457.646 Topics in Structural Reliability

In-Class Material: Class 19

V. Structural Reliability under Model & Stastical Uncertainties

(Ref.: "Analysis of Structural Reliability under Model and Statistical Uncertainties: A Bayesian Approach" ~ eTL)

Formulation of Reliability Problems under Epistemic Uncertainties

① Reliability Problem with Aleatoric uncertainties (only)

 $P_f = \int f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$ **X**: r.v's representing aleatoric uncertainties in the problem

- \rightarrow Use component and/or system reliability method
- 2 Reliability Problem under Aleatoric & Epistemic certainties

Three approaches for estimating reliability under epistemic uncertainties

Suppose $f_{|\theta|}(\theta)$ is available,

1 Point estimate of Reliability: $P_f(\theta)$ at $\theta = \hat{\theta}$

 $\hat{f heta}$: point estimate (representative) of f heta

Seoul National University Dept. of Civil and Environmental Engineering Instructor: Junho Song junhosong@snu.ac.kr

 $100 \times p(\%)$ confident that β is b/w x and o

First, find mean and variance of $\beta(\theta)$

Second, assume $\beta \sim N(\mu_{\beta}, \sigma_{\beta})$

$$\begin{split} \left\langle \boldsymbol{\beta} \right\rangle_{100 \times p(\%)} &= \mu_{\beta} \pm c_{p} \sigma_{\beta} \\ (\text{if } \tilde{\boldsymbol{\beta}} \text{ available, } \tilde{\boldsymbol{\beta}} \pm c_{p} \sigma_{\beta}) \\ \left\langle P_{f} \right\rangle_{100 \times p(\%)} &= \Phi \Big[- \Big(\tilde{\boldsymbol{\beta}} \pm c_{p} \sigma_{\beta} \Big) \Big] \\ \text{Then, } f_{\boldsymbol{\theta}_{f}} \Big(\boldsymbol{\theta}_{f} \Big), f_{\boldsymbol{\theta}_{g}} \Big(\boldsymbol{\theta}_{g} \Big) ?? \end{split}$$

(Review) Rel. Analysis under Epistemic Uncertainties (Model or Statistical)

1 Point Estimate $P_{f}\left(\hat{\theta}\right), \ \beta\left(\hat{\theta}\right)$ 2 Predictive Reliability $\tilde{P}_{f} = E_{\theta}\left[P_{f}\left(\theta\right)\right]$ 3 Bounds $\langle\beta\rangle_{100\times p(\%)} = \mu_{\beta} \pm c_{p}\sigma_{\beta}$ $f_{\theta_{f}}\left(\theta_{f}\right) ? \ f_{\theta_{g}}\left(\theta_{g}\right) ?$

Bayesian Parameter Estimation

$$f(\mathbf{\theta}) = c \cdot L(\mathbf{\theta}) \cdot p(\mathbf{\theta})$$

(1) $P(\mathbf{\theta})$: () distribution

- represents state of our knowledge () making
 observations (objective information)
- may incorporate () info. such as "engineering judgment"

cf. Bayes rule

$$P(A|B) = \frac{1}{P(B)} \cdot P(B|A) \cdot P(A)$$

f L p

Seoul National University Dept. of Civil and Environmental Engineering

Computation of c and posterior statistics

$$c = \left[\int L(\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \cdot d\boldsymbol{\theta}\right]^{-1}$$

$$\mathbf{M}(\boldsymbol{\theta}) = \int \boldsymbol{\theta} \cdot f(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int \boldsymbol{\theta} \cdot c \cdot L(\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \cdot d\boldsymbol{\theta}$$

$$\boldsymbol{\Sigma}_{\boldsymbol{\theta}\boldsymbol{\theta}} = \int \boldsymbol{\theta}\boldsymbol{\theta}^{T} f(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathbf{M}(\boldsymbol{\theta}) \mathbf{M}(\boldsymbol{\theta})^{T}$$

$$\mathbf{M}(\boldsymbol{\theta}) = \int \boldsymbol{\theta} \cdot f(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathbf{M}(\boldsymbol{\theta}) \mathbf{M}(\boldsymbol{\theta})^{T}$$

$$\mathbf{M}(\boldsymbol{\theta}) = \int \boldsymbol{\theta} \cdot f(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathbf{M}(\boldsymbol{\theta}) \mathbf{M}(\boldsymbol{\theta})^{T}$$

$$\mathbf{M}(\boldsymbol{\theta}) = \int \boldsymbol{\theta} \cdot f(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathbf{M}(\boldsymbol{\theta}) \mathbf{M}(\boldsymbol{\theta})^{T}$$

How?

Convenient forms for special distribution (directly update statistics "conjugate")

Special numerical algorithms (Geyskens et al. 1993)

Sampling methods: MCS, importance sampling, Markov Chain Monte Carlo (MCMC)

457.646 Topics in Structural Reliability In-Class Material: Class 20

(a) Likelihood function $L(\theta)$ for distribution (statistical) parameters θ_f

(e.g. μ, σ, λ, ξ...**)**

① Measured value are available, \mathbf{x}_i , $i = 1, \dots, N$

Assuming the observations are s.i.

$$L(\boldsymbol{\theta}_{f}) \propto P(\bigcap_{i=1}^{N} \mathbf{X} = \mathbf{x}_{i} | \boldsymbol{\Theta}_{f} = \boldsymbol{\theta}_{f})$$

$$= \prod_{i=1}^{N} P(\mathbf{X} = \mathbf{x}_{i} | \boldsymbol{\Theta}_{f} = \boldsymbol{\theta}_{f}) \quad (\because s.i.)$$

$$\propto \prod_{i=1}^{N} f_{\mathbf{x}}(\mathbf{x}_{i} | \boldsymbol{\theta}_{f})$$

e.g. $\mathbf{x} = \{x\}$ uni-variate normal $N(\mu, \sigma^2)$

Two samples observed: 12.3($\leftarrow x_1$), 13.5($\leftarrow x_2$) $f(\mathbf{\theta}) = cL(\mathbf{\theta}) \cdot P(\mathbf{\theta})$

$$L(\boldsymbol{\theta}_{f}) \propto \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{12.3-\mu}{\sigma}\right)^{2}\right) \times \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{13.5-\mu}{\sigma}\right)^{2}\right)$$

$$\ll L(\mathbf{\theta}) \begin{cases} \text{MLE} & \mathbf{\theta}_{\text{MLE}} = \arg \max L(\mathbf{\theta}) \end{cases} & \frac{\partial L}{\partial \theta} = 0 \\ \text{prefer } \frac{\partial \ln L}{\partial \theta} = 0 \\ \text{Bayesian Parameter Extimation} \end{cases}$$

$$f(\mathbf{\theta}) = c \cdot L(\mathbf{\theta}) \cdot p(\mathbf{\theta})$$

- 2 No direct measurement x of available, but a set of events that involve x are available
 - e.g. no measurement for compressive strength of concrete f_c ($\leftarrow \mu, \sigma, \lambda...$)

available but spalling observed under a certain condition

Inequality events : $h_i(\mathbf{x}) \le 0, i = 1, \dots, N$

Equality events : $h_i(\mathbf{x}) = 0$

Seoul National University Dept. of Civil and Environmental Engineering

a) Inequality

e.g.
$$h_i(\mathbf{x}) = -C(\mathbf{x}) + D(\mathbf{x}) \le 0$$
 no failure observed

$$h_i(\mathbf{x}) = C(\mathbf{x}) - D(\mathbf{x}) \le 0$$
 failure observed

$$L(\mathbf{\theta}_{f}) \propto \prod_{i=1}^{N} P(h_{i}(\mathbf{x}) \leq 0 | \mathbf{\theta}_{f})$$
$$= \prod_{i=1}^{N} \int_{h_{i}(\mathbf{x}) \leq 0} f_{\mathbf{x}}(\mathbf{x}; \mathbf{\theta}_{f}) d\mathbf{x} \Rightarrow \text{ structural reliability analysis}$$

b) Equality

e.g. $h_i(\mathbf{x}) = a(\mathbf{x}) - a_o = 0$

 $a(\mathbf{x})$: fatigue crack growth model, e.g. Paris law

 a_o : measured crack size

$$L(\mathbf{\theta}_{f}) \propto \prod_{i=1}^{N} \lim_{\delta \to 0} P[0 < h_{i}(\mathbf{x}) \le \delta]$$
$$= \prod_{i=1}^{N} \frac{\partial}{\partial \delta} P[h_{i}(\mathbf{x}) - \delta \le 0] \Big|_{\delta=0}$$

