

- In the design of electronic circuitry, it is often necessary to make the pins of several components electrically equivalent by wiring together.
- To interconnect a set of n pins, we can use an arrangement of n-1 pins.
- Of all such arrangements, the one using the least amount of wire is the most desirable.

- Given a connected, undirected, weighted graph
- Find a spanning tree using edges that minimizes the total weight

- We can model this wiring problem with a connected, undirected graph G=(V,E), where
 - V is the set of pins
 - E is the set of possible interconnections between pair of pins
 - A weight w(u,v) for each edge (u,v)∈E that specifying the cost to connect u and v
- Find an acyclic subset T⊆E that connects all of the vertices and whose total weight
 w(T) = ∑_{(u,v)∈T} w(u,v) is minimized.
- Since T is acyclic and connects all the vertices, we call a minimum spanning tree.

4

Minimum Spanning Tree

GENERIC-MST(G, w)

- 1. $A = \emptyset$
- 2. **while** A does not form a spanning tree
- 3. find an edge (u,v) that is safe for A
- 4. $A = A U \{(u,v)\}$
- 5. **return** A

- If A U {(u,v)} is also a subset of a minimum spanning tree, we call the edge (u,v)
 a safe edge.
- A cut (S, V-S) of an undirected graph G=(V,E) is a partition of V.
- An edge (u,v)∈E crosses the cut (S, V-S) if one of its endpoints is in S and the other is in V-S.
- A cut respects a set A of edges if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

One Way of Viewing a Cut (S, V-S)

- Black vertices are in the set S, and green vertices are in V-S.
- The edge (d,c) is the unique light edge crossing the cut.

Another Way of Viewing a Cut (S, V-S)

Theorem 23.1

- Let G=(V,E) be a connected undirected graph with a real-valued weight function w defined on E.
- Let A be a subset of E that is included in some minimum spanning tree for G.
- Let (S,V-S) be any cut of G that respects A and let (u,v) be a light edge crossing (S,V-S).
- Then, the edge (u,v) is safe for A

- Let T be a minimum spanning tree that includes A
- Assume that T does not contain the light edge (u,v)
- Construct another minimum spanning tree T' that include A U
 {(u,v)} by using a cut-and-paste technique, thereby showing
 that (u,v) is a safe edge for A

 The edge (x, y) is an edge on the unique simple path p from u to v in T and the edges in A are shaded.

- The light edge (u,v) forms a cycle with the edge on the simple path p from u to v in T.
- Since u and v are on opposite sides of the cut (S, V-S), there is at least one edge in T on the simple path p that also crosses the cut. Let (x,y) be any such edge.
- The edge (x, y) is not in A, since the cut respects A.
- Since (x,y) is on the unique path from u to v in T, removing (x,y) breaks T into two components.
- Adding (u,v) re-connects them to form a new spanning tree $T' = T \{(x,y)\}$ U $\{(u,v)\}$.

- We next show that T' = T − {(x,y)} U{(u,v)} is a minimum spanning tree.
- Since (u, u) is a light edge crossing (S, V-S) and (x, y) also crosses this cut, we have $w(u,v) \le w(x, y)$ resulting that $w(T') = w(T) w(x,y) + w(u,v) \le w(T)$.
- But w(T)≤w(T'), since T is a minimum spanning tree.
- Thus, T' must be a minimum spanning tree.
- Because A ⊆ T' and A ∪ {(u,v)} ⊆ T' where T' is a minimum spanning tree, (u,v) is safe for A.

Understanding of GENERIC-MST

- As the method proceeds, the set A is always acyclic; otherwise, a minimum spanning tree including A would contain a cycle, which is a contradiction.
- At any point in the execution, the graph $G_A=(V,A)$ is a forest, and each of the connected components of G_A is a tree.
- Some of the trees may contain just one vertex, as is the case, for example, when the method begins: A is empty and the forest contains |V| trees, one for each vertex.
- Moreover, any safe edge (u,v) for A connects distinct components of G_A , since A $\cup \{(u,v)\}$ must be acyclic.

