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 Angular neutron density = N(r,E,W,t) = N(r,v,t) 

• The expected number of neutrons at the position r with energy E and direction 
W at time t, per unit volume per unit energy per unit solid angle, e.g. per cm3

per steradian per MeV

(By defining the angular density as the expected, rather than the actual, 
number of neutrons in an element of volume in the phase space, the possibility 
of describing the fluctuations in the neutron population can be excluded.)

• N(r,E,W,t)drdEdW is the number of neutrons in the volume element dr about r, 
having energies in dE about E and directions within dW about W at time t.

 Neutron Density = n(r,E,t)

• The expected number of neutrons at r with energy E at time t, per unit volume 
per unit energy

Neutron Density
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 Neutron angular current, or vector flux, or angular current density
= vN(r,E,W,t) = vWN(r,E,W,t)

• The expected number of neutrons passing through a unit area at r having the 
normal vector of W with energy E and direction W at time t, per unit energy per 
unit solid angle in unit time

• vN(r,E,W,t)∙dAdEdWdt is the expected net number of neutrons passing through 
an area dA with energy E in dE, direction W in dW during dt at time t.

(dA = nsdA where ns is the unit vector normal to the surface)

• vN(r,E,W,t)∙dA is the number of neutrons crossing the surface element per unit 
solid angle per unit energy in unit time. (A crossing is counted as negative if  
v∙dA<0.) – Bell and Glasstone

• vN(r,E,W,t)∙dAdEdW is the expected number of neutrons passing through an 
area dA per unit time with energy E in dE, direction W in dW at time t. –
Duderstadt and Hamilton

Angular Current Density
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Q#1 Suppose that neutrons are generated from an accelerator unidirectionally with 
strength of S0 neutron/cm2·sec and speed of v.

a) What is the number of neutrons passing a unit surface (1cm2) perpendicular to the 
neutron direction in unit time?

b) When an angle between the normal direction of the slab and the neutron direction 
becomes , what is the number of neutrons passing the artificial slab in unit time?

Questions about Current Density

0

# of neutrons passing the slab in unit time 

=  [neutron/sec]S1cm

1cm

ns

Wcos

0

# of neutrons passing the slab in unit time 

= cos  [neutron/sec]S 
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 Neutron angular flux = vN(r,E,W,t) = F(r,E,W,t)

• The expected number of neutrons passing through a unit area at r having the 
normal vector of W with energy E and direction W at time t, per unit energy per 
unit solid angle in unit time

Cf. Neutron angular current = vN(r,E,W,t):

The expected number of neutrons passing through a unit area at r having the 
normal vector of W with energy E and direction W at time t, per unit energy 
per unit solid angle in unit time

• F(r,E,W,t)dAdEdWdt is the expected effective number of neutrons passing 
through an area dA with energy E in dE, direction W in dW during dt at time t.

• F(r,E,W,t)drdEdW is amount of neutron track length in a differential volume 
dr about r, associated with particles of a differential energy in dE about E, 
moving in a differential solid angle in dW about W, at time t. – Wikipedia 

Angular Flux
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 The volume average flux is defined as the sum of track lengths in a volume divided 
by the volume.

 Suppose that we are estimating the volume flux of a slab with area A and thickness 
d. When a particle having a direction of W passes the slab, the volume flux becomes

where W is the number of neutrons passing the slab in unit time.

 The surface flux can be regarded as the limiting case of the volume flux when the 
slab becomes infinitely thin. Therefore the surface flux can be expressed by

Estimation of Flux from Surface Crossing Particles
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 The angular current of a neutron of W direction on a surface of which normal 
direction is ns is defined by the number of particles that pass through a surface per 
unit area times sign(ns· W).

 Note that the surface angular flux is expressed as

 Then the angular current on the surface becomes

Estimation of Current from Surface Crossing Particles
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 Neutron current or neutron current density = J(r,E,t)

• The expected net number of neutrons passing through a unit area with energy E 
at time t, per unit energy in unit time

• J(r,E,t) ∙dAdE is the expected net number of neutrons crossing the surface 
element dA per unit time with energy E in dE at time t.

(dA = nsdA where ns is the unit vector normal to the surface)

 Neutron flux = f(r,E, t)

• The expected number of neutrons effectively passing through a unit area with 
energy E at time t, per unit energy in unit time

 f(r,E,t) dAdE is the expected effective number of neutrons passing through an 
area dA per unit time with energy E in dE, at time t.

 f(r,E,t) drdE is the amount of track length of neutrons in dr about r with 
energies in dE about E at time t.