 $\begin{aligned} & \left| \begin{array}{l} & \mathbf{Proof} \\ & \lim_{\Delta\delta \to 0} \frac{P[h_i(\underline{\mathbf{x}}) - \delta - \Delta\delta \leq 0] - P[h_i(\underline{\mathbf{x}}) - \delta \leq 0]}{\Delta\delta} \\ & = \lim_{\Delta\delta \to 0} \frac{P[h_i(\underline{\mathbf{x}}) - \Delta\delta \leq 0] - P[h_i(\underline{\mathbf{x}}) \leq 0]}{\Delta\delta} \\ & \propto \lim_{\Delta\delta \to 0} P[0 \leq h_i(\underline{\mathbf{x}}) \leq \Delta\delta] \end{aligned} \right|_{\delta=0} \end{aligned}$

 $\nabla_{\delta} P_f |_{\delta=0}$: can be considered as parameter sensitivity of P_f w.r.t δ (model parameter)

FORM-based (Madsen, 1987)

Good review & new development (Straub, 2011)

> a trick to transform equality constraint to _____ constraint

I Likelihood function for limit-state model parameters, $L(\theta_{p})$

e.g.
$$g(\mathbf{x}; \boldsymbol{\theta}_g) = V_c(\mathbf{x}; \boldsymbol{\theta}_g) - V_d(\mathbf{x}; \boldsymbol{\theta}_g) \le 0$$
$$\frac{1}{6} \sqrt{f_c} b_w d \quad \text{(ACI 11-3)}$$

① Statistical model (using original deterministic model)

 $y = \hat{g}(\mathbf{x}; \boldsymbol{\theta}_g) + \sigma \epsilon$ ~ submodel or limit state function

e.g.
$$\theta_1 f_c^{\theta_2} b_w d$$
 (ACI 11-3) $\theta_g = \{\theta_1, \dots, \theta_n, \sigma\}$

- **x** : observable input parameters (f_c , b_w , d,...)
- \mathbf{y} : observable output parameters (V_c)
- $\mathbf{\theta}_{_g}$: uncertain model parameters ($\mathbf{\theta}_{_1}, \ \mathbf{\theta}_2 \cdots$)
- $\sigma\epsilon\,$: uncertainty due to missing variables and/or inexact mathematical form
 - ε: std. normal r.v " assumption
 - σ: magnitude of model error (uncertain parameter)
 - \rightarrow constant over x " assumption
 - $\mu_{\varepsilon} = 0$: <u>unbiased</u> model

May achieve H_____ by a proper nonlinear transformation

e.g.
$$\ln y = \ln \hat{g}(\mathbf{x}, \boldsymbol{\theta}_g) + \sigma \varepsilon$$

①' Statistical model (based on deterministic model, Gardoni et al. 2002)

$$y = \hat{g}(\mathbf{x}) + \gamma(\mathbf{x}; \mathbf{\theta}_g) + \sigma \varepsilon$$

 $\hat{g}(\mathbf{x})$: original deterministic model (e.g. $\frac{1}{6}\sqrt{f_c}b_w d$)

 $\gamma(\mathbf{x}; \mathbf{\theta}_g)$: corrects the bias

 $\sigma\epsilon$: remaining scatter

e.g. RC beam w/o stirrups shear capacity (Song et al. 2010, Structural Eng & Mechanics)

 $\ln V = \ln \hat{v}(\mathbf{x}) + \Sigma \theta_g \ln h_i(\mathbf{x}) + \sigma \varepsilon$

 $\hat{v}(\mathbf{x})$: 8 models from codes & papers

 $h_i(\mathbf{x})$: explanatory terms from the shear transfer mechanism

Seoul National University Dept. of Civil and Environmental Engineering

② Likelihood function $L(\mathbf{\theta}_g)$?

Observed event Equality: $y = y_i$, $i = 1, \dots, m$ know v_c when failed

Inequality:
$$\begin{cases} y > a_i & i = m + 1, \dots, m + n \\ y > b_i & i = m + 1, \dots, m + n + N \end{cases}$$
 No failure up to Vc
Failed but do not know when

Model $Y = \hat{g} + \gamma + \sigma \varepsilon$

a)
$$P(Y = y_i) = P(\sigma \varepsilon = y_i - \hat{g}(\mathbf{x}) - \gamma(\mathbf{x}, \theta_g))$$

$$P(Y = y_i) \propto f_Y(y_i) \qquad f_Y(y_i) = f_Q(q) \cdot \frac{dq}{dy_i}$$

$$= f_Q(q_i) \cdot \frac{dq}{dy} \qquad f_Q(q) = f_{\varepsilon}(\varepsilon) \cdot \frac{d\varepsilon}{dq}$$

$$= f_{\varepsilon}(\varepsilon_i) \cdot \frac{d\varepsilon}{dq} \qquad q = \sigma \cdot \varepsilon$$

$$= \frac{1}{\sigma} \varphi \left(\frac{y_i - \hat{g} - \gamma}{\sigma} \right)$$

b) $P(Y > a_i) = P(\hat{g} + \gamma + \sigma \varepsilon > a_i)$

$$= P(\sigma \varepsilon > a_i - \hat{g} - \gamma)$$
$$= \Phi\left(-\frac{a_i - \hat{g} - \gamma}{\sigma}\right)$$

c) $P(Y < b_i) = P(\hat{g} + \gamma + \sigma \varepsilon < b_i)$

$$= P(\sigma \varepsilon < b_i - g - \gamma)$$
$$= \Phi\left(\frac{b_i - g - \gamma}{\sigma}\right)$$

$$\therefore L(\theta_g) = \prod_{i=1}^m \frac{1}{\sigma} \varphi\left(\frac{y_i - \hat{g} - \gamma}{\sigma}\right) \times \prod_{i=m+1}^{m+n} \Phi\left(-\frac{a_i - \hat{g} - \gamma}{\sigma}\right) \times \prod_{i=m+n+1}^{m+n+N} \Phi\left(\frac{b_i - \hat{g} - \gamma}{\sigma}\right)$$

* Matlab codes for "Model Development by Bayesian method"

 \rightarrow MDB (by Prof. S.Y. Ok at Hankyoung Univ. for educational purpose)

Probabilistic Shear Strength Models for RC Beams by Bayesian Updating Based on Experimental Observations

Junho Song*

Professor Department of Civil and Environmental Engineering Seoul National University, Korea

Won Hee Kang Kang Su Kim Sungmoon Jung

University of Western Sydney, Australia University of Seoul, Korea Florida A&M-Florida State University, USA

Probabilistic shear strength models

Empirical formulas are widely used for code provisions and designs

- ~ based on simplified mechanics rules and limited amount of experimental observations.
- Inaccurate description of physics & missing variables \rightarrow **biases** and **scatters**
- Need probabilistic shear strength models that correct the biases and quantify the uncertainties based on comprehensive database of experimental observations

