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understand the physics of phenomena through a systematic identification of coupling terms. Also,
these simple models have often been proven very useful for rotor system design and development.

A better representation for a rotor blade is to treat it as an elastic beam undergoing flap
bending, lead-lag bending and torsion deflections. Several authors have investigated the aeroelastic
stability of an elastic blade (see, general review papers 4-7). The equations of motion are given
in 3.11 for a uniform blade and the generic aerodynamic forces are defined in 4.6. The common
approach for calculating the trim deflections, as well as the aeroelastic stability, is the model
method (Galerkin or Rayleigh-Ritz) using either coupled natural modes (rotating) or uncoupled
beam modes (nonrotating). In general, the trim deflections are assumed to be large and are obtained
by solving nonlinear steady-state equation; and the flutter equations of motion are linearized about
the trim state. With the modal approach, it becomes increasingly difficult to handle geometric
complexities. For example, it is difficult to effectively model the multibeam flexure of a bearingless
blade. The finite element method is perhaps an ideal choice for complex blade configurations.
The blade is divided into a number of beam elements and the application of energy principles or
the method of weighted residuals yields approximate expressions for forces (inertial, elastic, etc.)
over each elements. The global equations for motion are obtained by assembling the elements.
Nonuniform properties can be easily accommodated. The finite element method is very flexible and
the formulation can be adapted to different rotor blade configurations with a few modifications.
Multibeams of a bearingless blade can be modeled individually (Refs. 10-11).

Most analyses apply quasisteady strip theory to obtain aerodynamic forces. Forces of noncircula-
tory origin from unsteady thin airfoil theory are also included. Normally, linearized two-dimensional
airfoil lift, drag, and pitch moment coefficients are used. Typically,

cl = aα

cd = cd0

cm = 0

The correlation of theoretical and experimental results from scaled models has shown that nonlinear
airfoil section characteristics may significantly influence low-frequency flap-lag-torsion stability. For
example,

cl = c0 + c1α+ c2α|α|

cd = d0 + d1α
2|α|

cm = f0 + f1α

appears quite adequate representation below stall condition. Some analyses have used data tables
to obtain airfoil characteristics. Linearization of airfoil lift, drag and pitch moment coefficients
about a trim angle of attack provides a simple way of treating these effects in a linear stability
analysis.

cl(α) = cl(α0) +
δcl
δα

(α0)Δα

cd(α) = cd(α0) +
δcd
δα

(α0)Δα

cm(α) = cm(α0) +
δcm
δα

(α0)Δα

and

α = α0 +Δα
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where a0 is the trim angle of attack and δα is the perturbation in the angle of attack.

The induced inflow is calculated using simple momentum theory. The assumption of uniform
inflow is widely used, though it is strictly true for ideally twisted blades. It is, however, observed
that a small variation in inflow distribution has negligible influence on blade stability.

Quasisteady assumption appears satisfactory for low frequency modes. For high frequency
pitch-flap flutter, one needs to include unsteady aerodynamic effects. The influence of unsteady
aerodynamics can be introduced through a suitable modification of the circulatory lift with a
suitable lift deficiency function. The airfoil characteristics become

cl = cl(α0) +
δcl
δα

(α0)Δα

cd = cd(α0) +
δcd
δα

(α0)Δα

cm = cm(α0) +
δcm
δα

(α0)C(k)Δα

where C(k) is lift deficiency function and k is the reduced frequency, ωc
2U . The ω is the frequency

of oscillation, c is the chord, and U is the free-stream velocity. For hover, U becomes equal to Ωr,
where Ω is rotational speed (rad/sec) and r is the radial position. The value of reduced frequency k
varies along the length of the blade; the smaller value at the tip and the larger value near the root
end of the blade. For hover, it is appropriate to use the Loewy function C(k) and for forward flight
Theodorsen function C(k) is perhaps a better choice. There are two problems with this approach.
First, the reduced frequency k varies radially and the second, C(k) is a complex number. The first
problem can be covered approximately through finite element formulation. The blade is divided
into a number of elements and for each element an average value of reduced frequency corresponding
to the mid-point is used. With the inclusion of complex numbers for lift deficiency functions, the
equations become complex and there is no easy way to solve these equations. Thus,

C(k) = F (k) + iG(k)

One possible way is to arbitrarily neglect the complex component from the lift deficiency function
(G(k) = 0) and retain the real component. There is a little justification with this assumption; more
so, with higher frequencies.

Another simple way to include unsteady aerodynamic effects is to use dynamic inflow modeling.
As discussed in art. 4.6, the dynamic inflow components are related to perturbation rotor loads
(thrust, roll moment and pitch moment). For hovering flight, the dynamic inflow model is quite
simple and is given as

∼̇
λ+

∼
λ= sign (cT )k

2
p
ΔcT
4λ0

where
∼
λ is a perturbation to the induced inflow from its steady value λ0.

