#### Chapter 8

# **Cells Respond to Their External Environments**



### **Response to External Environments**

#### Single-celled organism

- Respond to environmental changes
- Temperature, salinity, pH, toxins, mating factors
- Multicellular organism
  - Environment is the inside of the organism
  - Respond to external conditions and maintain cellular homeostasis

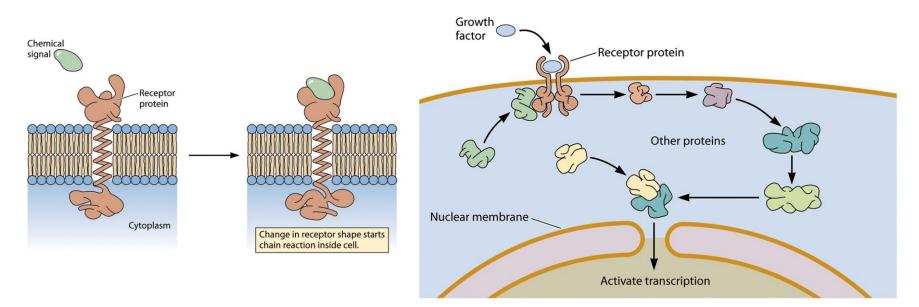
## **Signals and Receptors**

- Response to signal
  - Signal
    - Chemicals, light, sound, electrical impulses, solutes concentration, pressure
  - Detection of signal
    - Receptors
  - Induction of cellular response
    - Cellular changes
      - Activation or suppression of enzyme activity
      - Activation or suppression of transcription or translation
      - Changes in the permeability of the cell
      - Release of stored proteins
    - Cellular responses
      - Generation of nerve impulse
      - Metabolizing nutrient
      - Migration
      - Growing and dividing
      - Differentiation
      - Dying

### **Types of Receptors**

#### Receptors of the five senses

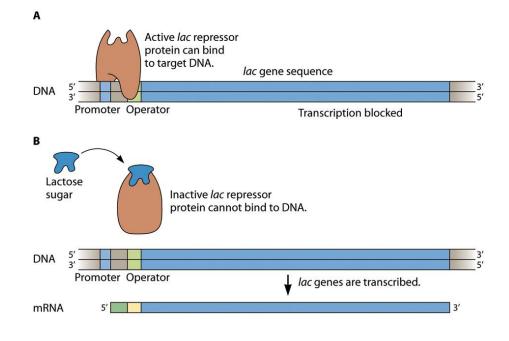
| Type of<br>receptor                  | Activating<br>stimulus                                                              | Cellular<br>response                   | Brain's interpretation<br>of nerve impulse |
|--------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|
| Photoreceptor                        | Light                                                                               | Change in membrane<br>channels         | Vision                                     |
| Auditory receptors                   | Vibration                                                                           | Release of stored<br>neurotransmitters | Sound                                      |
| Olfactory receptors                  | Various molecules<br>in the air                                                     | Change in membrane<br>channels         | Smell                                      |
| Taste receptors for sweet and bitter | Various dissolved<br>molecules                                                      | Change in membrane<br>channels         | Sweet or bitter taste                      |
| Taste receptors                      | Na <sup>+</sup> , C1 <sup>-</sup> , K <sup>+</sup> (salty)<br>H <sup>+</sup> (sour) | Release of stored neurotransmitters    | Salty or sour taste                        |
| Baroreceptor                         | Deformation of cell                                                                 | Change in membrane<br>channels         | Touch, pressure                            |


Table 8.1 Receptors and the five senses

#### Osmoreceptors

 High salt → Cell shrinkage → Geometry change → Opening of ion channels → Generation of a nerve impulse

## **Signal Transduction**


- Receptors
  - Membrane receptor: Binding of signal molecules which cannot cross the membrane
  - Intracellular receptors: Binding of signal molecule which can cross the membrane
- Signal transduction
  - Conformational change of receptor upon binding to the signal
  - Triggering cascade of reactions



## Responses of Single-Celled Organisms

#### Lactose breakdown in *E. coli*

- Turning on lactose utilizing genes (*lac* genes) only in the presence of lactose
- In the absence of lactose
  - --- The *lac* repressor represses *lac* genes by binding to operator of *lac* operon.
- In the presence of lactose
  - --- Lactose binding to *lac* repressor leads to release from the *lac* operator
    - $\rightarrow$  Transcription on