Probabilistic models by Bayesian updating*

 * Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)
 "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations"
 Journal of Engineering Mechanics, Vol. 128(10)

Probabilistic models by Bayesian updating*

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)
 "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations"

Journal of Engineering Mechanics, Vol. 128(10)

Explanatory functions $\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{\nu} \theta_i h_i(\mathbf{x}) + \sigma\varepsilon$ Nonlinear transformation to achieve "homoskedasticity" $f(\mathbf{\Theta}) = \kappa L(\mathbf{\Theta}) p(\mathbf{\Theta})$ **Bayesian parameter** estimation

Database of 106 columns

- Remove an explanatory terms with the highest c.o.v. (most uncertain)
- Continue until the mean of σ starts increasing significantly

Table 2. Explanatory removing process for joint shear strength, equations (1) and (8)

Step	1	2	3	4	5	6	7	8	9	10
f_{c}^{\prime}	0	0	0	0	0	0	0	0	0	0
JP	0	0	0	0	0	0	0	0	0	Х
BI	0	0	0	0	0	0	0	0	Х	Х
IL	0	0	0	0	0	0	0	Х	Х	Х
$1 - e/b_c$	0	0	0	0	0	0	Х	Х	Х	X
TB	0	0	0	0	0	Х	Х	Х	Х	Х
$A_{\rm sh,pro}/A_{\rm sh,req}$	0	0	0	0	Х	Х	Х	Х	Х	X
$h_{\rm b}/h_{\rm c}$	0	0	0	Х	Х	Х	Х	Х	Х	Х
$b_{\rm b}/b_{\rm c}$	0	0	Х	Х	Х	Х	Х	Х	Х	Х
spro/sreq	0	Х	Х	Х	Х	Х	Х	Х	Х	Х
Mean of σ	0.150	0.150	0.150	0.150	0.151	0.156	0.165	0.186	0.231	0.359

O: Included explanatory term

X: Not-included explanatory term

Kim, J., LaFave, J., and Song, J. (2009)

"Joint Shear Behavior of Reinforced Concrete Beam-Column Connections" Magazine of Concrete Research, Vol. 61(2), 119-132.

Shear transfer mechanism

Joint ASCE-ACI Committee 426 (1973) & 445 (1998)

Variables affecting shear strengths

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$
$$\mathbf{x} = (f_{c}', d, a, \rho, ...)$$

(1) Concrete compressive strength: f_c '

 tensile strength increases the shear strength (approximated in terms of compressive strength)

(2) Member depth: d

- ~ shear strength decreases as the member depth increases ("size effect")
- (3) Shear span-to-depth ratio: a/d
 - ~ shear strength increases as the ratio decreases ("arch action" of "deep" beam)

(4) Amount of longitudinal reinforcement: ρ

~ shear strength increases as the reinforcement increases ("dowel action")

Empirical shear strength models

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$
$$\mathbf{x} = (f_{c}', d, a, \rho, ...)$$

Model	Formula	characteristics
ACI 11-3	$V_{_c}=rac{1}{6}\sqrt{f_{_c}'}b_{_w}d$	accounts for compressive strength only
ACI 11-5	$V_c = \left(0.158\sqrt{f_c'} + 17\rho \frac{V_u d}{M}\right) b_w d$	compressive strength + ρ
Zsutty	$V_c = 2.2 \left(f_c' \rho \frac{d}{c} \right)^{1/3} b_w d$	more accurate than ACI models
Eurocode Draft	$V_{c} = 0.12k (100\rho f_{c}')^{1/3} b_{w} d$	tends to underestimate (conservative)
Okamura & Higai	$V_c = 0.2 \frac{(100\rho)^{1/3}}{(d/1000)^{1/4}} (f_c')^{1/3} \left(0.75 + \frac{1.40}{a/d}\right)^{1/3} b_w d$	good without severe biases
Tureyen & Frosch	$V_c = \frac{5}{12} \sqrt{f_c'} b_w c$	tends to overestimate for deep beams
Bazant & Yu	$V_{c} = 1.1044 \cdot \rho^{3/8} b_{w} \left(1 + \frac{d}{a} \right) \sqrt{\frac{f_{c}' d_{0} d}{1 + d_{0} / d}}$	mechanics-based, semi-empirical, accurate ₈
Russo et al.	$V_{c} = 0.72 \xi \left[\rho^{0.4} (f_{c}')^{0.39} + 0.5 \rho^{0.83} f_{y}^{0.89} \left(\frac{a}{d}\right)^{-1.2 - 0.45(a/d)} \right] b_{w} d$	semi-empirical, large database

Shear strength database

 * Reineck, K.H., Kuchma, D.A., <u>Kim, K.S.</u>, and Marx, S. (2003)
 "Shear database for reinforced concrete members without shear reinforcement" ACI Structural Journal, Vol. 100(2)

