M1586.002500 Information Engineering for CE Engineers In-Class Material: Class 17

Instructor: Junho Song junhosong@snu.ac.kr

Linear Model Selection and Regularization (ISL Chapter 6)

1. High-Dimensional Data

(a) Definition

The number of features, p is larger than that of observations, n. The consideration about high-dimension setting also applies when p is slightly smaller than n

(b) The limits of most traditional statistical techniques for regression and classification

Consider a low-dimensional setting in which the number of observations, n is much greater than the number of features p (left)

Least squares regression with n = 20 and n = 2

When p > n or $p \approx n$ (right), even a simple least squares regression line can be too **flexible** and hence may **overfit** the data

(c) As more features are included, the \mathbb{R}^2 increases to 1, the training set MSE decreases to 0, but the test set MSE increases

(d) "Model selection" method in the high-dimensional setting

In the high-dimensional setting, one should never use traditional measures such as p-value, R^2 statistics, C_n , AIC, and BIC.

Instructor: Junho Song

junhosong@snu.ac.kr

It is so simple to obtain a model with $R^2 = 1$ when p > n, whereas this provides absolutely no evidence of having a compelling model

2. Regression in High Dimensions

- (a) Less flexible least squares models are useful for performing regression in the highdimensional setting
 - e.g. Ridge regression, the Lasso, and principal components regression
 - → These approaches avoid overfitting by using a less flexible fitting approach than least squares
- (b) Consider the test MSE of Lasso regressions from n=100 observations. In this simulated example, 20 of the predictors are actually associated with the response.

In each boxplot, the degree of freedom, i.e. the number of non-zero coefficient estimates, is displayed rather than reporting the values of λ used. The figure highlights three important points:

- ① Shrinkage (regularization) plays a key role in high-dimensional problems
- ② Appropriate tuning parameter selection is crucial for good predictive performance
- ③ The test error tends to increase as the dimensionality of the problem increase, unless the additional features are truly associated with the response → curse of dimensionality
- (c) **Curse of dimensionality**: Adding noise features unrelated with the response will lead to a deterioration of the model

3. Interpreting results in High Dimensions

- (a) In the high-dimensional setting, the *multicollinearity* problem that the variables in a regression is correlated with each other can be extreme
 - → Multicollinearity: Any variable in the model can be written as a linear combination of others

Instructor: Junho Song

junhosong@snu.ac.kr

- (b) It is impossible to know exactly which variables truly are predictive of the outcome, and identify the best coefficients
- (c) One can incorrectly conclude that a model predict more effectively than the other models in the high-dimensional setting
 - There may be many sets of the same number of components that would predict response *Y* just as well as the selected model
 - This does not disparage the value of the model obtained, but it is one of many effective models
 - It must be further validated on independent data sets

M1586.002500 Information Engineering for CE Engineers In-Class Material: Class 18 Moving Beyond Linearity (ISL Chapter 7)

Instructor: Junho Song

junhosong@snu.ac.kr

Problem: Standard "Linear" regression can have limitation in prediction power

Question: How can we improve regression models beyond linearity?

→ "Extensions of linear models" e.g. polynomial regression, regression splines

1. Polynomial regression

(a) The standard linear relationship between *X* and *Y*,

$$Y = \beta_0 + \beta_1 X + \epsilon$$

can be extended by adding extra predictors defined as polynomial functions, i.e.

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \dots + \beta_d X^d + \epsilon$$

- X, X^2 , ..., X^d : the "predictor" variables allow us to augment the inputs with polynomial terms to achieve higher-order Taylor expansions
- d: degree of freedom which determines the complexity of model

 \rightarrow e.g. d=3: cubic polynomial regression

- Polynomial curve can become "overly flexible" and/or "extremely non-linear" curve for too large degree *d* (See plots on the next page)
- (b) Estimation of coefficients β_i

In the same way of linear regression, the model coefficients β_i is calculated using least squares estimator:

$$RSS = \sum_{i=1}^{n} e_i^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \dots \hat{\beta}_d x_i^d)^2$$

Find each $\hat{\beta}_i$ (i = 1, ..., d) that minimize RSS $\rightarrow \frac{\partial RSS}{\partial \hat{\beta}_i} = 0$


```
library(MASS) # MASS library
fix(Boston) # Load 'Boston' data
attach(Boston)
lm.fit = lm(nox ~ poly(dis, 3), data = Boston)
# Fit a cubic polynomial regression with degree 3 (we can change the
    degree d from 3 to any number)
summary(lm.fit) # show more detailed information
dislim = range(dis)
dis.grid = seq(from = dislim[1], to = dislim[2], by = 0.1)
lm.pred = predict(lm.fit, list(dis = dis.grid))
plot(nox ~ dis, data = Boston, col = "darkgrey") # scatter plot
lines(dis.grid, lm.pred, col = "red", lwd = 2)
# polynomial regression line
```

2. Step functions

(a) "Step function": Convert a continuous variables into an *ordered categorical* variable with constructing K cut points c_i , and K+1 new variables $C_i(X)$.

$$C_0(X) = I(X < c_1)$$

$$C_1(X) = I(c_1 \le X < c_2)$$

$$\vdots$$

$$C_K(X) = I(c_K \le X)$$

- $\rightarrow I(\cdot)$ is an "indicator function" that returns a 1 if the condition is true, and 0 otherwise.
- \rightarrow $C_0(X) + C_1(X) + \cdots + C_K(X) = 1$, since point X must be in exactly one of the K+1 intervals.

