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                            “            ”  (cf.            ) 
 

Ⅴ. Structural Reliability under Model & Stastical Uncertainties 

(Ref.: “Analysis of Structural Reliability under Model and Statistical Uncertainties: A 

Bayesian Approach” ~ eTL) 

 Formulation of Reliability Problems under Epistemic Uncertainties 

① Reliability Problem with Aleatoric uncertainties (only) 

( )fP f d  x x x                x : 

 

→ Use component and/or system reliability method 

② Reliability Problem under Aleatoric & Epistemic certainties 

1

( ;    ) 0

( ) ( ;     ) ( ) [              ]f

g

P f d  

 

   x

x

θ x x θ  

[    ]f gθ θ θ          

 

⇒ fP  & β  become __________ due to uncertainty in fθ  and/or gθ  

cf. ( ),  ( )fP θ θ ⇒ _________ reliability index given value of uncertain parameters 

 

 Three approaches for estimating reliability under epistemic uncertainties 

       Suppose ( )f
θ
θ  is available,  

① Point estimate of Reliability: ( )fP θ  at ˆθ θ  

θ̂ : point estimate (representative) of θ  

uncertain 

parameters 

r.v’s representing 

aleatoric uncertainties 

in the problem 

file:///C:/Users/Choi/Documents/junhosong@snu.ac.kr


Seoul National University                                              Instructor: Junho Song 

Dept. of Civil and Environmental Engineering                             junhosong@snu.ac.kr 

e.g. 

 

 

ˆ

ˆ arg max ;MLE

f d

L

  





 

θ Θ

θ

θ M θ θ θ

θ θ x θ

  

⇒  ˆfP θ ,  ˆ θ : Perform reliability analysis with θ        fixed 

Note ⅰ)    f

FO

f P
P 

θ θ
M M    

     ⅱ) Variability in θ  not considered   

② “Predictive” Reliability 

 

   

f f

f

P E P

P f d

   

 

θ

Θ

θ

θ θ θ
 

 1            

→ incorporates variability in θ  

→ but still point estimate, i.e. does not measure variability in  fP θ  caused by  

that in θ  

③  Bounds on Reliability (Confidence Intervals) 

                             100 (%)p  confident that   is b/w x and o 

 

 

First, find mean and variance of   θ  

reliability analysis        ( )f
θ
θ   

 

     2 2

FO

FO T

 

 

  

   

  



   

θ

θ θ θθ θ θ

M

M Σ M
 

                      Parameter sensitivity (e.g. FORM) 

  

 

Bayesian 

 
 

Non-Bayesian 

Likelihood function 

( ; ) ( , , )nL P x xx θ θ  
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Second, assume  ~ ,N      

 

 100 % pp
c   


   

(if   available, pc   ) 

 
 

100 %f pp
P c  



    
 

                       fP     

Then,  
f ffθ θ ,  

g gfθ θ  ?? 

 

(Review) Rel. Analysis under Epistemic Uncertainties (Model or Statistical) 

① Point Estimate    ˆfP  ,  ˆ   

② Predictive Reliability   f fP E P      

③ Bounds   
 100 % pp

c   


   

 
f ff   ?  

g gf   ? 

 

  Bayesian Parameter Estimation 

     f c L p  θ θ θ  

①  P θ : (           ) distribution 

- represents state of our knowledge (        ) making  

observations (objective information) 

- may incorporate (        ) info. such as “engineering judgment” 

cf. Bayes rule 

 
 

   
1

P A B P B A P A
P B

    

 

  f        c      L     p 
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②   L θ : (            ) function 

- represents (           ) information gained from the observation 

- function (          ) to conditional prob. of the observation given θ  

   obsL P Eθ θ  

③  c: (           ) factor 

- makes    c L p θ θ  a valid PDF 

i.e.      f c L P d    
θ θ

θ θ θ θ  

∴ c   

④   f θ : (             ) distribution 

- represents updated knowledge about θ  

- subjective    +    objective 

-   

; rare observation available 

; as more observations are made 

 

  Computation of c and posterior statistics 

   

       

     

1

TT

c L p d

f d c L p d

f d

    
  


       


  





 

θθ

θ θ θ

M θ θ θ θ θ θ θ θ

Σ θθ θ θ M θ M θ

 multi-fold integrals 

How? 