															f'o ((MPa):	: 10	0 20							30		- 40	50	60	70	80	- 10	00 120
Microsoft Fucel - DC quickfix o	oursalN1 vlc														Not	/ Tests	: []	20			1	151				104		15 16	3 29	1	7	42	4
🗟 Elle Edit View Insert Fg	ormat Iools Data	<u>Window</u>	Help											Туре		รษต	. –	20							171		275	; 290	306	335	352		308
	7 📖 🖌 🗅 🐍	- 🦪 🌒	• (ii •	🧕 Σ -		i 4 (Arial	- 1	10 - B	IU≣		\$ %,	€.0 .00 0.€ 00.	а	(mm)	. 40	1 20		20	0						20	0	400		800	000	2000
A7 💌 fx																() . 7	. Г	, 	~	20	<u> </u>								400	40			
A	В	C	D	E	F	G	H	1	J	K	L	M	1 0	Р	70 07	/eara	÷ 🗖		38						209			37		43	1.	3 20	P
Shear Database f	or RC mem	hers wi	thout t	ransv	erse r	einfor	remen	t (US u	nit)							SUM				68							27	7	314		357	370	398
6		0013 111	liouti	101134	01301		Center	100 0	<u>, , , , , , , , , , , , , , , , , , , </u>							ρ / (%)	: 0.1	1 0.7	75 ·	1.0	125	5	1.5		2.0			3/	0		4	10	7.0
8 Reference Informa	ation		G	Seametry			Section	nal forces an	id strains			Con	crete		Not	Tests .	:	30	28	3	υ	24		67		120				67		32	
9 10 Anthor	Barro Nama	shape	bw (m)	h (m)	d (m)	aid	M/Vd	er_b	ex_m	*control	fic,test	fc f (wri) (r	lc **test	fict, tes		511.00	. –		-	E 0			440		470				<u>~</u>			ee	
11 Author	Beam Name	shape	bw b	h	d d	(-) a d	M Wd	er b	er m	control	fctest	fpc f	lc test	fcttes		3011	•	30	,	00	00	,	112		179			28	9		3	00	380
12 Adebar, Collins (1996)	ST1	R	14.17	12.20	10.94	2.88	1.88	0.00085	0.00042	cyl	1	612.5 72	19 sp	561.2		a/d	: 2.4	4						3.0)	3.5			4	.0		<u>5.0 6</u>	0.8.0.
13 Adebar, Collins (1996)	ST2	R	14.17	12.20	10.94	2.88	1.88	0.00079	0.00039	ryi	1	612.5 72	19 sp	561.2	Not	'Tests .	:				155 👘				70		- 98			4	1 5	20	10
14 Adebar, Collins (1996) 15 Adebar, Colline (1006)	513	R	11.42	12:20	10.94	2.88	1.00	0.00072	0.00036	cyl czł		146.0 679 Xaan xaa	1.1 sp 31 m	561.3		5/100	. –							45.5	-	205			~			20.00	<u> </u>
16 Adebar, Collins (1996)	ST16	R	11.42	8.27	7.01	4.49	3.49	0.00093	0.00046	cvl		467.5 709	41 sp	482.9	1.2143	1 00 1 2								100)	225			34	23	3	08 38	8398
17 Adebar, Collins (1996)	ST23	R	11.42	12.20	10.94	2.88	1.88	0.00117	0.00059	cyl	8	540.5 811	35 sp	730.8	614.5	0.75 1	12																
18 Ahmad, Kahloo (1986)	A1	R	5.00	10.00	8.00	4.00	3.00	0.00095	0.00048	cy3	9	047.2 859	4.8		627.2	0.50 1	1.5																
19 Ahmad, Kahloo (1986)	A2	R	5.00	10.00	8.00	3.00	2.00	0.00076	0.00038	cy3	9	047.2 859	4.8		627.2	0.50 1	1.1																
20 Ahmad, Kahloo (1986)	A3	R	5.00	10.00	8.00	2.70	1.70	0.00064	0.00032	cy3	9	047.2 859	4.8		627.2	0.50 1	1.1																
21 Ahmad, Kahloo (1986)	AS	R	5.00	10.00	8.19	3.00	2.00	0.00116	0.00058	cy3	9	047.2 859	4.8		627.2	0.00	0.1						ا ام				-1						
22 Ahmad, Kahloo (1986)	Bl	R	5.00	10.00	7.94	4.00	3.00	0.00066	0.00033	cy3	9	962.3 94	4.2		649.1	0.50 2	2.0		- (Jn	ec	ке	a r	DV VC	arious	s seie	CTIO	ר ר	rite	sri2	1		
23 Ahmad, Kahloo (1986)	B2	R	5.00	10.00	7.94	3.00	2.00	0.00059	0.00030	cy3	9	962.3 946	4.2	_	649.1	0.50 1	2.0							-		0000	•				•		
24 Ahmad, Kahloo (1986)	B3	R	5.00	10.00	194	2.70	1.70	0.00073	0.00037	cy3	9	962.3 948	42	-	649.1	0.50 2	20			1:~	~	~~	6	b \.		COL	Can	~~~	44.	~~	1 1	E	
25 Ahmad, Kahloo (1986)	B7	R	5.00	10.00	8.19	4.00	3.00	0.00125	0.00062	cy3	1	962.3 948	42	-	649.1	0.50 0	05		C	צוג	CU	SS	sea		ACI-A	VOUE	COL	ATT.	шие	e	44	C	
20 Ahmad, Kahioo (1980)	56	R D	5.00	10.00	δ.19 0.10	3.00	1.20	0.00087	0.00044	CY3		902.3 948	4.2	-	649.1	0.00 0	05		-					-)	_					-		-	
27 Ahmad, Kahloo (1960) 28 Ahmad Kahloo (1986)	C1	R Q	5.00	10.00	2.15	4.00	2.00	0.0012)	0.00004	cy5	2	902.3 998	14.2	-	630.9	0.00	22																
29 Ahmed Kahlon (1926)	m in in	R	5.00	10.00	125	3.00	200	0.00056	0.00027	cy5		566 0 908	11		639.2	0.00	24																
30 Ahmad, Kahloo (1926)	a a a a a a a a a a a a a a a a a a a	R	5.00	10.00	125	2.70	1.70	0.00042	0.00021	073		566.0 908	22	-	639.8	0.50 2	24			n		h		otro	nath	toot o	oto						
31 Ahmad, Kahloo (1986)	C7	R	5.00	10.00	8.13	4.00	3.00	0.00088	0.00044	cv3	9	566.0 903	11		639.8	0.50 1	13		-)3(<mark>ი</mark> ა	116	zai	รแย	FIQUE		ala						
32 Ahmad, Kahloo (1986)	C8	R	5.00	10.00	8.13	3.00	2.00	0.00058	0.00029	cy3	9	566.0 908	1.1		639.8	0.50 1	13								0								
33 Ahmad, Kahloo (1986)	09	R	5.00	10.00	8.13	2.70	1.70	0.00050	0.00025	cy3	9	566.0 909	11		639.8	0.50 1	13																
34 Al-Alusi (1957)	1	T	3.00	5.75	5.00	4.50	3.50	0.00104	0.00052	cy1	3	690.0 350	55 fl	314.1	338.0	0.25 0	0.2		_														
35 Al-Alusi (1957)	10	T	3.00	5.75	5.00	4.00	3.00	0.00097	0.00048	cyl	4	150.0 394	25 fl	333.2	370.6	0.25 0	0.2				24	2	11	toot	data	for th	ic ct	and d	h,				
36 Al-Ahsi (1957)	11	T	3.00	5.75	5.00	3.40	2.40	0.00092	0.00046	cyl	4	150.0 394	25 fl	363.0	370.6	0.25 0	0.3			72	eu	J	41	เยรเ	uala		12 21	.uu	I Y				
37 Al-Ahsi (1957)	18	T	3.00	5.75	5.00	4.50	3.50	0.00108	0.00054	cyl	1	900.0 370	5.0 fl	343.9	353.1	0.25 0	2.0							_	_				· ·				
38 Angelakos, Bentz, Collins (2003)	DB120	R	11.81	39.37	36.42	2.92	1.92	0.00068	0.00034	Reviewing	9					• 1	×		- (57	' d'	ote	o r	miec	rina a	aaroa	ata	ciz		۱.			
39 Angelakos, Bentz, Collins (2003)	DB130	R	11.81	39.37	36.42	2.92	192	0.00070	0.00035	1 1 1	h 🛛 🏷 🛛	133	🤰 🖣 🔒	📢 Reply	xith <u>C</u> hange:	s End Review				JI	u	αι	a. I	11122	my a	yyıcy	ale	SIZ	.53)			
40 Angenatos, Bentz, Collins (2003)	UB14U	K	11.81	39.31	50.42	292	192	0.00069	0.00034	7.	Г Г.	710.0 78	10	1	07.0	1			•						-								
IN N \SDB_US / Examples /	ex_excel /												11			<u>,</u>	Ш.																
Ready													Sum=0																				-
🛃 Start 👌 篗 🎑 🕄 💭	Draft_SCSM	1	🚺 Adobe R	eader • [Ga	ard 🗿	sonpss.do	ic - Microsoft	: 🚺 Micro	osoft PowerPoi	int 🗋	Shear_Bayesia	n	X Microsoft	Excel - R	- BN	« 🏂 🍘 1:494	AM																9

Overall errors of the existing models

 $\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \boldsymbol{\Theta} + \boldsymbol{\sigma}\boldsymbol{\varepsilon}$

- μ_{θ} : overall bias of the existing model
 - : overall scatter of the existing model μ_{σ}

ACI 11-3

Bayesian updating with bias-correction (H1)

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$

• μ_{σ} : approximately represents the **uncertainties after the bias correction** (scatter) • $h_i(\mathbf{x}): 2, \rho, \frac{a}{d}, \frac{E_c}{E_s}, \frac{d_a}{d}, \frac{d}{h}, \frac{b_w}{h}$ dimensionless explanatory terms

Model	Posterior means of σ										
	Constant bias	H_1	H_2								
ACI 11-3	0.382	0.222	0.165								
ACI 11-5	0.335	0.218	0.177								
Eurocode Draft	0.223	0.172	0.165								
Tureyen & Frosch	0.245	0.178	0.167								
Zsutty	0.244	0.185	0.168								
Okamura & Higai	0.176	0.159	0.157								
Bazant and Yu	0.166	0.156	0.154								
Russo et al.	0.156	0.146	11 0.146								

Bayesian updating with bias-correction (H2)

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} \ln[h_{i}(\mathbf{x})] + \sigma\varepsilon$$