Understanding of GENERIC-MST

- The while loop in lines 2 4 of GENERIC-MST executes |V| 1 times because it finds one of the |V|-1 edges of a minimum spanning tree in each iteration.
- Initially, when $A = \emptyset$, there are |V| trees in G_A , and each iteration reduces that number by 1.
- When the forest contains only a single tree, the method terminates.

Corollary 23.2

- Let G=(V,E) be a connected, undirected graph with a real-valued weight function w defined on E.
- Let A be a subset of E that is included in some minimum spanning tree for G.
- Let $C=(V_C, E_C)$ be a connected component (tree) in the forest $G_A=(V,A)$.
- If (u,v) is a light edge connecting C to some other component in G_A, then (u,v) is safe for A

Corollary 23.2 (Proof)

- The cut $(V_C, V-V_C)$ respects A and (u,v) is a light edge for this cut.
- Thus, (u,v) is safe for A.

Kruskal's and Prim's Algorithms

- They each use a specific rule to determine a safe edge in line 3 of GENERIC-MST.
- In Kruskal's algorithm,
 - The set A is a forest whose vertices are all those of the given graph.
 - The safe edge added to A is always a least-weight edge in the graph that connects two distinct components.
- In Prim's algorithm,
 - The set A forms a single tree.
 - The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree.

- A greedy algorithm since at each step it adds to the forest an edge of least possible weight.
- Find a safe edge to add to the growing forest by finding, of all the edges that connect any two trees in the forest, an edge (u,v) of least weight.
- Let two trees C_1 and C_2 are connected by (u,v).
- Since (u,v) must be a light edge connecting C₁ to some other tree,
 Corollary 23.2 implies that (u,v) is a safe edge for C₁.

- It uses a disjoint-set data structure to maintain several disjoint sets of elements.
- Each set contains the vertices in one tree of the current forest.
- The operation FIND-SET(u) returns a representative element from the set that contains u.
- Thus, we can determine whether two vertices u and v belong to the same tree by testing whether FIND-SET(u) equals FIND-SET(v).
- To combine trees, Kruskal's algorithm calls the UNION procedure.

9.

return A

```
    MST-KRUSKAL(G,w)
    A = Ø
    for each v ∈ G.V
    Make-Set(v)
    sort the edges of G.E into nondecreasing order by weight w
    for each edge (u,v) ∈ G.E in sorted order
    if Find-Set(u) ≠ Find-Set(v)
    A = A U {{u,v}}
    Union(u,v)
```


- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. **if** Find-Set(u) \neq Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- 3. Union(u,v)

5.

- for each edge (u,v) ∈ G.E in sorted order
- 6. **if** Find-Set(u) \neq Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- Union(u,v)

Union(u,v)

- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. **if** Find-Set(u) ≠ Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- B. Union(u,v)

- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. **if** Find-Set(u) ≠ Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- B. Union(u,v)

- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. if Find-Set(u) \neq Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- 8. Union(u,v)

- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. if Find-Set(u) \neq Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- . Union(u,v)

- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. **if** Find-Set(u) ≠ Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- 3. Union(u,v)

6.

8. Union(u,v)

if Find-Set(u) ≠ Find-Set(v)

 $A = A \cup \{\{u,v\}\}\}$

- for each edge $(u,v) \in G.E$ in sorted order
- 6. if Find-Set(u) ≠ Find-Set(v)
- $A = A \cup \{\{u,v\}\}\$
- 8. Union(u,v)

5.

