
Seoul National University                                                                                         Instructor: Junho Song 
Dept. of Civil and Environmental Engineering                                                           junhosong@snu.ac.kr 

 

 1 

M1586.002500 Information Engineering for CE Engineers 

In-Class Material: Class 17 

Linear Model Selection and Regularization (ISL Chapter 6) 

 
 
1. High-Dimensional Data 

(a) Definition 

The number of features, 𝑝 is larger than that of observations, 𝑛. The consideration 

about high-dimension setting also applies when 𝑝 is slightly smaller than 𝑛 

(b) The limits of most traditional statistical techniques for regression and classification 
 

Consider a low-dimensional setting in which the number of observations, 𝑛 is much 

greater than the number of features 𝑝 (left) 
 

 
Least squares regression with 𝒏 = 𝟐𝟎 and 𝒏 = 𝟐 

 

When 𝑝 > 𝑛 or 𝑝 ≈ 𝑛 (right), even a simple least squares regression line can be too 
flexible and hence may overfit the data 
 

 
 

(c) As more features are included, the 𝑅2 increases to 1, the training set MSE decreases 
to 0, but the test set MSE increases 
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(d) “Model selection” method in the high-dimensional setting 

In the high-dimensional setting, one should never use traditional measures such as p-

value, 𝑅2 statistics, 𝐶𝑝, AIC, and BIC. 

 

It is so simple to obtain a model with 𝑅2 = 1 when 𝑝 > 𝑛, whereas this provides 
absolutely no evidence of having a compelling model 

 
2. Regression in High Dimensions 
 

(a) Less flexible least squares models are useful for performing regression in the high-
dimensional setting 
 

  e.g. Ridge regression, the Lasso, and principal components regression 
 
   These approaches avoid overfitting by using a less flexible fitting approach than 

least squares 
 

(b) Consider the test MSE of Lasso regressions from 𝑛 = 100 observations. In this 
simulated example, 20 of the predictors are actually associated with the response. 

 

 
  

 
In each boxplot, the degree of freedom, i.e. the number of non-zero coefficient 

estimates, is displayed rather than reporting the values of 𝜆 used. The figure highlights 
three important points: 
 

① Shrinkage (regularization) plays a key role in high-dimensional problems 

② Appropriate tuning parameter selection is crucial for good predictive performance 

③ The test error tends to increase as the dimensionality of the problem increase, 
unless the additional features are truly associated with the response  curse of 
dimensionality 

 
(c) Curse of dimensionality: Adding noise features unrelated with the response will lead 

to a deterioration of the model 
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3. Interpreting results in High Dimensions 
 

(a) In the high-dimensional setting, the multicollinearity problem that the variables in a 
regression is correlated with each other can be extreme 
 
  Multicollinearity: Any variable in the model can be written as a linear combination 
of others 

 
(b) It is impossible to know exactly which variables truly are predictive of the outcome, and 

identify the best coefficients 
 

(c) One can incorrectly conclude that a model predict more effectively than the other 
models in the high-dimensional setting 
 
- There may be many sets of the same number of components that would predict 

response 𝑌 just as well as the selected model 
 

- This does not disparage the value of the model obtained, but it is one of many 
effective models 
 

- It must be further validated on independent data sets 
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M1586.002500 Information Engineering for CE Engineers 

In-Class Material: Class 18 

Moving Beyond Linearity (ISL Chapter 7) 

 
 
 Problem: Standard “Linear” regression can have limitation in prediction power 

 Question: How can we improve regression models beyond linearity? 

  “Extensions of linear models” e.g. polynomial regression, regression splines 

 
 
1. Polynomial regression 

(a) The standard linear relationship between 𝑋 and 𝑌, 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 

  can be extended by adding extra predictors defined as polynomial functions, i.e. 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑑𝑋𝑑 + 𝜖 

 

- 𝑋, 𝑋2, … , 𝑋𝑑: the “predictor” variables allow us to augment the inputs with polynomial 
terms to achieve higher-order Taylor expansions 

- 𝑑: degree of freedom which determines the complexity of model 

 e.g.  𝑑 = 3 : cubic polynomial regression 

- Polynomial curve can become “overly flexible” and/or “extremely non-linear” curve 

for too large degree 𝑑 (See plots on the next page) 

 