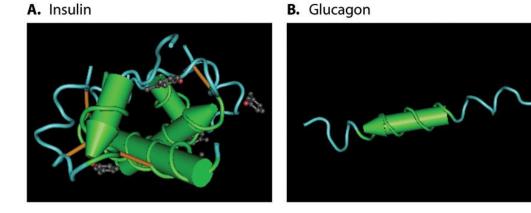


## Coordination of Cellular Responses in Multicellular Organisms

# Hormones Produced in various glands and secreted into blood stream

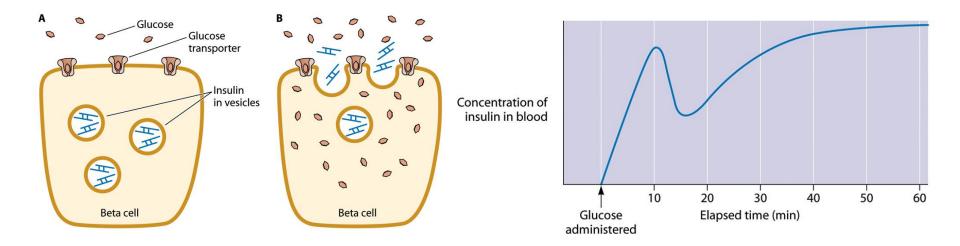
#### Primary effect(s) Where secreted Target(s) Hormone Stimulates and maintains metabolism; necessary for normal Thyroxine Thyroid Many tissues growth and development Growth hormone Anterior pituitary Bones, liver, muscle Stimulates protein synthesis and growth Follicle-stimulating Stimulates growth and maturation of eggs in females; stimulates Anterior pituitary Gonads hormone sperm production in males Melanocyte-stimulating Anterior pituitary Melanocytes Controls pigmentation hormone Insulin Pancreas Muscles, liver, fat Stimulates uptake and metabolism of glucose; increases glycogen and fat synthesis; reduces blood sugar Glucagon Pancreas Liver Stimulates breakdown of glycogen; raises blood sugar Digestive tract, pancreas Inhibits release of insulin and glucagon; decreases activity in the Somatostatin Pancreas digestive tract Posterior pituitary Stimulates water resorption and raises blood pressure ADH Kidneys Increases sodium ion excretion; lowers blood pressure ANH Kidneys Heart Aldosterone Adrenal cortex Stimulates excretion of potassium and resorption of sodium ions Kidneys Stimulate development and maintenance of female sexual Estrogens **Ovaries** Breast, uterus, and other tissues characteristics; necessary for proper bone development in males and females; proper seminal fluid formation in males Stimulate development and maintenance of male sexual Androgens Testes Various tissues characteristics

#### Table 8.2 Examples of human hormones


### Hormones

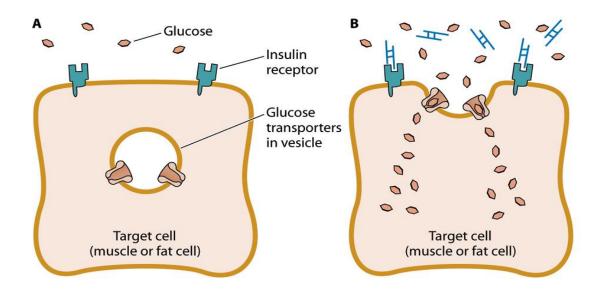
#### Hormone receptors

- Membrane receptors (Many hormones are proteins.)
   → signal transduction
- Intracellular receptors for steroid hormones
  - The receptor-hormone complex binds to target DNA.
    - $\rightarrow$  repression or activation of transcription
- Estrogen
  - Female hormone (steroid hormone)
    - The receptor-hormone complex activates the transcription.
      - → Generation of new blood vessels in the uterus, Increase in lactoferrin (protein in breast milk)
  - Proper production of seminal fluid and development of skeletons in male


## Regulation of Blood Glucose Concentration

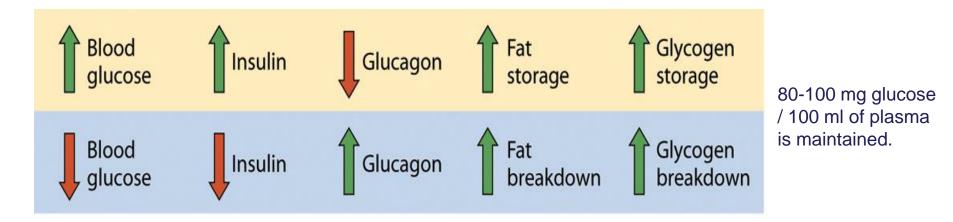
- Importance of regulating glucose levels in blood stream
  - Low glucose: no energy source in the brain
    - $\rightarrow$  unconsciousness, comma, and death
  - High glucose: mental confusion, dehydration etc.
- Hormones regulating blood glucose levels
  - Generated from pancreas
    - Insulin decreases glucose levels
    - Glucagon increases glucose levels




## Insulin

- Synthesized in the pancreatic β cells and packed into vesicles
- If glucose is high,
  - $\rightarrow$  the glucose enters the  $\beta$  cells via transport proteins
  - $\rightarrow$  Insulin vesicles fuses with cell membrane
  - $\rightarrow$  Insulin is released to the blood stream
- Glucose stimulates the transcription of insulin gene.