The blade motion is assumed to be small perturbation about steady deflected shape. The steady
blade equilibrium position has an important influence on blade stability. The steady-state equations
are obtained for hovering flight after dropping the time dependent terms. These nonlinear equations
are solved iteratively using the Newton-Raphson procedure. The next step is to obtain the natural
vibration characteristics of the rotating blade about its equilibrium position. This is done removing
all aerodynamic terms and also neglecting damping matrix. This gives real eigenvalues. The last
step is to calculate the flutter stability. Typically, this is done through the normal mode equations
using few (about 6) natural vibration modes. This results in a complex eigenvalue problem. The
condition of negative damping for a mode results in dynamic instability.
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The correlation of experimental data with analytical results obtained using different codes for
blade and rotor stability has been presented in ITR Methodology Workshop (1983). One particular
example of hingeless blade in hovering flight is worked out here using finite element analysis. The
blade is divided into seven elements. Each element consists of two end nodes and three internal
nodes, with a total of fifteen degrees of freedom. Each of the end nodes has six degrees of freedom,
namely, axial deflection u, lead-lag deflection v, v′, flap deflection w, w′, and elastic twist φ. The
input data is given below.

Configuration Hingeless Rotor Isolated Stability
(Task IIA) Soft Flexure case

Rotor RPM = 1000
Lock Number γ = 5.3
Solidity ratio σ = .057
chord/radius c

R = .09
reference life curve slope ar = 6.0

zero precone, zero pretwist, zero offsets of aerodynamic center, cg and tension center from elastic
axis

cl = 6α− 10α2 (sign α)

cd = .01 + 11.1(α)3(sign α)

cm = 0

7 Finite Elements (No. 1 from tip)
lengths in terms of radius .1, .1, .1, .1, .25, .255, .095.
structural properties same for elements 1-6

Flapwise EIy/m0Ω
2R4 = .005239

Chordwise EIz/m0Ω
2R4 = .1067

Torsion GJ/m0Ω
2R4 = .00157

Torsion Inertia k2m/R2 = .000647 = k2a/R
2

m/m0=1
For root element 7

EIy/m0Ω
2R4 = .1477 EIz/m0Ω

2R4 = .1866

GJ/m0Ω
2R4 = .00116 k2m/R2 = k2a/R

2 = .0131

m/m0 = 12.1

Given nonrotating frequencies
flap frequency = .311/rev
lag frequency = 1.32/rev
torsion freq. = 2.30/rev
lag structural damping 2ζL

ωζ0
Ω = .0196

For unsteady aerodynamics

Reduced frequencies k corresponding to lag mode for elements 1-7 are .066, .074, .084, .097,
.133, .283 and 1.326 and Theodoresen’s lift deficiency function C(k) are .8825, .8699, .8363, .7922,
.6746 and .5262.
Calculated rotating frequencies (θ = 0)

flap frequency = 1.17/rev
lag frequency = 1.33/rev
torsion freq. = 2.97/rev
The following reports discuss aeroelastic stability in hover for different types of rotors.
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(a) Hingeless rotors - Hodges and Ormiston (1976).

(b) Circulation control rotors Chopra and Johnson (1979) Chopra (1984).

(c) Composite Blades - Hong and Chopra (1985).

(d) Bearingless Rotors - Sivaneri and Chopra (1984), Chopra (1984), Hong and Chopra (1985),
Hodges (1979).

(e) Tilting Proprotor (JVX, XV-15) - Johnson (1975).
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Questions

Justify the following:

• Flutter is different from forced vibrations.
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• Flap-lag flutter is a unique aeroelastic instability with rotor blades, and it has nothing to do
with fixed wing.

• Flap-lag flutter is a weak instability and can be easily stabilized.

• Soft lag rotors get stabilized with a small elastic coupling.

• Pitch divergence of the blades does not depend on the elastic axis position.

• Through a simple analysis, the blade was found to be unstable from pitch-flap instability and
the flutter frequency was calculated to be 18 Hz. During the hover test, the rotor model was
found to be quite stable at the operating speed of 360 RPM. However, when the speed was
slightly reduced, an instability appeared and the rotor started shaking violently.

• After the blade was built, the analysis showed the possibility of pitch-flap flutter. You would
like to do some quick fix to the problem.

• How would you identify the wake excited flutter? Suggest ways to get rod of it.

• A great effort is made to keep the cg and the elastic axis at the quarter-chord position.

• Through a quasielastic torsion modelling, the important pitch-flap and pitch-lag terms are
retained.