 

  

  

Convenient forms for special distribution (directly update statistics “conjugate”) 

Special numerical algorithms (Geyskens et al. 1993) 

Sampling methods: MCS, importance sampling, Markov Chain Monte Carlo 
(MCMC) 
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 Likelihood function ( )L θ  for distribution (statistical) parameters 
fθ  

  (e.g. μ,  σ,  λ,  ξ )  

① Measured value are available, ,  1, ,i i Nx  

Assuming the observations are s.i.  

1

1

1

( ) ( )

( )       ( . .)

( )

N

f i f f

i

N

i f f

i

N

i f

i

L P

P s i

f







  

  





 x

θ X x Θ θ

X x Θ θ

x θ

  

e.g. { }xx  uni-variate normal 
2(μ,σ )N   

Two samples observed: 12.3(← 1x ), 13.5(← 2x ) ( ) ( ) ( )f cL P θ θ θ   

2 2
1 1 12.3 1 1 13.5

( ) exp exp
2 22 2

fL
 

  

       
                  

θ  

 

※

MLEMLE         arg max ( )

( )

Bayesian Parameter Extimation

L

L







θ θ

θ  

                   ( ) ( ) ( )f c L p  θ θ θ   

 

② No direct measurement x  of available, but a set of events that involve x   are 

available 

e.g.  no measurement for compressive strength of concrete 
'

cf  (← ,  ,     ) 

available but spalling observed under a certain condition 

Inequality events : ( ) 0,  1, ,ih i N x  

Equality events : ( ) 0ih x    

0

ln
prefer 0

L

L
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a) Inequality 

e.g.  ( ) ( ) ( ) 0ih C D   x x x  no failure observed 

( ) ( ) ( ) 0ih C D  x x x  failure observed 

1

1 ( ) 0

( ) ( ( ) 0 )

( ; )  structural reliability analysis

i

N

f i f

i

N

f

i h

L P h

f d



 

 

 



  x

x

θ x θ

x θ x

 

b) Equality 

e.g.  ( ) ( ) 0i oh a a  x x   

( )a x : fatigue crack growth model, e.g. Paris law 

oa : measured crack size 

δ 0
1

δ 0

1

( ) lim [0 ( ) δ]

[ ( ) δ 0]
δ

N

f i

i

N

i

i

L P h

P h








  


  







θ x

x

 

0fP  
δ : can be considered as parameter sensitivity of fP  w.r.t  (model 

parameter) 

FORM-based (Madsen, 1987) 

Good review & new development (Straub, 2011) 

↘ a trick to transform equality constraint to ________ constraint 

  

 Likelihood function for limit-state model parameters, ( )gL θ  

 e.g. ( ; )gg x θ ( ; )c gV x θ ( ; ) 0d gV x θ  

                     
'1

6
c wf b d  (ACI 11-3) 

① Statistical model (using original deterministic model) 

y  ˆ( ; )gg x θ σε  ~ submodel or limit state function 

e.g. 2
'1 wc

f b d
  (ACI 11-3)      1{ , , , }g n  θ  

𝐏𝐫𝐨𝐨𝐟 

lim
𝛥𝛿→0

𝑃[ℎ𝑖(𝐱) − 𝛿 − 𝛥𝛿 ≤ 0] − 𝑃[ℎ𝑖(𝐱) − 𝛿 ≤ 0]