6.

if Find-Set(u) ≠ Find-Set(v)

 $A = A \cup \{\{u,v\}\}\}$ Union(u,v)

- 5. for each edge $(u,v) \in G.E$ in sorted order
- 6. **if** Find-Set(u) \neq Find-Set(v)
- 7. $A = A \cup \{\{u,v\}\}\}$
- 8. Union(u,v)

6.

if Find-Set(u) ≠ Find-Set(v)

 $A = A \cup \{\{u,v\}\}\$ Union(u,v)

- for each edge $(u,v) \in G.E$ in sorted order
- 6. if Find-Set(u) ≠ Find-Set(v)
- $A = A \cup \{\{u,v\}\}\$
- 8. Union(u,v)

Kruskal's Algorithm

return A

9.

Kruskal's Algorithm

```
MST-KRUSKAL(G,w)
      A = \emptyset
      for each v \in G.V
  2
                                          O(V) Make-Set() calls
          Make-Set(v)
  3.
      sort the edges of G.E into nondecreasing order
      by weight w
                                                    O(E Ig E)
      for each edge (u,v) \in G.E in sorted order
  5.
          if Find-Set(u) \neq Find-Set(v)
                                            O(E) Find-Set() calls
  6.
                      A = A U \{\{u,v\}\}\
 7.
                      Union(u,v)
                                              O(V) Union() calls
 8.
      return A
 9.
```

Running Time of Kruskal's Algorithm

- Use the disjoint-set-forest implementation with the union-by-rank and pathcompression heuristics (Section 21.3).
- Sorting the edges in line 4 is O(|E| lg |E|).
- The disjoint-set operations takes $O((|V|+|E|) \alpha(|V|))$ time, where α is the very slowly growing function (Section 21.4).
 - The **for** loop (lines 2–3) performs |V| MAKE-SET operations.
 - The **for** loop (lines 5–8) performs O(|E|) FIND-SET and UNION operations.
- Since G is connected, we have $|E| \ge |V| 1$, the disjoint-set operations take $O(|E|\alpha(|V|))$ time.
- Moreover, since $\alpha(|V|) = O(|g|V|) = O(|g|E|)$, Kruskal's algorithm takes O(|E||g|E|) time.
- Observing that $|E| < |V|^2 \Rightarrow |g| |E| = O(|g| V)$, the total running time of Kruskal's algorithm becomes O(E|g| V).

Running Time of Kruskal's Algorithm

- In a nut shell,
 - Sort edges: O(|E| lg |E|)
 - Disjoint-set operations
 - O(|V|+|E|) operations $\Rightarrow O((|V|+|E|) \alpha(|V|))$ time
 - $|E| \ge |V| 1 \Rightarrow O(E|\alpha(|V|))$ time
 - Since $\alpha(n)$ can be upper bounded by the height of the tree, $\alpha(|V|)=O(|g|V|)=O(|g|E|)$.
- Thus, the total running time of Kruskal's algorithm is is O(|E| lg |E|)
- By observing that $|E| < |V|^2 \Rightarrow |g| |E| = O(|g| |V|)$, it becomes O(|E| |g| |V|).

- Special case of the generic minimum-spanning-tree method.
- A greedy algorithm since at each step it adds to the tree an edge that contributes the minimum amount possible to the tree's weight.
- The edges in the set A always form a single tree.
- Each step adds to the tree A a light edge that connects A to an isolated vertex one on which no edge of A is incident.
- By Corollary 23.2, this rule adds only edges that are safe for A

- Input is a connected Graph G and the root r of the minimum spanning tree.
- During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue Q based on a key attribute.
- For each v, v.key is the minimum weight of any edge connecting v to a vertex in the tree.
- By convention, v.key = ∞ if there is no such edge.
- The attribute $v.\pi$ names the parent of v in the tree.
- The algorithm maintains the set A from Generic-MST as $A = \{(v, v.π): v \in V \{r\} Q\}$.
- It terminates when the min-priority queue Q is empty.

```
MST-PRIM(G, w, r)
      for each u \in G.V
 2.
         u.key = \infty
 3.
         u.\pi = NIL
      r.key = 0
 5.
      Q = G.V
 6.
      while Q \neq \emptyset
 7.
         u = Extract-Min(Q)
 8.
         for each v \in G.Adj[u]
 9.
            if v \in Q and w(u,v) < v.key
 10.
               v.\pi = u
               v.key = w(u,v)
 11.
```