Current & Flux
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 Macroscopic cross section = Sx(r,E,W,t)

• The probability that a neutron located at r with energy E, direction W at time t
will undergo a particular reaction, indicated by x, while it travels in unit 
distance

 v(E)Sx(r,E,W,t)

• The probability that a neutron located at r with energy E, direction W at time t
will undergo a reaction of type x while it travels in unit time

Macroscopic cross section
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 They may change with time for two reasons except the changes by external means 
such as the control rod movements and the soluble boron injection nor those due to 
phase transition, i.e., liquid to vapor.

1. Xi(r,t) are temperature dependent. Even in the solid state, the decrease in the 
atomic densities with increase in temperature due to thermal expansion can 
have a significant effect upon reactor operation.

2. Number densities change because of the continual occurrence of nuclear 
reactions and decays in the reactor.

 For example, the production of fission fragments of high-absorption-cross 
section such as 135Xe leads to important, temporal variations in the reactor.

 Also, fuel nuclei are “burning up,” and low-absorption-cross section, 
relatively stable fission products are accumulating so long as the reactor is 
in operation.

 Then, on which variables the microscopic cross section is dependent?

Time Dependence of Atomic Density, Xi(r,t)
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 Angular reaction rate density = Rx(r,E,W,t)

• The expected number of interactions of type x made with nuclei by neutrons of 
speed v corresponding energy E, at position r, direction W and time t, per unit 
volume per unit energy per unit solid angle per unit time

• v(E)Sx(r,E,W,t)N(r,E,W,t)drdEdW is the reaction rate of type x in the volume 
element dr about r by neutrons with energies in dE about E and directions 
within dW about W at time t.

 Reaction rate density = Rx(r,E,t)

• The expected number of interactions of type x made with nuclei by neutrons of 
speed v corresponding energy E, at position r and time t, per unit volume per 
unit energy per unit time

Reaction Rate Density
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 The product of vN arising in the definitions of the reaction rate densities occurs very 
frequently in reactor theory, and therefore it is given a special name [2]:

 Although it will certainly prove covenient to work with f rather than N (since then 
one does not have to worry about including the neutron speed v in the reaction rate 
densities), the tradition in nuclear engineering of referring to this quantity as the 
neutron “flux” is very misleading. For f is not at all like the fluxes encountered in 
electromagnetic theory or heat conduction, since these latter fluxes are vector 
quantities, whereas f is a scalar quantity. Actually the “neutron current” J
corresponds more closely to the conventional flux.

 Think of the neutron flux as simply a convenient mathematical variable (speed ×
density) to use in computing reaction rates:

Neutron Density vs. Neutron Flux

-2 1 neutron flux [cm sec ]Nf  v

x x xR N f S  Sv
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 The linear Boltzmann transport equation serves to precisely describe 
particle balance in which the rate of accumulation of particles is equal 
to the difference between their rates of production and removal.

 If N(r,E,W,t) is the distribution of particles as a function of the seven phase-
space variables,

N(r,E,W,t)DrDEDWDt  ≡

 A pseudo equation for particle balance in a phase space volume of 
DrDEDWDt can be written as

Derivation of Linear Boltzmann Transport Equation

the number of particles
in volume Dr about r,
with energy in DE about E,
moving in direction DW about W,
in time interval Dt about t.

Accumulation
of particles 

in a phase space volume

Amounts of removal
by leakage 

and collisions

Amounts of production
by scattering, 

fission
and fixed source

= − +
①

②

③

④

⑤
⑥

(1)
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 By dividing Eq. (1) by DrDEDWDt, a balance equation for the angular neutron 
density can be obtained.

Derivation of BTE (Contd.)

Accumulation
of particles 

in a phase space volume

Amounts of removal
by leakage 

and collisions

Amounts of production
by scattering, 

fission
and fixed source

= − +
①

②

③

④

⑤
⑥

(1)

Accumulation rate
of particles

at the phase space

Rate of removal
by leakage 

and collisions

Rate of production
by scattering, 

fission
and fixed source

= − +
①’

②’
③’

④’
⑤’
⑥’
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Questions

What if the medium is vacuum?

What if the medium is pure absorber?

Accumulation
of particles 

in a phase space volume

Amounts of removal
by leakage 

and collisions

Amounts of production
by scattering, 

fission
and fixed source

= − +
①

②

③

④

⑤
⑥

Accumulation
of particles 

in a phase space volume

Amounts of removal
by leakage 

and absorptions

Amounts of production
by scattering, 

fission
and fixed source

= − +
①

②

③

④

⑤
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 Accumulation of particles in the phase space volume of DrDEDWDt about 
(r,E,W,t), or change of particle numbers during Dt in the volume of 
DrDEDW, can be represented as 

 Then the accumulation rate of particles at (r,E,W,t) per unit volume per 
unit energy per unit steradian is obtained, by dividing Eq. (2) by DrDEDWDt
and taking the limit as the phase space volume approaches zero, as

① Accumulation of Particles in DrDEDWDt 
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② Leakage Amount in DrDEDWDt

 Let us consider a Cartesian incremental volume Dr=DxDyDz as below.