- Logarithms are applied to the explanatory functions.
- Consistent with the product forms of the deterministic $C(\mathbf{x}, \mathbf{\Theta}) = c(\mathbf{x})h_1(\mathbf{x})^{\theta_1} \cdots h_p(\mathbf{x})^{\theta_p} \exp(\sigma \varepsilon)$ formulas

1.5		Model	Posterior means of σ							
1 -	-	Model	Constant bias	H_1	H_2					
		ACI 11-3	0.382	0.222	0.165					
- ν 0.5 - ζ		ACI 11-5	0.335	0.218	0.177					
		Eurocode Draft	0.223	0.172	0.165					
<u> </u>		Tureyen & Frosch	0.245	0.178	0.167					
-1 -	_	Zsutty	0.244	0.185	0.168					
1.5		Okamura & Higai	0.176	0.159	0.157					
⁻ '0.001	0.01 0.7 ρ	1 Bazant and Yu	0.166	0.156	0.154					
	ACI 11-3	Russo et al.	0.156	0.146	0.146					

Calibration of existing models

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \lim_{k \to \infty} (\mathbf{x}_{i}) + \sum_{i=1}^{p} \theta_{i} \ln[h_{i}(\mathbf{x})] + \sigma \varepsilon$$

Use the fractions of the empirical formulas as the explanatory functions

e.g. Zsutty's model

$$V_c = 2.2 \left(f_c' \rho \frac{d}{a} \right)^{1/3} b_w d$$

$$h_i(\mathbf{x}): 2, f_c', \rho, \frac{a}{d} b_w d$$

Do not drop explanatory terms with large c.o.v.'s

Explanatory functions do not have to be dimensionless

~ may be more effective in representing the physics than the dimensionless terms

$$\mu_{\sigma} = 0.166 \cong 0.168$$
 (posterior mean by $\ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_i \ln[h_i(\mathbf{x})] + \sigma\epsilon$)

Construction of new models

Select some dimensional terms to make the same dimension as quantity and add more non-dimensional terms. Perform the Bayesian parameter estimation by models such as

$$\ln[C(\mathbf{x}, \mathbf{\Theta})] = \sum_{i=1}^{p} \theta_i \ln[h_i(\mathbf{x})] + \sigma \epsilon \qquad \text{Product}$$

$$\ln[C(\mathbf{x}, \mathbf{\Theta})] = \sum_{i=1}^{l} \theta_i \ln[h_i(\mathbf{x})] + \ln\left[\prod_{i=l+1}^{m} h_i^{\theta_i} + \prod_{i=m+1}^{n} h_i^{\theta_i}\right] + \sigma \epsilon \qquad \text{Product of}$$

Sums

Do not drop "dimensional" explanatory terms

Useful when

(1) there exist no empirical models that can be used as a base model.

(2) the effects of explanatory terms are not well known.

Shear strength example: tried 17 explanatory terms

 \rightarrow Similar forms & parameter values with the two best formulas (with smaller $\mu_{\sigma})$

C Zsutty's

$$V_{c} = 2.2 \left(f_{c}' \rho \frac{d}{a} \right)^{1/3} b_{w} d$$
C Okamura & Higai

$$V_{c} = 0.2 \frac{(100\rho)^{1/3}}{(d/1000)^{1/4}} (f_{c}')^{1/3} \left(0.75 + \frac{1.40}{a/d} \right)^{1/3} b_{w} d$$

"Probabilistic" Models

General form

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[\hat{C}(\mathbf{x}, \boldsymbol{\theta})] + \sigma \varepsilon \longrightarrow C(\mathbf{x}, \boldsymbol{\Theta}) = \hat{C}(\mathbf{x}, \boldsymbol{\theta}) \cdot \exp(\sigma \varepsilon)$$

Capacity ~ follows the lognormal distribution

Mean and c.o.v. are derived as

$$\mu_{C}(\mathbf{x}) = \hat{C}(\mathbf{x}, \boldsymbol{\mu}_{\boldsymbol{\theta}}) \cdot \exp(\boldsymbol{\mu}_{\sigma} \boldsymbol{\varepsilon}) \cong \hat{C}(\mathbf{x}, \boldsymbol{\theta}) \text{ for } \boldsymbol{\mu}_{\sigma} << 1$$
$$\delta_{C}(\mathbf{x}) = \delta_{C} = \left[\exp(\boldsymbol{\mu}_{\sigma}^{2}) - 1\right]^{1/2} \cong \boldsymbol{\mu}_{\sigma} \text{ for } \boldsymbol{\mu}_{\sigma} << 1$$

Conditional pdf of capacity for given x

$$f_{C}(c \mid \mathbf{x}) = \frac{1}{\sqrt{2\pi\mu_{\sigma}c}} \exp\left[-\frac{1}{2}\left(\frac{\ln c - \ln \hat{C}(\mathbf{x}, \boldsymbol{\mu}_{\theta})}{\boldsymbol{\mu}_{\sigma}}\right)^{2}\right]$$

• Predictive pdf of capacity for unknown \mathbf{x}

$$f_{C}(c) = \int_{-\infty}^{\infty} f_{C}(c \mid \mathbf{x}) \cdot f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
15

- e.g. Tureyen & Frosch (2003) and a probabilistic strength model developed by this study
- Box plots of errors ~ show that the developed models are unbiased and have consistently good performance for the whole ranges of the parameters.

Other Applications

- Shear strengths of RC beams with shear reinforcements (W.-H. Kang, J. Song, and K.S. Kim)
- Seismic strengths of buckling-restrained bracings (B.M. Andrews, J. Song, and L.A. Fahnestock) (Andrews et al. 2009a, 2009b)
- Strengths/ of RC beam-column connections (J. Kim, J.M. LaFave, and J. Song)
- Statistical validation/verification of concrete FEM (H.H. Lee and D.A. Kuchma)
- Shear strengths of RC "deep" beams (strut-and-tie models) (Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song, 2014)
- Course term projects
 - Strengths of concrete-filled tubes (Mark Denavit)
 - Fracture toughness (Tam H. Nguyen)

References

- Gardoni, P., A. Der Kiureghian, and K.M. Mosalam (2002). "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations." *Journal of Engineering Mechanics*, ASCE, 128(10): 1024-1038 [→ Seismic capacity of RC columns]
- Song, J., W.-H. Kang, K.S. Kim, and S. Jung. "Probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on experimental observations," under review [→ Shear strengths of RC beams without stirrups]
- Kang, W.-H., J. Song, and K.S. Kim (2007). "Probabilistic shear strength models for reinforced concrete beams with shear reinforcements by Bayeisan updating." *Proc. 18th Engineering Mechanics Division Conference of ASCE (ASCE EMD 2007)*, June 3-6, Blacksburg, VA. [→ Shear strengths of RC beams with stirrups]
- Kim, J., J.M. LaFave, and J. Song (2007). "A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading." *Structural Engineering and Mechanics*, Vol. 27(4), 439-456 [→ Strength of RC beam-column connection ~ strength only]
- Kim, J., J.M. LaFave, and J. Song. Joint shear behavior of RC beam-column connections, under review [→ RC beam-column connections ~ strength & corresponding strain]
- Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song (2014). "New strut-andtie-models for shear strength prediction and design of RC deep beams." *Computers and Concrete*, 14(1): 19-40 [→ Shear strength of deep RC beams]

Probabilistic Shear Strength Models for RC Beams by Bayesian Updating Based on Experimental Observations

Junho Song*

Associate Professor Department of Civil and Environmental Engineering Seoul National University, Korea

Won Hee Kang Kang Su Kim Sungmoon Jung

University of Western Sydney, Australia University of Seoul, Korea Florida A&M-Florida State University, USA