- 1. for each $u \in G.V$
- 2. $u.key = \infty$
- 3. $u.\pi=NIL$
- 4. r.key = 0
- Q = G.V


```
8
                        8
                                                                  9
                                                         14
                                                                       \infty
                                                                10
7.
        u = Extract-Min(Q)
8.
           for each v ∈ G.Adj[u]
9.
              if v \in Q and w(u,v) < v.key
10.
                 v.\pi = u
                 v.key = w(u,v)
11.
```



```
    u = Extract-Min(Q)
    for each v ∈ G.Adj[u]
    if v ∈ Q and w(u,v) < v.key</li>
    v.π = u
    v.key = w(u,v)
```


- 6. **while** Q ≠ Ø
- 7. u = Extract-Min(Q)

Running Time of Prim's Algorithm

- The running time of Prim's algorithm depends on how we implement the min-priority queue Q.
- If we implement Q as a binary min-heap,
 - EXTRACT-MIN takes O(lg |V|) time.
 - DECREASE-KEY takes O(lg |V|) time.
- If we implement Q as a simple array,
 - EXTRACT-MIN takes O(|V|) time.
 - DECREASE-KEY O(1) time.
- If we implement Q as a Fibonacci heap,
 - EXTRACT-MIN takes O(lg V|) amortized time.
 - DECREASE-KEY O(1) amortized time.


```
O(|V|)
MST-PRIM(G, w, r)
      for each u \in G.V
 2.
         u.key = \infty
 3.
         u.\pi = NIL
                                  Q: Implement as a binary min-
      r.key = 0
      Q = G.V
      while Q \neq \emptyset
                                                 O(|V| \lg |V|)
 6.
 7.
         u = Extract-Min(Q)
 8.
         for each v \in G.Adj[u]
 9.
            if v \in Q and w(u,v) < v.key
 10.
               v.\pi = u
                                             O(|E| |g| |V|)
               v.kev = w(u,v)
                                             DECREASE-KEY O(E)
 11.
                                             times
```



```
O(|V|)
MST-PRIM(G, w, r)
      for each u \in G.V
 2.
         u.key = \infty
 3.
         u.\pi = NIL
                                  Q: Implement as an array
      r.key = 0
      Q = G.V
                                                 O(|V|^2)
      while Q \neq \emptyset
 6.
         u = Extract-Min(Q)
 7.
 8.
         for each v \in G.Adj[u]
 9.
            if v \in Q and w(u,v) < v.key
 10.
               v.\pi = u
                                             O(|E|)
               v.key = w(u,v)
 11.
```



```
O(|V|)
MST-PRIM(G, w, r)
      for each u \in G.V
 2.
         u.key = \infty
 3.
         u.\pi = NIL
                                  Q: Implement as a Fibonacci mean-
      r.key = 0
      Q = G.V
      while Q \neq \emptyset
                                                 O(|V| \lg |V|)
 6.
         u = Extract-Min(Q)
 7.
 8.
         for each v \in G.Adj[u]
 9.
            if v \in Q and w(u,v) < v.key
 10.
               v.\pi = u
                                             O(|E|)
               v.key = w(u,v)
 11.
```

Minimum-Cost Spanning Trees

- Cost of a spanning tree
 - Sum of the costs (weights) of the edges in the spanning tree
- Min-cost spanning tree
 - A spanning tree of least cost
- Greedy method
 - At each stage, make the best decision possible at the time
 - Based on either a least cost or a highest profit criterion
 - Make sure the decision will result in a feasible solution
 - Satisfy the constraints of the problem
- To construct min-cost spanning trees
 - Best decision : least-cost
 - Constraints
 - Use only edges within the graph
 - Use exactly n-1 edges
 - May not use edges that produce a cycle

Kruskal's Algorithm

Procedure

- Build a min-cost spanning tree T by adding edges to T one at a time
- Select edges for inclusion in T in nondecreasing order of their cost
- Edge is added to T if it does not form a cycle

Kruskal's Algorithm (Cont.)