## **Roles of Insulin**

- Binding to cell type-specific insulin receptors
  - e.g. Muscle and fat cells
    - Binding of insulin to insulin receptors
    - $\rightarrow$  Increase in fusion of vesicles containing glucose transporters (GLUT4)
    - $\rightarrow$  Stimulation of uptake of glucose from the blood
    - cf. liver and brain: insulin-independent glucose transporter (GLUT1)



## Glucagon

- Release of glucagon upon low glucose levels
- Binding to cell type-specific glucagon receptors
  - Liver
    - Inhibition of glycogen synthesis
    - Stimulation of breakdown of glycogen
       → Release of glucose
  - Fat cells
    - Activation of breakdown of fats
    - Fatty acids are used as E source, sparing glucose for brain cells



## **Diabetes**

#### Diabetes mellitus

- Diabetes: excessive urination in Greek
- Mellitus: honey in Latin
- Problem in controlling blood glucose
  - Insufficient glucose absorption in the presence of high blood glucose
    - $\rightarrow$  high concentration of glucose in the urine

#### Types of diabetes

- Type I, Juvenile, insulin-dependent diabetes
  - No insulin production
  - Autoimmune response --- destroying pancreatic  $\boldsymbol{\beta}$  cells
- Type II, insulin-resistant, non-insulin-dependent diabetes
  - No response to insulin (unknown cause, associated with obesity)
  - 90~95% of diabetes

## **Biotechnology Application**

#### Insulin production to treat diabetes

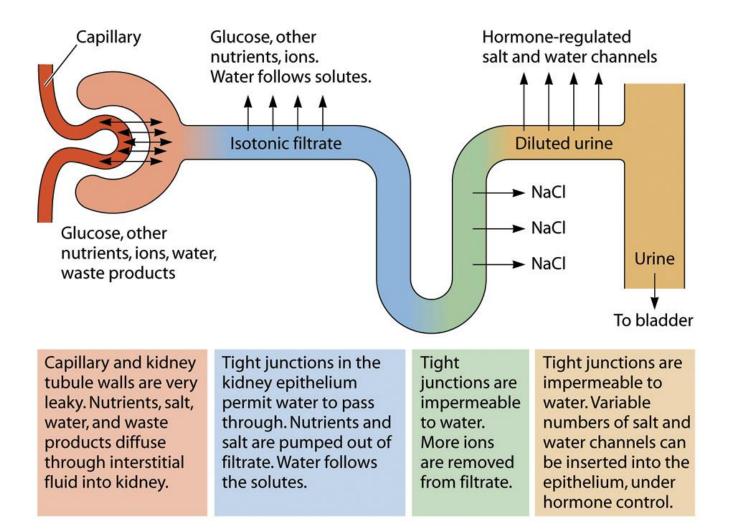
- 1920's
  - isolation of insulin from pig and cow pancreases
- 1980's
  - Recombinant human insulin expressed in *E. coli*

## **Blood Pressure, Salt, and Water**

#### Roles of blood circulation

- Capillaries: permeable cell wall, 60,000 miles in human body
- Provide nutrients to cells
  - O<sub>2</sub>, nutrients, hormones
    - $\rightarrow$  diffuse to interstitial fluid through capillary walls
- Elimination of waste products
  - Waste products  $\rightarrow$  pass into capillaries

#### Blood pressure


- Low blood pressure:
  - problem in supplying nutrients to organs especially brain
- High blood pressure (Hypertension)
  - Weakening of blood vessel  $\rightarrow$  burst and bleed : stroke, blindness
  - Stiffening of arteries: heart attack, heart failure
  - Kidney problem
- Affected by blood volume and muscle tone in the artery walls

## **How Kidneys Work**

#### Generation of urine during transport along the tubules of kidney

- 1. Diffusion of small molecules from capillaries to tubules of kidney through very leaky walls
  - Filtrate: the fluid in the tubules
- 2. Transporters to reabsorb nutrient
  - Tight junctions and microvilli
  - Isotonic filtrate: osmotic balance between filtrate and extracellular fluid
- 3. Water impermeable, active transport of ions
  - Dilute urine
- 4. Tubule with aquaporin channel and salt channels
  - Concentrated urine
- 5. Bladder

### **Solute Transport in the Kidney**