(b) Estimation of coefficients 𝛽𝑖 

In the same way of linear regression, the model coefficients 𝛽𝑖  is calculated using least 
squares estimator: 

 

𝑅𝑆𝑆 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

 

= ∑(𝑦𝑖 − 𝛽̂0 − 𝛽̂1𝑥𝑖 − ⋯ 𝛽̂𝑑𝑥𝑖
𝑑)2

𝑛

𝑖=1

 

 

  Find each 𝛽̂i (𝑖 = 1, … , 𝑑) that minimize RSS    
𝜕𝑅𝑆𝑆

𝜕𝛽̂𝑖
= 0  
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library(MASS) # MASS library 
fix(Boston) # Load ‘Boston’ data 
attach(Boston)  
lm.fit = lm(nox ~ poly(dis, 3), data = Boston) 
# Fit a cubic polynomial regression with degree 3 (we can change the 

degree d from 3 to any number) 
summary(lm.fit) # show more detailed information 
dislim = range(dis) 
dis.grid = seq(from = dislim[1], to = dislim[2], by = 0.1) 
lm.pred = predict(lm.fit, list(dis = dis.grid)) 
plot(nox ~ dis, data = Boston, col = "darkgrey") # scatter plot 
lines(dis.grid, lm.pred, col = "red", lwd = 2) 
# polynomial regression line 
 

 
 
 
 
 

Over fitting (too large 𝒅, 𝒅 = 𝟏𝟓) 

Cubic polynomial regression 

(𝒅 = 𝟑) 
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2. Step functions 
 

(a) “Step function”: Convert a continuous 
variables into an ordered categorical 
variable with constructing 𝐾 cut points 

𝑐𝑖, and 𝐾 + 1 new variables 𝐶𝑖(𝑋). 
 

           𝐶0(𝑋) = 𝐼(𝑋 < 𝑐1)  

   𝐶1(𝑋) = 𝐼(𝑐1 ≤ 𝑋 < 𝑐2) 
 

⋮    
 

                          𝐶𝐾(𝑋) = 𝐼(𝑐𝐾 ≤ 𝑋)  

 
   𝐼(⋅) is an “indicator function” that returns a 𝟏 if the condition is true, and 𝟎 otherwise. 
 

   𝐶0(𝑋) + 𝐶1(𝑋) + ⋯ + 𝐶𝐾(𝑋) = 1, since point 𝑋 must be in exactly one of the 𝐾 + 1  
intervals. 

 
    Basic intuition: Break the range of 𝑋 into bins, and fit a different constant in each bin. 

  
(b) Regression model: 

 

 
𝑌 = 𝛽0 + 𝛽1𝐶1(𝑋) + 𝛽2𝐶2(𝑋) + ⋯ + 𝛽𝐾𝐶𝐾(𝑋) + 𝜖 

 
 

 𝛽0 can be interpreted as the mean value of 𝑌 for 𝑋 < 𝑐1, and 𝛽𝑗 represents the 

average increase in the response for 𝑋  in 𝑐𝑗 ≤ 𝑋 < 𝑐𝑗+1 relative to 𝑋 < 𝑐1. 

 
Note: 𝐶0(𝑋), 𝐶1(𝑋), … , 𝐶𝐾(𝑋) are the predictor 

 
(c) How to choose the breakpoints in the predictors? 
 

 Use cross-validation approaches, as discussed in CM 12-13 
 
 
 
 
 
 
 
 
 
 
 

 

Cut points 𝑐𝑖 

New variable 𝐶𝑖(𝑋) 
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 The degree of freedom 𝒅 is determined in polynomial regression 
 

 The number of cuts is determined in step function regression 
 
 
 

library(ISLR) # ISLR library 
library(boot) # boot library 
 
## CV - Step 
cvs <- rep(NA, 10) 
for (i in 2:10) { 
  Wage$age.cut <- cut(Wage$age, i) 
  fit <- glm(wage ~ age.cut, data = Wage) 
  cvs[i] <- cv.glm(Wage, fit, K = 10)$delta[1] 
} 
plot(2:10, cvs[-1], xlab = "Number of Cuts", ylab = "CV error", type = "l") 
d.min <- which.min(cvs) 
points(d.min, cvs[d.min], col = "red", cex = 2, pch = 20) 
 