Figure 6.23: Stages in Kruskal's algorithm

Kruskal's Algorithm (Cont.)

```
    T = Φ;
    while( (T contains less than n-1 edges) && (E not empty) ) {
    choose an edge (v,w) from E of the lowest cost;
    delete (v,w) from E;
    if( (v,w) does not create a cycle in T ) add (v,w) to T;
    else discard (v,w);
    }
    if (T contains fewer than n-1 edge) cout << "no spanning tree" << endl;</li>
```

Program 6.6: Kruskal's algorithm

Time Complexity

 When we use a min heap to determine the lowest cost edge , O(eloge)

Property

 At all times during the algorithm the set of selected edges forms a tree

Procedure

- Begin with a tree T that contains a single vertex
- Add a least-cost edge (u,v) to T such that T∪{(u,v)} is also a tree
- Repeat until T contains n-1 edges

Prim's Algorithm (Cont.)

Figure 6.24: Stages in Prim's algorithm

Prim's Algorithm (Cont.)

```
    // Assume that G has at least one vertex.
    TV = { 0 }; // start with vertex 0 and no edges
    for(T = Φ; T contains fewer than n-1 edges; add (u,v) to T)
    {
    Let (u,v) be a least-cost edge such that u ∈ TV and v! ∈ TV;
    if(there is no such edge) break;
    add v to TV;
    }
    if(T contains fewer than n-1 edges) cout << "no spanning tree" << endl;</li>
```

Program 6.7: Prim's algorithm

Fibonacci Heaps

Introduction to Data Structures
Kyuseok Shim
ECE, SNU.

Operation	Linked List	Binary Heap	Fibonacci Heap [†]
make-heap	1	1	1
is-empty	1	1	1
insert	1	log n	1
delete-min	n	log n	log n
decrease-key	n	log n	1
delete	n	log n	log n
union		n	1
find-min	n	1	1

n = number of elements in priority queue

† amortized

Fibonacci Heaps

- Fibonacci heap history. Fredman and Tarjan (1986)
 - Ingenious data structure and analysis.
 - Original motivation V insert, V delete-min, E decrease-key
 - Improve Dijkstra's shortest path algorithm from $O(E \log V)$ to $O(E + V \log V)$.
 - Also improve MST(minimum spanning tree) algorithm.
- Basic idea
 - Similar to binomial heaps, but less rigid structure.
 - Fibonacci heap: lazily defer consolidation until next delete-min.
 - Decrease-key and union run in O(1) time.

Structure of Fibonacci Heaps

Fibonacci Heaps

- Advantages of using circular doubly linked lists
 - Inserting a node in to any location takes O(1) time.
 - Removing a node from anywhere takes O(1) time.
 - Concatenating two such lists into one circular doubly linked list takes O(1) time.

Fibonacci Heaps: Structure

- Fibonacci heap.
 - Set of heap-ordered trees.
 - Maintain pointer to minimum element.
 - Set of marked nodes.

- Represent trees using left-child, right sibling pointers and circular, doubly linked list.
 - can quickly splice off subtrees
- Roots of trees connected with circular doubly linked list.
 - fast union
- Pointer to root of tree with min element.
 - fast find-min

Fibonacci Heaps: Insert

- Insert.
 - Create a new singleton tree.
 - Add to left of min pointer.
 - Update min pointer.

insert 21

Fibonacci Heaps: Insert

- Insert.
 - Create a new singleton tree.
 - Add to left of min pointer.
 - Update min pointer.

insert 21

4

Fibonacci Heaps: Potential Function

- $\Phi(H) = t(H) + 2m(H)$
 - D(n) = max degree of any node in Fibonacci heap with n nodes.
 - Mark[x] = mark of node x (black or gray).
 - t(H) = number of trees in heap H.
 - m(H) = number of marked nodes in heap H.