𝛥𝛿
|
𝛿=0

= lim
𝛥𝛿→0

𝑃[ℎ𝑖(𝐱) − 𝛥𝛿 ≤ 0] − 𝑃[ℎ𝑖(𝐱) ≤ 0]

𝛥𝛿
∝ lim

𝛥𝛿→0
𝑃[0 ≤ ℎ𝑖(𝐱) ≤ 𝛥𝛿] 
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x : observable input parameters (
' ,  ,  ,c wf b d ) 

y : observable output parameters ( cV ) 

gθ : uncertain model parameters (
1 2,    ) 

σε  : uncertainty due to missing variables and/or inexact mathematical form 

 • ε : std. normal r.v  “              ” assumption 

• σ : magnitude of model error (uncertain parameter) 

    → constant over x  “                        ” assumption 

• 0  : unbiased model 

 

 

 

 

 

May achieve H_______________ by a proper nonlinear transformation 

e.g. ˆln ln ( , ) σεgy g x θ   

 

’  Statistical model  (based on deterministic model, Gardoni et al. 2002) 

ˆ( ) ( ; ) σεgy g   x x θ  

ˆ( )g x : original deterministic model (e.g. 
'1

6
c wf b d ) 

( ; )g x θ : corrects the bias 

σε : remaining scatter 

e.g. RC beam w/o stirrups shear capacity 

(Song et al. 2010, Structural Eng & Mechanics) 

ˆln ln ( ) θ ln ( ) σεg iV v h  x x   

ˆ( )v x : 8 models from codes & papers 

( )ih x : explanatory terms from the shear transfer mechanism 
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   Likelihood function ( )gL θ ? 

Observed event   Equality: ,  1, ,iy y i m   know cv  when failed 

     Inequality: 
    

    

1, ,        

1, ,  

i

i

y a i m m n

y b i m m n N

   


    
 

 Model ˆY g      

a) ˆ( ) ( ( ) ( , ))i i gP Y y P y g      x x  

( ) ( )i Y iP Y y f y   

( )

( )

ˆ1

Q i

i

i

dq
f q

dy

d
f

dq

y g









 

 

 

  
  

 

  

b) ˆ( ) ( )i iP Y a P g a       

ˆ( )

ˆ

i

i

P a g

a g

 





   

  
   

 

 

c) ˆ( ) ( )i iP Y b P g b       

( )i

i

P b g

b g

 





   

  
  

 

 

1 1 1

ˆ ˆ ˆ1
( )

m m n m n N
i i i

g

i i m i m n

y g a g b g
L

  
 

   

  

     

          
           

     
     

※ Matlab codes for “Model Development by Bayesian method” 

→ MDB (by Prof. S.Y. Ok at Hankyoung Univ. for educational purpose) 

No failure up to Vc 

Failed but do not know when 
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Probabilistic shear strength models

● Empirical formulas are widely used for code provisions and designs

~ based on simplified mechanics rules and limited amount of experimental observations.

● Inaccurate description of physics & missing variables → biases and scatters

● Need probabilistic shear strength models that correct the biases and quantify the 

uncertainties based on comprehensive database of experimental observations
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V = A f
ssv

V
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V
d

V
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V
pV

d

V
cc

Reinforced Concrete 
Beam w/o Shear 
Reinforcement

Shear 
Strength Vc?

Empirical Formulas

Database of 
Experimental 
Observations

Vc = (1/6) fc’
0.5bwd



3

Probabilistic models by Bayesian updating*

 ),()(),(  xxx cC
Capacity Prediction by 

deterministic 
Model

Bias-
correction

Remaining 
errors

Assumptions:

●  is independent of input variables ~ “Homoskedasticity”

●  has the normal distribution ~ “Normality”

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)

“Probabilistic capacity models and fragility estimates for reinforced

concrete columns based on experimental observations”

Journal of Engineering Mechanics, Vol. 128(10)
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Probabilistic models by Bayesian updating*

 


p

i

iihcC
1

)()](ln[)],(ln[ xxx 

Nonlinear transformation 
to achieve 
“homoskedasticity”

Explanatory 
functions

? ?