Basic intuition: Break the range of *X* into *bins*, and fit a different constant in each bin.

(b) Regression model:

$$Y = \beta_0 + \beta_1 C_1(X) + \beta_2 C_2(X) + \dots + \beta_K C_K(X) + \epsilon$$

 $\rightarrow \beta_0$ can be interpreted as the mean value of Y for $X < c_1$, and β_j represents the average increase in the response for X in $c_j \le X < c_{j+1}$ relative to $X < c_1$.

Note: $C_0(X)$, $C_1(X)$, ..., $C_K(X)$ are the predictor

- (c) How to choose the breakpoints in the predictors?
 - → Use cross-validation approaches, as discussed in CM 12-13

Instructor: Junho Song junhosong@snu.ac.kr

\rightarrow The **degree of freedom** d is determined in polynomial regression

→ The **number of cuts** is determined in step function regression

```
library(ISLR) # ISLR library
library(boot) # boot library

## CV - Step
Cvs <- rep(NA, 10)
for (i in 2:10) {
    Wage$age.cut <- cut(wage$age, i)
    fit <- glm(wage ~ age.cut, data = Wage)
    cvs[i] <- cv.glm(wage, fit, K = 10)$delta[1]
}
plot(2:10, cvs[-1], xlab = "Number of Cuts", ylab = "CV error", type = "l")
d.min <- which.min(cvs)
points(d.min, cvs[d.min], col = "red", cex = 2, pch = 20)

## step plot
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- glm(wage ~ cut(age, 8), data = wage)
preds <- predict(fit, data.frame(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)

# For CV of polynomial regression, see R codes at eTL</pre>
```

3. Regression splines

(a) "Basis functions":

$$Y = \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \dots + \beta_n b_n(X) + \epsilon$$

- $\beta_0, \beta_1, ..., \beta_n$: "model coefficient" $b_1(X), b_2(X), ..., b_n(X)$: "basis function"
- For polynomial regression: $b_i(X) = X^j$, step functions: $b_i(X) = C_i(X)$.
 - → Many alternatives are possible (e.g. wavelets or Fourier series)

Note: The basis functions $b_1(X), b_2(X), ..., b_K(X)$ are fixed and known in many cases.

(b) Regression Splines:

Basic intuition: Instead of fitting a high-level polynomial, fit separate low-degree polynomials over different regions of X.

The extension of previous regression:

- \rightarrow Dividing the range of X in K distinct regions with polynomial functions
- → The polynomials are **constrained** so that they join smoothly at the region boundaries, or knots

Instructor: Junho Song junhosong@snu.ac.kr

For example, a piecewise "cubic" with a single knot at a point c takes the form:

$$Y = \begin{cases} \beta_{01} + \beta_{11}X + \beta_{21}X^2 + \beta_{31}X^3 + \epsilon & \text{if } X < c \\ \beta_{02} + \beta_{12}X + \beta_{22}X^2 + \beta_{32}X^3 + \epsilon & \text{if } X \ge c \end{cases}$$

Instructor: Junho Song junhosong@snu.ac.kr

(c) Degree of freedom d for splines

To fit **continuous** and **smooth**, degree-d splines is a piecewise degree-d polynomial, with continuity in derivatives up to degree d-1 at each knot.

Note: Each constraint effectively frees up **one** degree, by reducing the complexity of the resulting piecewise polynomial fit. (→ Compatibility condition)

Then, how to represent the general regression mode?

→ The most direct way to represent a cubic spline is a "truncated power basis function"

$$h(X,\xi) = (X-\xi)_+^3 = \begin{cases} (X-\xi)^3 & \text{if } X > \xi \\ 0 & \text{if otherwise,} \end{cases}$$

A "cubic" spline with K knots can be modeled as (ξ_K is K-th knot)

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 h(X, \xi_1) + \dots + \beta_{K+3} h(X, \xi_K) + \epsilon$$

→ The function remain continuous, with continuous first and second derivatives, at each of the knots.

Note: Total K + 4 degrees of freedom \rightarrow 1 intercept + (K + 3) predictors

→ Regression spline with 4 intervals (knots at [4,7,11])

```
library(MASS) # MASS library
attach(Boston)
library(splines) # splines library
dislims <- range(Boston$dis)
dis.grid <- seq(from = dislims[1], to = dislims[2], by = 0.1)
fit <- lm(nox ~ bs(dis, df = 4, knots = c(4, 7, 11)), data = Boston)
# Use the "bs()" function to fit a regression spline
summary(fit) # Report summary
sp.pred <- predict(fit, list(dis = dis.grid))
plot(nox ~ dis, data = Boston, col = "darkgrey")
lines(dis.grid, sp.pred, col = "red", lwd = 2) # Plot regression splines</pre>
```