Yielding failure considered in this example

 Uncertainties in Young’s modulus, yield strength and scale factors of load 
cases (dead, live, in-service wind and out-of-service wind loads) considered

 Two load combinations considered: LC1 = D+L+Wi, LC2 = D+Wo



FE component reliability analysis

 Identification of significant components
 Deterministic FE analysis using the mean values 

of random variables  identify “hot spots” for 
each load combination

 FE reliability analysis for identified “hot spots” by 
FORM  neglect if (1) Pf is too low or (2) highly 
correlated with other (more likely) component 
events

Component event Failure probability (× 10–4)

E1 (LC1; 1st spot on right body) 1.295

E2 (LC1; 1st spot on left body) 1.295

E3 (LC1; 1st spot on right stiffener) 0.606

E4 (LC1; 1st spot on left stiffener) 0.606

E5 (LC2; 1st spot on right body) 6.996

E6 (LC2; 1st spot on left body) 6.996

E7 (LC2; 1st spot on right stiffener) 2.445

E8 (LC2; 1st spot on left stiffener) 2.445

E9 (LC1; 2nd spot on right body) 0.430

E10 (LC1; 2nd spot on left body) 0.430

E11 (LC2; 2nd spot on right body) 4.044

E12 (LC2; 2nd spot on left body) 4.044

Correlation E1 E2 E3 E4 E5 E6 E7 E8

E1 1 0.814 0.708 0.744 0.646 0.502 0.448 0.476

E2 1 0.744 0.708 0.502 0.646 0.476 0.448

E3 1 0.683 0.423 0.451 0.680 0.429

E4 1 0.451 0.423 0.429 0.680

E5 1 0.887 0.820 0.842

E6 1 0.842 0.820

E7 Symmetric 1 0.801

E8 1

Components 

identified

Truncated due to 

high correlation

jiij
 ˆˆ T

 Correlation between components
 Correlation b/w components are computed by



FE system reliability analysis by MSR

 FE-SRA by MSR
 Probability of most dominant component: 

6.996x10-4 vs. system failure probability 1.550x10-3

 component reliability analysis may 
underestimate the risk significantly

 Using component failure probability and sensitivity, 
the MSR method computes the system level 
parameter sensitivity

 Can analyze other system events just by replacing 
event vector c
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Uni-bounds

Bi-bounds

Random variables i
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 1  

i

i
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 1  

Diaphragm (Left) -0.0004 0 

Diaphragm (Right) -0.0003 0 

Body (Left) -0.6480 1.8018 

Body (Right) -0.6624 1.8159 

Stiffener (Left) 0.3463 1.3114 

Young’s 

modulus 

Stiffener (Right) 0.3558 1.3198 

Dead load 0.5130 0.0171 

Live load 2.1175 1.8348 

In-service wind load 

(In-plane) 
2.9923 14.873 

In-service wind load 

(Out-of-plane) 
0.4900 1.9121 

Out-of-service wind load 

(In-plane) 
13.989 66.648 

Load 

scale 

factor 

Out-of-service wind load 

(Out-of-plane) 
2.3301 8.599 

Body (Left) -8.0319 8.8381 

Stiffener (Left) -2.5299 2.925 

Body (Right) -8.0583 8.8729 

Yield 

strength  

Stiffener (Right) -2.5132 2.9001 
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High  probability

of failure 

>> Deterministic Optimization

>> Reliability-Based Design 
Optimization (RBDO) 

Low  probability

of failure 

( , )f Xd μ

Safe

Objective function    
increase

Unsafe

App. VII: Reliability-Based Design Optimization



RBDO of Truss system: Minimize the cross section areas under target failure probability of 
system collapse

Using MSR method, we can consider

• Effects of load re-distributions (sequential failures)

• Effects of correlation between components
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System RBDO by MSR method

Nguyen, T.H., J. Song, and G.H. Paulino (2010). “Single-loop system reliability-based design optimization using matrix-based system reliability method: theory 
and applications,” J. of Mechanical Design, ASME, Vol. 132, 011005-1~11.



RBTO of 2D or 3D continuum: Minimize the volume or compliance under target failure 
probability of system failure

System RBTO by MSR method
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Nguyen, T.H., Paulino, G.H., and Song, J., and Le, C.H., “A Computational Paradigm for Multiresolution Topology Optimization (MTOP),” Structural and 
Multidisciplinary Optimization, vol. 41(4), 525-539.



Seoul National University                                              Instructor: Junho Song 

Dept. of Civil and Environmental Engineering                             junhosong@snu.ac.kr 

457.646 Topics in Structural Reliability 

In-Class Material: Class 18 

 

 Multivariate normal integrals 

~ ( ; )NZ 0 R
  

( , )F a b;R  
1

1

               
m

m

bb

a a

d   z  

If ia   , 1, ,i m , it becomes Joint          of 𝐙~𝑁(0; R) 

1( , , )m mb b ;R  
1

               
mbb

d
 

   z  

 

I) Ditlevsen & Madsen (1996) 

2m  : 

12ρ

2 1 2 12 2 1 2

0

( , )                                 + φ ( , ;    ) ρb b b b d  ;  

                     ________ assumption   error by ________ assumption 

Note: double-fold integral involving ( , )ib  ⇒ single-fold integral in 12(0, )  

Note: 12 0  : s.i assumption under/overestimate 

 12 0  : s.i assumption under/overestimate 

※ 3m    Song & ADK (2005) double-fold integral 

 

II) Sequentially Conditioned Importance Sampling (SCIS) 

(Ambartzumian et al. 1998) 

~sequentially sampling based on conditional PDF 

 given sampled value 

~”scis.m” (developed by Prof. Young Joo Lee at UNIST 

available at http://systemreliability.wordpress.com/software/ 
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III) Product of Conditional Marginals (Pandey & Sarkar 2002) 

1

1 1

μ
( )

σ

m
k k k

m

k k k

b


 

 
   
 
 

b;R  

→ reasonable accuracy & very efficient 

→ parallel or series 

→ error↑ as m↑ 

→ Improved PCM (Yuan & Pandey 2006) 

 

IV) Sequential Compounding Method (Kang & Song 2010) 

 1 1 2 2 3 3( ) ( ) ( )Z Z Z          

 

     3,A A AZ               B BZ     

→ applicable to general system 

→ efficient and accurate 

→ handle large m 

→ when the same component event appears multiple times → difficult 

→ parameter sensitivity of system reliability using SCM (Chun, Song, and Paulino, 

2015, Structural Safety) 

 

V) Matrix-based System Reliability (MSR) Method (Kang & Song 2008) (Kang et al. 

2012) 

 

VI) Method by Genz (1992)  

Transformations to uniform hypercube  

http://www.math.wsu.edu/faculty/genz/homepage 

file:///C:/Users/Choi/Documents/junhosong@snu.ac.kr
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→ Parallel system 

→ Very accurate & efficient even for large-size system 

→ Integration by qusai-MCS 

→ mvncdf.m in Matlab 

Genz, A., and Bretz, F. (2009) Computation of Multivariate Normal and t Probabilities, 

Lecture Notes in Statistics, Springer-Verlag, NY. 
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