)()()(  pLf 
Bayesian parameter 
estimation

Database of 106 
columns

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)

“Probabilistic capacity models and fragility estimates for reinforced

concrete columns based on experimental observations”

Journal of Engineering Mechanics, Vol. 128(10)
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Step-wise removal process

)()()(  pLf 
Bayesian parameter 
estimation

Kim, J., LaFave, J., and Song, J. (2009)

“Joint Shear Behavior of Reinforced Concrete Beam-Column  Connections”

Magazine of Concrete Research, Vol. 61(2), 119-132.

● Remove an explanatory terms with the highest c.o.v. (most uncertain)

● Continue until the mean of  starts increasing significantly

θ θ θ θ θμ ,σ ,δ ,ρ
i j
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Shear transfer mechanism

d cot 

V
support

d

V = A f
ssv

V
cr

V
d

V
ca

V
p



V
d

V
cc

Joint ASCE-ACI Committee 426 (1973) & 445 (1998)

(1) Shear in the uncracked 
compression zone

(2) Aggregate interlock

(4) Dowel action by 
longitudinal 
reinforcement bars

(3) Residual tensile 
stresses across cracks
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Variables affecting shear strengths

V = A f
ssv

V
cr

V
d

V
ca

V
p

V
d

V
cc

(1)  Concrete compressive strength: fc’

~ tensile strength increases the shear strength (approximated in terms of compressive

strength)

(2)  Member depth: d

~ shear strength decreases as the member depth increases (“size effect”)

(3)  Shear span-to-depth ratio: a/d

~ shear strength increases as the ratio decreases (“arch action” of “deep” beam)

(4)  Amount of longitudinal reinforcement: 

~ shear strength increases as the reinforcement increases (“dowel action”)

 


p

i

iihcC
1

)()](ln[)],(ln[ xxx 

,...),,,(  adfcx
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Empirical shear strength models

V = A f
ssv

V
cr

V
d

V
ca

V
p

V
d

V
cc

 


p

i

iihcC
1

)()](ln[)],(ln[ xxx 

,...),,,(  adfcx

Model Formula                                     characteristics

ACI 11-3 accounts for compressive strength only

ACI 11-5 compressive strength + 

Zsutty more accurate than ACI models

Eurocode Draft tends to underestimate (conservative)

Okamura & Higai good without severe biases

Tureyen & Frosch tends to overestimate for deep beams

Bazant & Yu mechanics-based, semi-empirical, accurate 

Russo et al. semi-empirical, large database

dbfV
wcc
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Shear strength database

* Reineck, K.H., Kuchma, D.A., Kim, K.S., and Marx, S. (2003)

“Shear database for reinforced concrete members without shear reinforcement”

ACI Structural Journal, Vol. 100(2)

●Checked by various selection criteria 

discussed by ACI-ASCE Committee 445

●398 shear strength test data

●Used 341 test data for this study

(57 data: missing aggregate sizes)
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Overall errors of the existing models

 )](ln[)],(ln[ xx cC 

0.001 0.01 0.1
-1.5

-1

-0.5

0

0.5

1

1.5



ln
(C

) 
- 

ln
(c

)

ACI 11-3

● : overall bias of the existing model

● : overall scatter of the existing model





Model
Posterior means

 (bias)  (scatter)

ACI 11-3 0.257 0.382

ACI 11-5 0.165 0.335

Eurocode Draft 0.456 0.223

Tureyen & Frosch 0.287 0.245

Zsutty 0.0261 0.244

Okamura & Higai 0.116 0.176

Bazant & Yu 0.0142 0.166

Russo et al. 0.00120 0.156
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ln
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) 
- 




Bayesian updating with bias-correction (H1)

 


p

i

iihcC
1

)()](ln[)],(ln[ xxx 

ACI 11-3

:● approximately represents the uncertainties after the bias correction (scatter)