Intuition

- Root node들은 \$c credit을 가짐.
- Marked node들은 \$c credit을 가짐.
- 나머지 internal node들은 \$0 credit을 가짐.
- Node가 root list로 올라갈 때에는 \$c credit을 붙여주고 marked node이면 \$c credit을 unmark하는데 사용한다.
- 따라서, 모든 root node들은 \$c credit을 갖게 됨. min

Fibonacci Heaps: Insert

- $\Phi(H) = t(H) + 2m(H)$
 - The initial value of $\Phi(H) = 0$.
- Amortized cost. O(1)
 - Actual cost = 1.
 - Change in potential = +1.
 - Amortized cost = 2.

insert 21

Fibonacci Heaps: Insert Analysis

- Notation.
 - $\mathbf{D}(\mathbf{n}) = \max \text{ degree of any node in Fibonacci heap with n nodes.}$
 - t(H) = number of trees in heap H.
 - m(H) = number of marked nodes in heap H.
 - $\Phi(H) = t(H) + 2m(H)$.
- $\Delta\Phi(H) = 1$
 - Before extracting minimum node
 - $\Phi(H) = t(H) + 2m(H)$.
 - After extracting minimum node, t(H') ≤ D(n) + 1 since no two trees have same degree
 - $\Phi(H') = t(H) + 1 + 2m(H)$
- Amortized cost. O(1)
 - $\widehat{c}_i = c_i + \Phi_i \Phi_{i-1} = 1 + (t(H) + 1 + 2m(H)) (t(H) + 2m(H)) = 2$

- Linking operation.
 - Make larger root be a child of smaller root.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

Merge 17 and 23 trees.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

Merge 7 and 17 trees.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

- Delete min.
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min Analysis

- Notation.
 - D(n) = max degree of any node in Fibonacci heap with n nodes.
 - t(H) = number of trees in heap H.
 - m(H) = number of marked nodes in heap H.
 - $\Phi(H) = t(H) + 2m(H)$.
- Actual cost. 2D(n) + t(H)
 - D(n) + 1 work adding min's children into root list and updating min.
 - at most D(n) children of min node
 - D(n) + t(H) 1 work consolidating trees.
 - work is proportional to size of root list since number of roots decreases by one after each merging
 - D(n) + t(H) 1 root nodes at beginning of consolidation

Fibonacci Heaps: Delete Min Analysis

- Notation.
 - D(n) = max degree of any node in Fibonacci heap with n nodes.
 - t(H) = number of trees in heap H.
 - m(H) = number of marked nodes in heap H.
 - $\Phi(H) = t(H) + 2m(H)$.
- $\Delta\Phi(H) = D(n) + 1 t(H)$
 - Before extracting minimum node
 - $\Phi(H) = t(H) + 2m(H)$.
 - After extracting minimum node, t(H') ≤ D(n) + 1 since no two trees have same degree
 - $\Phi(H') = D(n) + 1 + 2m(H)$
- Amortized cost. O(D(n))
 - $\widehat{c}_i = c_i + \Phi_i \Phi_{i-1} = (2D(n) + t(H)) + (D(n) + 1 + 2m(H)) (t(H) + 2m(H)) = 3D(n) + 1 = O(D(n))$

Fibonacci Heaps: Delete Min Analysis

- Is amortized cost of O(D(n)) good?
 - Yes, if only Insert, Delete-min, and Union operations supported.
 - Fibonacci heap contains only binomial trees since we only merge trees of equal root degree
 - This implies $D(n) \leq \lfloor \log_2 N \rfloor$
 - Yes, if we support Decrease-key in clever way.
 - we'll show that $D(n) \leq \lfloor \log_{\phi} N \rfloor$, where ϕ is golden ratio
 - $\phi^2 = 1 + \phi$
 - $\phi = (1 + \sqrt{5}) / 2 = 1.618...$
 - limiting ratio between successive Fibonacci numbers!