Probabilistic shear strength models

Empirical formulas are widely used for code provisions and designs

- ~ based on simplified mechanics rules and limited amount of experimental observations.
- Inaccurate description of physics & missing variables \rightarrow **biases** and **scatters**
- Need probabilistic shear strength models that correct the biases and quantify the uncertainties based on comprehensive database of experimental observations

Probabilistic models by Bayesian updating*

 * Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)
 "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations"
 Journal of Engineering Mechanics, Vol. 128(10)

Probabilistic models by Bayesian updating*

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)
 "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations"

Journal of Engineering Mechanics, Vol. 128(10)

Explanatory functions $\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{\nu} \theta_i h_i(\mathbf{x}) + \sigma\varepsilon$ Nonlinear transformation to achieve "homoskedasticity" $f(\mathbf{\Theta}) = \kappa L(\mathbf{\Theta}) p(\mathbf{\Theta})$ **Bayesian parameter** estimation

Database of 106 columns

- Remove an explanatory terms with the highest c.o.v. (most uncertain)
- Continue until the mean of σ starts increasing significantly

Table 2. Explanatory removing process for joint shear strength, equations (1) and (8)

Step	1	2	3	4	5	6	7	8	9	10
f_{c}^{\prime}	0	0	0	0	0	0	0	0	0	0
JP	0	0	0	0	0	0	0	0	0	Х
BI	0	0	0	0	0	0	0	0	Х	Х
IL	0	0	0	0	0	0	0	Х	Х	Х
$1 - e/b_c$	0	0	0	0	0	0	Х	Х	Х	X
TB	0	0	0	0	0	Х	Х	Х	Х	Х
$A_{\rm sh,pro}/A_{\rm sh,req}$	0	0	0	0	Х	Х	Х	Х	Х	X
$h_{\rm b}/h_{\rm c}$	0	0	0	Х	Х	Х	Х	Х	Х	Х
$b_{\rm b}/b_{\rm c}$	0	0	Х	Х	Х	Х	Х	Х	Х	Х
spro/sreq	0	Х	Х	Х	Х	Х	Х	Х	Х	Х
Mean of σ	0.150	0.150	0.150	0.150	0.151	0.156	0.165	0.186	0.231	0.359

O: Included explanatory term

X: Not-included explanatory term

Kim, J., LaFave, J., and Song, J. (2009)

"Joint Shear Behavior of Reinforced Concrete Beam-Column Connections" Magazine of Concrete Research, Vol. 61(2), 119-132.

Shear transfer mechanism

Joint ASCE-ACI Committee 426 (1973) & 445 (1998)

Variables affecting shear strengths

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$
$$\mathbf{x} = (f_{c}', d, a, \rho, ...)$$

(1) Concrete compressive strength: f_c '

 tensile strength increases the shear strength (approximated in terms of compressive strength)

(2) Member depth: d

- ~ shear strength decreases as the member depth increases ("size effect")
- (3) Shear span-to-depth ratio: a/d
 - ~ shear strength increases as the ratio decreases ("arch action" of "deep" beam)

(4) Amount of longitudinal reinforcement: ρ

~ shear strength increases as the reinforcement increases ("dowel action")

Empirical shear strength models

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$
$$\mathbf{x} = (f_{c}', d, a, \rho, ...)$$

Model	Formula	characteristics
ACI 11-3	$V_{_c}=rac{1}{6}\sqrt{f_{_c}'}b_{_w}d$	accounts for compressive strength only
ACI 11-5	$V_c = \left(0.158\sqrt{f_c'} + 17\rho \frac{V_u d}{M}\right) b_w d$	compressive strength + ρ
Zsutty	$V_c = 2.2 \left(f_c' \rho \frac{d}{c} \right)^{1/3} b_w d$	more accurate than ACI models
Eurocode Draft	$V_{c} = 0.12k (100\rho f_{c}')^{1/3} b_{w} d$	tends to underestimate (conservative)
Okamura & Higai	$V_c = 0.2 \frac{(100\rho)^{1/3}}{(d/1000)^{1/4}} (f_c')^{1/3} \left(0.75 + \frac{1.40}{a/d}\right)^{1/3} b_w d$	good without severe biases
Tureyen & Frosch	$V_c = \frac{5}{12} \sqrt{f_c'} b_w c$	tends to overestimate for deep beams
Bazant & Yu	$V_{c} = 1.1044 \cdot \rho^{3/8} b_{w} \left(1 + \frac{d}{a} \right) \sqrt{\frac{f_{c}' d_{0} d}{1 + d_{0} / d}}$	mechanics-based, semi-empirical, accurate ₈
Russo et al.	$V_{c} = 0.72 \xi \left[\rho^{0.4} (f_{c}')^{0.39} + 0.5 \rho^{0.83} f_{y}^{0.89} \left(\frac{a}{d}\right)^{-1.2 - 0.45(a/d)} \right] b_{w} d$	semi-empirical, large database

Shear strength database

 * Reineck, K.H., Kuchma, D.A., <u>Kim, K.S.</u>, and Marx, S. (2003)
 "Shear database for reinforced concrete members without shear reinforcement" ACI Structural Journal, Vol. 100(2)