● dimensionless explanatory terms
h

b

h

d

d

d

E

E

d

a
h wa

s

c
i  , , , ,,  ,2:)( x

Model
Posterior means of 

Constant bias H1 H2

ACI 11-3 0.382 0.222 0.165

ACI 11-5 0.335 0.218 0.177

Eurocode Draft 0.223 0.172 0.165

Tureyen & Frosch 0.245 0.178 0.167

Zsutty 0.244 0.185 0.168

Okamura & Higai 0.176 0.159 0.157

Bazant and Yu 0.166 0.156 0.154

Russo et al. 0.156 0.146 0.146
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0.001 0.01 0.1
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ln
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ln
(c

) 
- 




Bayesian updating with bias-correction (H2)

ACI 11-3

 


p

i

ii hcC
1

)](ln[)](ln[)],(ln[ xxx 

●Logarithms are applied to the explanatory functions.

●Consistent with the product forms of the deterministic

formulas
)exp()()()(),( 1

1 
 p

phhcC xxxx 

Model
Posterior means of 

Constant bias H1 H2

ACI 11-3 0.382 0.222 0.165

ACI 11-5 0.335 0.218 0.177

Eurocode Draft 0.223 0.172 0.165

Tureyen & Frosch 0.245 0.178 0.167

Zsutty 0.244 0.185 0.168

Okamura & Higai 0.176 0.159 0.157

Bazant and Yu 0.166 0.156 0.154

Russo et al. 0.156 0.146 0.146



13

Calibration of existing models

 


p

i

ii hcC
1

)](ln[)](ln[)],(ln[ xxx 

●Use the fractions of the empirical formulas as the explanatory functions

e.g. Zsutty’s model

●Do not drop explanatory terms with large c.o.v.’s

●Explanatory functions do not have to be dimensionless

~ may be more effective in representing the physics than the dimensionless terms 

(posterior mean by                                                    ) 

db
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●Select some dimensional terms to make the same dimension as quantity and add more 

non-dimensional terms. Perform the Bayesian parameter estimation by models such as

●Do not drop “dimensional” explanatory terms

●Useful when

(1) there exist no empirical models that can be used as a base model.

(2) the effects of explanatory terms are not well known.

●Shear strength example: tried 17 explanatory terms

→ Similar forms & parameter values with the two best formulas (with smaller )

Zsutty’s

Okamura & Higai      

Construction of new models
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●General form

●Capacity ~ follows the lognormal distribution

●Mean and c.o.v. are derived as

●Conditional pdf of capacity for given x

●Predictive pdf of capacity for unknown x

“Probabilistic” Models

 )],(ˆln[)],(ln[  xx CC )exp(),(ˆ),(   xx CC

1for  ]1)[exp()(

1for    ),(ˆ)exp(),(ˆ)(

2/12 
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Performance of probabilistic models
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Performance of probabilistic models
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(c) Eurocode Draft
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Performance of probabilistic models
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●e.g. Tureyen & Frosch (2003) and a probabilistic strength model developed by this study

● Box plots of errors ~ show that the developed models are unbiased and have consistently 

good performance for the whole ranges of the parameters.
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Other Applications

 Shear strengths of RC beams with shear reinforcements
(W.-H. Kang, J. Song, and K.S. Kim)

 Seismic strengths of buckling-restrained bracings
(B.M. Andrews, J. Song, and L.A. Fahnestock)
(Andrews et al. 2009a, 2009b)

 Strengths/ of RC beam-column connections 
(J. Kim, J.M. LaFave, and J. Song)

 Statistical validation/verification of concrete FEM
(H.H. Lee and D.A. Kuchma)

 Shear strengths of RC “deep” beams (strut-and-tie models)
(Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song,
2014)

 Course term projects
- Strengths of concrete-filled tubes (Mark Denavit)
- Fracture toughness (Tam H. Nguyen)

Exterior joint

Interior joint

Knee joint

Loading direction

V = A f
ssv
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V
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Probabilistic shear strength models

● Empirical formulas are widely used for code provisions and designs

~ based on simplified mechanics rules and limited amount of experimental observations.