Mark.

- Indicate whether node x has lost a child since the last time x was made the child of another node.
- Newly created nodes are unmarked.
- Whenever a node is made the child of another node, it is unmarked.

- Decrease key of element x to k.
 - Case 0: min-heap property not violated.
 - Decrease key of x to k
 - Change heap min pointer if necessary

- Decrease key of element x to k.
 - Case 1: parent of x is unmarked.
 - decrease key of x to k
 - cut off link between x and its parent
 - mark parent
 - add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
 - Case 1: parent of x is unmarked.
 - decrease key of x to k
 - cut off link between x and its parent
 - mark parent
 - add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
 - Case 2: parent of x is marked.
 - decrease key of x to k
 - cut off link between x and its parent p[x], and add x to root list
 - cut off link between p[x] and p[p[x]], add p[x] to root list
 - If p[p[x]] unmarked, then mark it.
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
 - Case 2: parent of x is marked.
 - decrease key of x to k
 - cut off link between x and its parent p[x], and add x to root list
 - cut off link between p[x] and p[p[x]], add p[x] to root list
 - If p[p[x]] unmarked, then mark it.
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

- Decrease key of element x to k.
 - Case 2: parent of x is marked.
 - decrease key of x to k
 - cut off link between x and its parent p[x], and add x to root list
 - cut off link between p[x] and p[p[x]], add p[x] to root list
 - If p[p[x]] unmarked, then mark it.
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

Decrease 35 to 5.

- Decrease key of element x to k.
 - Case 2: parent of x is marked.
 - decrease key of x to k
 - cut off link between x and its parent p[x], and add x to root list
 - cut off link between p[x] and p[p[x]], add p[x] to root list
 - If p[p[x]] unmarked, then mark it.
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

Decrease 35 to 5.

Fibonacci Heaps: Decrease Key Analysis

- Notation.
 - D(n) = max degree of any node in Fibonacci heap with n nodes.
 - t(H) = number of trees in heap H.
 - m(H) = number of marked nodes in heap H.
 - $\Phi(H) = t(H) + 2m(H)$.
 - c = delete될 노드와 그에 대한 mark된 ancestor의 개수
- Actual cost. c
 - O(1) time for decrease key.
 - O(1) time for each of c cascading cuts, plus reinserting in root list.

Fibonacci Heaps: Decrease Key Analysis

- Notation.
 - D(n) = max degree of any node in Fibonacci heap with n nodes.
 - t(H) = number of trees in heap H.
 - m(H) = number of marked nodes in heap H.
 - $\Phi(H) = t(H) + 2m(H)$.
 - c = delete될 노드와 그에 대한 mark된 ancestor의 개수
- $\Delta\Phi(H) = -c + 4 = 4 c$
 - Before decreasing a node
 - t(H) + 2m(H).
 - After decreasing a node,
 - t(H') = t(H) + c
 - m(H') = m(H) c + 2
 - Each cascading cut unmarks a node
 - Last cascading cut could potentially mark a node
- Amortized cost. O(1)
 - $\widehat{c_i} = c_i + \Phi_i \Phi_{i-1} = C + (t(H) + c + 2(m(H) c + 2)) (t(H) + c + 2m(H))) = 4$

- Delete node x.
 - Decrease key of x to -∞.
 - Delete min element in heap.
- Amortized cost. O(D(n))
 - O(1) for decrease-key.
 - O(D(n)) for delete-min. where $D(n) = \max$ degree of any node in Fibonacci heap.