• The pitch divergence of the blades does not depend on the thrust level at which the rotor is
being operated.
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Chapter 6

Ground and Air Resonance

6.1 Ground Resonance

Ground resonance is a dynamic instability caused by the coupling of the blade lag motion and the
hub inplane motion. The word resonance is used because at the instability condition one of the lag
frequencies in the fixed frame becomes equal to the support frequency. It is called ground resonance
because this instability takes place when the helicopter is on the ground. That is the reason that
the landing gear and the supporting structure characteristics are important for this instability. It
is also called mechanical instability because the aerodynamic forces do not play an important role
in causing this instability. The ground resonance is a problem of soft lag rotors.

Ground resonance is a violent instability and would result in a catastrophe. A major design
consideration is to avoid this instability. The selection of the operating rotor speed is made with
the consideration that there is no possibility of resonance at or near this speed. The inclusion of
damping in lag mode is very beneficial for this instability. This is the reason that most of the
flying rotors have mechanical lag dampers near the root of the blade. This type of instability is
also possible when the helicopter is in flight, then it is called air resonance. This instability is more
common with hingeless blades.

6.1.1 Blade Lag Motion in Fixed Coordinates

Let us examine the Fourier coordinate transformation of blade lag motion.
ζ(m) = lag motion of the mth blade in rotating frame

ζo, ζnc, ζns, ζN/2 = lag motions in fixed frame
The FCT is a linear transformation of N degrees of motion in the rotating frame to N degrees

of motion in the fixed frame.

For N bladed rotor

ζo =
1

N

N∑
m=1

ζ(m)

ζnc =
2

N

N∑
m=1

ζ(m) cosnψm

ζns =
2

N

N∑
m=1

ζ(m) sinnψm

319
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ζN/2 =
1

N

N∑
m=1

ζ(m)(−1)m

and

ζ(m) = ζo +
∑
n=1

(ζnc cosnψm + ζns sinnψm) + ζN/2(−1)m

The summation

∑
n

⇒ n = 1 to N−1
2 for N odd

n = 1 to N−2
2 for N even

and

ψm = ψ + (m− 1)Δψ m=1,2,. . . ,N
Δψ = 2π

N
ψ = Ωt where Ω is rotational speed.

Let us examine the fixed frame terms. First consider a four bladed rotor. The analysis is similar
for three bladed rotors. Then consider a two bladed rotor. The analysis for two bladed rotors is
distinctly different from three or higher blades.

6.1.2 Three and Four bladed Rotors

For 4-bladed rotors, N=4, there are four rigid lags in the rotating frame, one for each blade. This
results in four degrees of motion in the fixed frame, i. e. , ζo, ζlc, ζls, and ζ2.

ζ(m) = ζo

cg of complete 

cg stays at the
center

ζo is a collective lag motion

ζ(m) = ζlc cosψm

cg of ro

y
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ζlc represents a lateral shift of rotor cg, in negative y directional.

ζ(m) = ζls sinψm

cg of ro
x

ζls represents a longitudinal shift of rotor cg, in positive x direction.

ζ(m) = ζ2(−1)m

cg of ro
x

ζ2 Scissoring motion, cg stays at the center.
The transformed lag motion in the fixed system can be coupled with the hub motion. The

uncoupled lag equation for a blade with rigid lag is

Iζ(
∗∗
ζ +ν2ζ ζ +C∗

ζ

∗
ζ) = γMζ

The right side is the aerodynamic force which is small and its effect can be taken care of through
the damping term C∗

ζ .

Iζ(
∗∗
ζ +ν2ζ ζ +C∗

ζ

∗
ζ) = 0

Using ‘FCT’ for a 4-bladed rotor
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Iζ(
∗∗
ζ o +ν2ζ ζo +C∗

ζ

∗
ζo) = 0

Iζ(
∗∗
ζ 2 +ν2ζ ζ2 +C∗

ζ

∗
ζ2) = 0

Iζ{
∗∗
ζ lc +2

∗
ζ ls −ζlc + ν2ζ ζlc +C∗

ζ(
∗
ζlc +ζls)} = 0

Iζ{
∗∗
ζ ls −2

∗
ζ lc −ζls + ν2ζ ζls +C∗

ζ(
∗
ζ ls −ζlc)} = 0

The last two equations are longitudinal and lateral inertial equations of the rotor. Now there
is a hub motion of xh and yh superimposed on lag motion, then the blade lag equation becomes:

Iζ(
∗∗
ζ +ν2ζ ζ +C∗

ζ

∗
ζ) + Sζ(

ẍh
Ω2

sinψ − ÿh
Ω2

cosψ) = γMζIb

r

ψ

x

y

r ζ + x sin ψ - y 
hh

.... ..

6.1.3 Ground Resonance Equations

As we have seen earlier for a 4-bladed rotor that there is no shift of rotor cg with collective lag ζo and
differential lag ζ2. The important lag motions are ζlc and ζls which cause lateral and longitudinal
shift of rotor cg. These motions can couple with inplane longitudinal and lateral hub motions, xh
and yh. Therefore, a four degree of freedom model is quite useful to explain the phenomenon of
ground resonance.