● Inaccurate description of physics & missing variables → biases and scatters

● Need probabilistic shear strength models that correct the biases and quantify the 

uncertainties based on comprehensive database of experimental observations
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Probabilistic models by Bayesian updating*

 ),()(),(  xxx cC
Capacity Prediction by 

deterministic 
Model

Bias-
correction

Remaining 
errors

Assumptions:

●  is independent of input variables ~ “Homoskedasticity”

●  has the normal distribution ~ “Normality”

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)

“Probabilistic capacity models and fragility estimates for reinforced

concrete columns based on experimental observations”

Journal of Engineering Mechanics, Vol. 128(10)
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Probabilistic models by Bayesian updating*
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Nonlinear transformation 
to achieve 
“homoskedasticity”

Explanatory 
functions

? ?

)()()(  pLf 
Bayesian parameter 
estimation

Database of 106 
columns

* Gardoni, P., Der Kiureghian, A., and Mosalam, K.M. (2002)

“Probabilistic capacity models and fragility estimates for reinforced

concrete columns based on experimental observations”

Journal of Engineering Mechanics, Vol. 128(10)
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Step-wise removal process

)()()(  pLf 
Bayesian parameter 
estimation

Kim, J., LaFave, J., and Song, J. (2009)

“Joint Shear Behavior of Reinforced Concrete Beam-Column  Connections”

Magazine of Concrete Research, Vol. 61(2), 119-132.

● Remove an explanatory terms with the highest c.o.v. (most uncertain)

● Continue until the mean of  starts increasing significantly

θ θ θ θ θμ ,σ ,δ ,ρ
i j
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Shear transfer mechanism
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Joint ASCE-ACI Committee 426 (1973) & 445 (1998)

(1) Shear in the uncracked 
compression zone

(2) Aggregate interlock

(4) Dowel action by 
longitudinal 
reinforcement bars

(3) Residual tensile 
stresses across cracks
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Variables affecting shear strengths

V = A f
ssv

V
cr

V
d

V
ca

V
p

V
d

V
cc

(1)  Concrete compressive strength: fc’

~ tensile strength increases the shear strength (approximated in terms of compressive

strength)

(2)  Member depth: d

~ shear strength decreases as the member depth increases (“size effect”)

(3)  Shear span-to-depth ratio: a/d

~ shear strength increases as the ratio decreases (“arch action” of “deep” beam)

(4)  Amount of longitudinal reinforcement: 

~ shear strength increases as the reinforcement increases (“dowel action”)
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Empirical shear strength models

V = A f
ssv
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Model Formula                                     characteristics

ACI 11-3 accounts for compressive strength only

ACI 11-5 compressive strength + 

Zsutty more accurate than ACI models

Eurocode Draft tends to underestimate (conservative)

Okamura & Higai good without severe biases

Tureyen & Frosch tends to overestimate for deep beams

Bazant & Yu mechanics-based, semi-empirical, accurate 

Russo et al. semi-empirical, large database
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Shear strength database

* Reineck, K.H., Kuchma, D.A., Kim, K.S., and Marx, S. (2003)

“Shear database for reinforced concrete members without shear reinforcement”

ACI Structural Journal, Vol. 100(2)

●Checked by various selection criteria 

discussed by ACI-ASCE Committee 445

●398 shear strength test data

●Used 341 test data for this study

(57 data: missing aggregate sizes)
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Overall errors of the existing models

 )](ln[)],(ln[ xx cC 
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ACI 11-3

● : overall bias of the existing model

● : overall scatter of the existing model





Model
Posterior means

 (bias)  (scatter)