															f'o ((MPa):	: 10	0 20							30		- 40	50	60	70	80	- 10	00 120
Microsoft Fucel - DC quickfix a	oursalN1 vlc														Not	/ Tests	: []	20			1	151				104		15 16	3 29	1	7	42	4
🗟 Elle Edit View Insert Fg	ormat Iools Data	<u>Window</u>	Help											Туре		รษต	, L	20							171		275	; 290	306	335	352		308
	7 📖 🖌 🗅 🐍	- 🦪 🌒	• (ii •	🧕 Σ -		i 4 (Arial	- 1	10 - B	IU≣		\$ %,	€.0 .00 0.€ 00.	а	(mm)	. 40	1 20		20	0						20	0	400		800	000	2000
A7 💌 fx																() . 7	. Г	, 	~	20	<u> </u>								400	40			
A	В	C	D	E	F	G	H	1	J	K	L	M	1 0	Р	70 07	/eara	÷ 🗖		38						209			37		43	1.	3 20	P
Shear Database f	or RC mem	hers wi	thout t	ransv	erse r	einfor	remen	t (US u	nit)							SUM				68							27	7	314		357	370	398
6		0013 111	lioult	101134	01301		Center	100 0	<u>, , , , , , , , , , , , , , , , , , , </u>							ρ / (%)	: 0.1	1 0.7	75 ·	1.0	125	5	1.5		2.0			3/	0		4	10	7.0
8 Reference Informa	ation		G	Seametry			Section	nal forces an	id strains			Con	crete		Not	Tests .	:	30	28	3	υ	24		67		120				67		32	
9 10 Anthor	Barro Nama	shape	bw (m)	h (m)	d (m)	aid	M/Vd	er_b	ex_m	*control	fic,test	fc f (wri) (r	lc **test	fict, tes		511.00	. –			E 0			440		470				<u>~</u>			ee	
11 Author	Beam Name	shape	bw b	h	d d	(-) a d	M Wd	er b	er m	control	fctest	fpc f	lc test	fcttes		3011	•	30	,	00	00	,	112		1/9			28	9		3	00	380
12 Adebar, Collins (1996)	ST1	R	14.17	12.20	10.94	2.88	1.88	0.00085	0.00042	cyl	1	612.5 72	19 sp	561.2		a/d	: 2.4	4						3.0)	3.5			4	.0		<u>5.0 6</u>	0.8.0.
13 Adebar, Collins (1996)	ST2	R	14.17	12.20	10.94	2.88	1.88	0.00079	0.00039	ryi	1	612.5 72	19 sp	561.2	Not	'Tests .	:				155 👘				70		- 98			4	1 5	20	10
14 Adebar, Collins (1996) 15 Adebar, Colline (1006)	513	R	11.42	12:20	10.94	2.88	1.00	0.00072	0.00036	cyl czł		146.0 679 Xaan xaa	1.1 sp 31 m	561.3		5/100	. –							45.5	-	205			~			20.00	<u> </u>
16 Adebar, Collins (1996)	ST16	R	11.42	8.27	7.01	4.49	3.49	0.00093	0.00046	cvl		467.5 709	41 sp	482.9	1.2143	1 00 1 2								100)	225			34	23	3	08 38	8398
17 Adebar, Collins (1996)	ST23	R	11.42	12.20	10.94	2.88	1.88	0.00117	0.00059	cyl	8	540.5 811	35 sp	730.8	614.5	0.75 1	12																
18 Ahmad, Kahloo (1986)	A1	R	5.00	10.00	8.00	4.00	3.00	0.00095	0.00048	cy3	9	047.2 859	4.8		627.2	0.50 1	1.5																
19 Ahmad, Kahloo (1986)	A2	R	5.00	10.00	8.00	3.00	2.00	0.00076	0.00038	cy3	9	047.2 859	4.8		627.2	0.50 1	1.1																
20 Ahmad, Kahloo (1986)	A3	R	5.00	10.00	8.00	2.70	1.70	0.00064	0.00032	cy3	9	047.2 859	4.8		627.2	0.50 1	1.1																
21 Ahmad, Kahloo (1986)	AS	R	5.00	10.00	8.19	3.00	2.00	0.00116	0.00058	cy3	9	047.2 859	4.8		627.2	0.00	0.1						ا ام				-1						
22 Ahmad, Kahloo (1986)	Bl	R	5.00	10.00	7.94	4.00	3.00	0.00066	0.00033	cy3	9	962.3 94	4.2		649.1	0.50 2	2.0		- (Jn	ec	ке	a r	DV VC	arious	s seie	CTIO	ר ר	rite	sri2	1		
23 Ahmad, Kahloo (1986)	B2	R	5.00	10.00	7.94	3.00	2.00	0.00059	0.00030	cy3	9	962.3 946	4.2	_	649.1	0.50 1	2.0							-		0000	•				•		
24 Ahmad, Kahloo (1986)	B3	R	5.00	10.00	194	2.70	1.70	0.00073	0.00037	cy3	9	962.3 948	42	-	649.1	0.50 2	20			1:~	~	~~	6	b		COL	Can	~~~	44.	~~	1 1	E	
25 Ahmad, Kahloo (1986)	B7	R	5.00	10.00	8.19	4.00	3.00	0.00125	0.00062	cy3	1	962.3 948	42	-	649.1	0.50 0	05		(צוג	CU	SS	sea		ACI-A	VOUE	COL	ATT.	πιε	e	44	C	
20 Ahmad, Kahioo (1980)	56	R D	5.00	10.00	δ.19 0.10	3.00	1.20	0.00087	0.00044	CY3		902.3 948	4.2	-	649.1	0.00 0	05		-					-)	_					-		-	
27 Ahmad, Kahloo (1960) 28 Ahmad Kahloo (1986)	C1	R Q	5.00	10.00	2.15	4.00	2.00	0.0012)	0.00004	cy5	2	902.3 998	14.2	-	630.9	0.00	22																
29 Ahmed Kahlon (1926)	m in in	R	5.00	10.00	125	3.00	200	0.00056	0.00027	cy5		566 0 908	11		639.2	0.00	24																
30 Ahmad, Kahloo (1926)	a a a a a a a a a a a a a a a a a a a	R	5.00	10.00	125	2.70	1.70	0.00042	0.00021	073		566.0 908	22	-	639.8	0.50 2	24			n		h	nor	otro	nath	toot o	oto						
31 Ahmad, Kahloo (1986)	C7	R	5.00	10.00	8.13	4.00	3.00	0.00088	0.00044	cv3	9	566.0 903	11		639.8	0.50 1	13		-)3(<mark>ი</mark> ა	116	zai	รแย	FIQUE		ala						
32 Ahmad, Kahloo (1986)	C8	R	5.00	10.00	8.13	3.00	2.00	0.00058	0.00029	cy3	9	566.0 908	1.1		639.8	0.50 1	13								0								
33 Ahmad, Kahloo (1986)	09	R	5.00	10.00	8.13	2.70	1.70	0.00050	0.00025	cy3	9	566.0 909	11		639.8	0.50 1	13																
34 Al-Alusi (1957)	1	T	3.00	5.75	5.00	4.50	3.50	0.00104	0.00052	cy1	3	690.0 350	55 fl	314.1	338.0	0.25 0	0.2		_														
35 Al-Alusi (1957)	10	T	3.00	5.75	5.00	4.00	3.00	0.00097	0.00048	cyl	4	150.0 394	25 fl	333.2	370.6	0.25 0	0.2				24	2	11	toot	data	for th	ic ct	and d	h,				
36 Al-Ahsi (1957)	11	T	3.00	5.75	5.00	3.40	2.40	0.00092	0.00046	cyl	4	150.0 394	25 fl	363.0	370.6	0.25 0	0.3			72	eu	J	41	เยรเ	uala		12 21	.uu	I Y				
37 Al-Ahsi (1957)	18	T	3.00	5.75	5.00	4.50	3.50	0.00108	0.00054	cyl	1	900.0 370	5.0 fl	343.9	353.1	0.25 0	2.0							_	_				· ·				
38 Angelakos, Bentz, Collins (2003)	DB120	R	11.81	39.37	36.42	2.92	1.92	0.00068	0.00034	Reviewing	9					• 1	×		- (57	' d'	ote	o r	miec	rina a	aaroa	ata	ciz		۱.			
39 Angelakos, Bentz, Collins (2003)	DB130	R	11.81	39.37	36.42	2.92	192	0.00070	0.00035	1 1 1	h 🛛 🌖 🛛	133	🤰 🖣 🔒	📢 Reply	xith <u>C</u> hange:	s End Review				JI	u	αι	a. I	11122	my a	yyıcy	ale	SIZ	.53)			
40 Angenatos, Bentz, Collins (2003)	UB14U	K	11.81	39.31	50.42	292	192	0.00069	0.00034	7.	Г Г.	710.0 78	10	1	07.0	1			•						-								
IN N \SDB_US / Examples /	ex_excel /												11			<u>,</u>	Ш.																
Ready													Sum=0																				-
🛃 Start 👌 篗 🎑 🕄 💭	Draft_SCSM	1	🚺 Adobe R	eader • [Ga	ard 🗿	sonpss.do	ic - Microsoft	: 🚺 Micro	osoft PowerPoi	int 🙆	Shear_Bayesia	n	X Microsoft	Excel - R	- BN	« 🏂 🍘 1:494	AM																9

Overall errors of the existing models

 $\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \boldsymbol{\Theta} + \boldsymbol{\sigma}\boldsymbol{\varepsilon}$

- μ_{θ} : overall bias of the existing model
 - : overall scatter of the existing model μ_{σ}

ACI 11-3

Bayesian updating with bias-correction (H1)

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} h_{i}(\mathbf{x}) + \sigma \varepsilon$$

• μ_{σ} : approximately represents the **uncertainties after the bias correction** (scatter) • $h_i(\mathbf{x}): 2, \rho, \frac{a}{d}, \frac{E_c}{E_s}, \frac{d_a}{d}, \frac{d}{h}, \frac{b_w}{h}$ dimensionless explanatory terms

Model	Posterior means of σ										
	Constant bias	H_1	H_2								
ACI 11-3	0.382	0.222	0.165								
ACI 11-5	0.335	0.218	0.177								
Eurocode Draft	0.223	0.172	0.165								
Tureyen & Frosch	0.245	0.178	0.167								
Zsutty	0.244	0.185	0.168								
Okamura & Higai	0.176	0.159	0.157								
Bazant and Yu	0.166	0.156	0.154								
Russo et al.	0.156	0.146	11 0.146								