 Then, the particle amount to enter the volume through the face of area 
DxDz at y becomes 

 Similarly, the number of particles to leave the volume through the face at 
y+Dy is                                                              .
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 The difference between outflowing and inflowing particles, or the particle 
leakage, though the area of DxDz becomes

 By similarly expressing the leakages through areas of DyDz and DxDy and 
summing all the leakage amounts, we can obtain

② Leakage Amount (Contd.)
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 Then the leakage rate at the seven-dimensional phase space point, (r,E,W,t), in the 
limit of vanishingly small DrDEDWDt becomes

② Leakage Rate

 
 
 

0

0

  ( , , , , , ) ( , , , , , )

( , , , , , ) ( , , , , , )

( , , , , , ) ( , , , , , )
lim

( , , , , , ) (
lim

x

y

z

x y z E t

xx

N x x y z E t N x y z E t y z E t

N x y y z E t N x y z E t x z E t

N x y z z E t N x y z E t x y E t

x y z E t

N x x y z E t N x

D D D D D D 

D 

W  D  D D D D D

 W  D  D D D D D

 W  D  D D D D D

D D D D D D
 D 

 W

Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω

Ω

v
v
v

v

0

0

, , , , , )

( , , , , , ) ( , , , , , )
lim

( , , , , , ) ( , , , , , )
lim

( , , , , , )

( , , , )

( , , , )

y
y

zz

x y z

y z E t

x
N x y y z E t N x y z E t

y

N x y z z E t N x y z E t

z

N x y z E t
x y z

N E t

E t

D 

D 

D
 D 

 W
D

 D 
 W

D
   

 W  W  W    
 
 F

Ω

Ω Ω

Ω Ω

Ω

Ω r Ω

Ω r Ω

v

v

v

v
(3)’

②’ = 

(4)



21 SNU Monte Carlo Lab.

Reactor Theory

 From the definition of the angular reaction rate density, the amount by which 
particles are lost due to collisions of any kind with the nuclei comprising the 
medium in the phase space volume DrDEDWDt can be expressed as

 By dividing Eq. (5) by DrDEDWDt, the removal rate by collisions can be written as

Here St(r,E,W,t) is the macroscopic total cross section of the medium defined such 
that Sds is the probability of a collision in a path length, ds.

③ Removal Rate by Collisions
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 The production rate of neutrons by reactions except the fission reaction can be 
expressed as

nx = the average number of neutrons produced from a reaction of type x,

= the macroscopic differential cross section of a reaction 
of type x by which a neutron transferred from energy  E’ and direction W’
to energy  E and direction W

 By using the scattering cross section, Eq. (6) can be written briefly as

= the macroscopic differential cross section for scattering 
neutrons from energy  E’ and direction W’ to energy  E and direction W.

= the expected number of neutrons in dr
at r scattered into dE at E and dW at W per unit time at time t collisions of 
neutrons with energy in dE’ at E’ and direction  in dW’ at W’ in the same 
volume element at r

④ Production Rate by Scattering

4
.
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 The fission contribution to the source be given by

= the probability of neutrons appearing at energy E as a result of a 
fission caused by a particle of energy E’ at point r.

= the average number of neutrons emerging from a fission at point r    

= the macroscopic cross section for fission induced by neutrons with 
energy E’ and direction W’ with emergent neutrons from the fission 
having direction W.

⑤ Production Rate by Fission

(8)
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 The inhomogeneous (or fixed) source density is denoted by Q(r,E,W,t)

⑥ Fixed Source

⑥’ = ( , , , )Q E tr Ω (9)
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 Inserting the derived terms into Eq. (1), the neutron transport equation can be 
written as

Time-Dependent NTE with Delayed Neutron Neglected
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 Considering the delayed neutron generation, the time-dependent neutron transport 
equation (NTE) can be written by

Cf. Exact Time-Dependent NTE
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Reactor Theory

 From the Eq. (10), the time-independent (or steady-state) neutron transport equation 
can be written as

Time-Independent Boltzmann Transport Equation

(11)
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Reactor Theory

 For a nuclear system with no external sources such as a commercial reactor core, it 
is obvious that the time-independent NTE of Eq. (11) has a trivial solution of 
F(r,E,W)=0 for all r, E, and W.

 In order to obtain a non-trivial solution for the steady-state nuclear reactor core, 
eigenvalue or k eigenvalue (=1/k) should be introduced into Eq. (12) as

(Steady-State) Eigenvalue Equation
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