ACI 11-3 0.257 0.382

ACI 11-5 0.165 0.335

Eurocode Draft 0.456 0.223

Tureyen & Frosch 0.287 0.245

Zsutty 0.0261 0.244

Okamura & Higai 0.116 0.176

Bazant & Yu 0.0142 0.166

Russo et al. 0.00120 0.156
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Bayesian updating with bias-correction (H1)
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ACI 11-3

:● approximately represents the uncertainties after the bias correction (scatter)

● dimensionless explanatory terms
h

b
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d
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E
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a
h wa

s

c
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Model
Posterior means of 

Constant bias H1 H2

ACI 11-3 0.382 0.222 0.165

ACI 11-5 0.335 0.218 0.177

Eurocode Draft 0.223 0.172 0.165

Tureyen & Frosch 0.245 0.178 0.167

Zsutty 0.244 0.185 0.168

Okamura & Higai 0.176 0.159 0.157

Bazant and Yu 0.166 0.156 0.154

Russo et al. 0.156 0.146 0.146
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Bayesian updating with bias-correction (H2)

ACI 11-3
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●Logarithms are applied to the explanatory functions.

●Consistent with the product forms of the deterministic

formulas
)exp()()()(),( 1

1 
 p

phhcC xxxx 

Model
Posterior means of 

Constant bias H1 H2

ACI 11-3 0.382 0.222 0.165

ACI 11-5 0.335 0.218 0.177

Eurocode Draft 0.223 0.172 0.165

Tureyen & Frosch 0.245 0.178 0.167

Zsutty 0.244 0.185 0.168

Okamura & Higai 0.176 0.159 0.157

Bazant and Yu 0.166 0.156 0.154

Russo et al. 0.156 0.146 0.146
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Calibration of existing models
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●Use the fractions of the empirical formulas as the explanatory functions

e.g. Zsutty’s model

●Do not drop explanatory terms with large c.o.v.’s

●Explanatory functions do not have to be dimensionless

~ may be more effective in representing the physics than the dimensionless terms 
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●Select some dimensional terms to make the same dimension as quantity and add more 

non-dimensional terms. Perform the Bayesian parameter estimation by models such as

●Do not drop “dimensional” explanatory terms

●Useful when

(1) there exist no empirical models that can be used as a base model.

(2) the effects of explanatory terms are not well known.

●Shear strength example: tried 17 explanatory terms

→ Similar forms & parameter values with the two best formulas (with smaller )

Zsutty’s

Okamura & Higai      

Construction of new models
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●General form

●Capacity ~ follows the lognormal distribution

●Mean and c.o.v. are derived as

●Conditional pdf of capacity for given x

●Predictive pdf of capacity for unknown x

“Probabilistic” Models
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Performance of probabilistic models
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Performance of probabilistic models
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Performance of probabilistic models
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●e.g. Tureyen & Frosch (2003) and a probabilistic strength model developed by this study

● Box plots of errors ~ show that the developed models are unbiased and have consistently 

good performance for the whole ranges of the parameters.
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Other Applications

 Shear strengths of RC beams with shear reinforcements
(W.-H. Kang, J. Song, and K.S. Kim)

 Seismic strengths of buckling-restrained bracings
(B.M. Andrews, J. Song, and L.A. Fahnestock)
(Andrews et al. 2009a, 2009b)

 Strengths/ of RC beam-column connections 
(J. Kim, J.M. LaFave, and J. Song)

 Statistical validation/verification of concrete FEM
(H.H. Lee and D.A. Kuchma)

 Shear strengths of RC “deep” beams (strut-and-tie models)
(Chetchotisak, P., J. Teerawong, S. Yindeesuk, and J. Song,
2014)

 Course term projects
- Strengths of concrete-filled tubes (Mark Denavit)
- Fracture toughness (Tam H. Nguyen)

Exterior joint

Interior joint

Knee joint

Loading direction
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