Bayesian updating with bias-correction (H2)

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_{i} \ln[h_{i}(\mathbf{x})] + \sigma\varepsilon$$

- Logarithms are applied to the explanatory functions.
- Consistent with the product forms of the deterministic $C(\mathbf{x}, \mathbf{\Theta}) = c(\mathbf{x})h_1(\mathbf{x})^{\theta_1} \cdots h_p(\mathbf{x})^{\theta_p} \exp(\sigma \varepsilon)$ formulas

1.5		Model	Posterior means of σ							
1 -	-	Model	Constant bias	H_1	H_2					
		ACI 11-3	0.382	0.222	0.165					
- ν 0.5 - ζ		ACI 11-5	0.335	0.218	0.177					
		Eurocode Draft	0.223	0.172	0.165					
<u> </u>		Tureyen & Frosch	0.245	0.178	0.167					
-1 -	_	Zsutty	0.244	0.185	0.168					
1.5		Okamura & Higai	0.176	0.159	0.157					
⁻ '0.001	0.01 0.7 ρ	1 Bazant and Yu	0.166	0.156	0.154					
	ACI 11-3	Russo et al.	0.156	0.146	0.146					

Calibration of existing models

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \lim_{k \to \infty} (\mathbf{x}_{i}) + \sum_{i=1}^{p} \theta_{i} \ln[h_{i}(\mathbf{x})] + \sigma \varepsilon$$

Use the fractions of the empirical formulas as the explanatory functions

e.g. Zsutty's model

$$V_c = 2.2 \left(f_c' \rho \frac{d}{a} \right)^{1/3} b_w d$$

$$h_i(\mathbf{x}): 2, f_c', \rho, \frac{a}{d} b_w d$$

Do not drop explanatory terms with large c.o.v.'s

Explanatory functions do not have to be dimensionless

~ may be more effective in representing the physics than the dimensionless terms

$$\mu_{\sigma} = 0.166 \cong 0.168$$
 (posterior mean by $\ln[c(\mathbf{x})] + \sum_{i=1}^{p} \theta_i \ln[h_i(\mathbf{x})] + \sigma\epsilon$)

Construction of new models

Select some dimensional terms to make the same dimension as quantity and add more non-dimensional terms. Perform the Bayesian parameter estimation by models such as

$$\ln[C(\mathbf{x}, \mathbf{\Theta})] = \sum_{i=1}^{p} \theta_i \ln[h_i(\mathbf{x})] + \sigma \epsilon \qquad \text{Product}$$

$$\ln[C(\mathbf{x}, \mathbf{\Theta})] = \sum_{i=1}^{l} \theta_i \ln[h_i(\mathbf{x})] + \ln\left[\prod_{i=l+1}^{m} h_i^{\theta_i} + \prod_{i=m+1}^{n} h_i^{\theta_i}\right] + \sigma \epsilon \qquad \text{Product of}$$

Sums

Do not drop "dimensional" explanatory terms

Useful when

(1) there exist no empirical models that can be used as a base model.

(2) the effects of explanatory terms are not well known.

Shear strength example: tried 17 explanatory terms

 \rightarrow Similar forms & parameter values with the two best formulas (with smaller $\mu_{\sigma})$

C Zsutty's

$$V_{c} = 2.2 \left(f_{c}' \rho \frac{d}{a} \right)^{1/3} b_{w} d$$
C Okamura & Higai

$$V_{c} = 0.2 \frac{(100\rho)^{1/3}}{(d/1000)^{1/4}} (f_{c}')^{1/3} \left(0.75 + \frac{1.40}{a/d} \right)^{1/3} b_{w} d$$

"Probabilistic" Models

General form

$$\ln[C(\mathbf{x}, \boldsymbol{\Theta})] = \ln[\hat{C}(\mathbf{x}, \boldsymbol{\theta})] + \sigma \varepsilon \longrightarrow C(\mathbf{x}, \boldsymbol{\Theta}) = \hat{C}(\mathbf{x}, \boldsymbol{\theta}) \cdot \exp(\sigma \varepsilon)$$

Capacity ~ follows the lognormal distribution

Mean and c.o.v. are derived as

$$\mu_{C}(\mathbf{x}) = \hat{C}(\mathbf{x}, \boldsymbol{\mu}_{\boldsymbol{\theta}}) \cdot \exp(\boldsymbol{\mu}_{\sigma} \boldsymbol{\varepsilon}) \cong \hat{C}(\mathbf{x}, \boldsymbol{\theta}) \text{ for } \boldsymbol{\mu}_{\sigma} << 1$$
$$\delta_{C}(\mathbf{x}) = \delta_{C} = \left[\exp(\boldsymbol{\mu}_{\sigma}^{2}) - 1\right]^{1/2} \cong \boldsymbol{\mu}_{\sigma} \text{ for } \boldsymbol{\mu}_{\sigma} << 1$$

Conditional pdf of capacity for given x

$$f_{C}(c \mid \mathbf{x}) = \frac{1}{\sqrt{2\pi\mu_{\sigma}c}} \exp\left[-\frac{1}{2}\left(\frac{\ln c - \ln \hat{C}(\mathbf{x}, \boldsymbol{\mu}_{\theta})}{\boldsymbol{\mu}_{\sigma}}\right)^{2}\right]$$

• Predictive pdf of capacity for unknown \mathbf{x}

$$f_{C}(c) = \int_{-\infty}^{\infty} f_{C}(c \mid \mathbf{x}) \cdot f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
15

- e.g. Tureyen & Frosch (2003) and a probabilistic strength model developed by this study
- Box plots of errors ~ show that the developed models are unbiased and have consistently good performance for the whole ranges of the parameters.

Other Applications

- Shear strengths of RC beams with shear reinforcements (W.-H. Kang, J. Song, and K.S. Kim)
- Seismic strengths of buckling-restrained bracings (B.M. Andrews, J. Song, and L.A. Fahnestock) (Andrews et al. 2009a, 2009b)
- Strengths/ of RC beam-column connections (J. Kim, J.M. LaFave, and J. Song)
- Statistical validation/verification of concrete FEM (H.H. Lee and D.A. Kuchma)
- Shear strengths of RC "deep" beams (strut-and-tie models) (Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song, 2014)
- Course term projects
 - Strengths of concrete-filled tubes (Mark Denavit)
 - Fracture toughness (Tam H. Nguyen)

References

- Gardoni, P., A. Der Kiureghian, and K.M. Mosalam (2002). "Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations." *Journal of Engineering Mechanics*, ASCE, 128(10): 1024-1038 [→ Seismic capacity of RC columns]
- Song, J., W.-H. Kang, K.S. Kim, and S. Jung. "Probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on experimental observations," under review [→ Shear strengths of RC beams without stirrups]
- Kang, W.-H., J. Song, and K.S. Kim (2007). "Probabilistic shear strength models for reinforced concrete beams with shear reinforcements by Bayeisan updating." *Proc. 18th Engineering Mechanics Division Conference of ASCE (ASCE EMD 2007)*, June 3-6, Blacksburg, VA. [→ Shear strengths of RC beams with stirrups]
- Kim, J., J.M. LaFave, and J. Song (2007). "A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading." *Structural Engineering and Mechanics*, Vol. 27(4), 439-456 [→ Strength of RC beam-column connection ~ strength only]
- Kim, J., J.M. LaFave, and J. Song. Joint shear behavior of RC beam-column connections, under review [→ RC beam-column connections ~ strength & corresponding strain]
- Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song (2014). "New strut-andtie-models for shear strength prediction and design of RC deep beams." *Computers and Concrete*, 14(1): 19-40 [→ Shear strength of deep RC beams]