## step plot 
plot(wage ~ age, data = Wage, col = "darkgrey") 
agelims <- range(Wage$age) 
age.grid <- seq(from = agelims[1], to = agelims[2]) 
fit <- glm(wage ~ cut(age, 8), data = Wage) 
preds <- predict(fit, data.frame(age = age.grid)) 
lines(age.grid, preds, col = "red", lwd = 2) 
 
 
# For CV of polynomial regression, see R codes at eTL 

 

Minimum point 

Minimum point 
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3. Regression splines 
 

(a) “Basis functions”: 

 
𝑌 = 𝛽0 + 𝛽1𝑏1(𝑋) + 𝛽2𝑏2(𝑋) + ⋯ + 𝛽𝑛𝑏𝑛(𝑋) + 𝜖 

 

- 𝛽0, 𝛽1, … , 𝛽𝑛: “model coefficient” 
- 𝑏1(𝑋), 𝑏2(𝑋), … , 𝑏𝑛(𝑋): “basis function” 

 

 - For polynomial regression: 𝑏𝑗(𝑋) = 𝑋𝑗, step functions: 𝑏𝑗(𝑋) = 𝐶𝑗(𝑋). 

 Many alternatives are possible (e.g. wavelets or Fourier series) 
 
 Note: The basis functions 𝑏1(𝑋), 𝑏2(𝑋), … , 𝑏K(𝑋) are fixed and known in many cases.  
 
 

(b) Regression Splines: 
 
Basic intuition: Instead of fitting a high-level polynomial, fit separate low-degree 

polynomials over different regions of 𝑋. 
 

The extension of previous regression: 
 
 Dividing the range of 𝑋 in 𝑲 distinct regions with polynomial functions  
 The polynomials are constrained so that they join smoothly at the region 
boundaries, or knots 

 

  For example, a piecewise “cubic” with a single knot at a point 𝑐 takes the form: 
 

𝑌 = {
𝛽01 + 𝛽11𝑋 + 𝛽21𝑋2 + 𝛽31𝑋3 + 𝜖      𝑖𝑓  𝑋 < 𝑐

𝛽02 + 𝛽12𝑋 + 𝛽22𝑋2 + 𝛽32𝑋3 + 𝜖      𝑖𝑓  𝑋 ≥ 𝑐
 

 
 
 

Knots 
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(c) Degree of freedom 𝑑 for splines 
 

  To fit continuous and smooth, degree-𝑑 splines is a piecewise degree-𝑑 polynomial,  

with continuity in derivatives up to degree 𝑑 − 1 at each knot. 
 
  Note: Each constraint effectively frees up one degree, by reducing the complexity of  

the resulting piecewise polynomial fit. (→ Compatibility condition) 
 
 
  Then, how to represent the general regression mode? 
 

 The most direct way to represent a cubic spline is a “truncated power basis  
function”  

 

ℎ(𝑋, 𝜉) = (𝑋 − 𝜉)+
3 = {

 (𝑋 − 𝜉)3      𝑖𝑓  𝑋 > 𝜉          
        0             𝑖𝑓  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 
 

 
 
 
 
 
  
  
 
 
 
 
 
 

  A “cubic” spline with 𝐾 knots can be modeled as (𝜉𝐾 is 𝐾-th knot) 
 
 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4ℎ(𝑋, 𝜉1) + ⋯ + 𝛽𝐾+3ℎ(𝑋, 𝜉𝐾) + 𝜖 
 
 
   The function remain continuous, with continuous first and second derivatives, at  
       each of the knots. 
 
      Note: Total 𝐾 + 4 degrees of freedom  1 intercept + (𝐾 + 3) predictors 
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 Regression spline with 4 intervals (knots at [4,7,11]) 
 
 

library(MASS) # MASS library 
attach(Boston) 
library(splines) # splines library 
dislims <- range(Boston$dis) 
dis.grid <- seq(from = dislims[1], to = dislims[2], by = 0.1) 
fit <- lm(nox ~ bs(dis, df = 4, knots = c(4, 7, 11)), data = Boston) 
# Use the “bs()” function to fit a regression spline 
summary(fit) # Report summary 
sp.pred <- predict(fit, list(dis = dis.grid)) 
plot(nox ~ dis, data = Boston, col = "darkgrey") 
lines(dis.grid, sp.pred, col = "red", lwd = 2) # Plot regression splines 
 

 
 

Knots 
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