Minimum Spanning Trees

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Minimum Spanning Tree

= In the design of electronic circuitry, it is often necessary to make
the pins of several components electrically equivalent by wiring
together.

= To interconnect a set of n pins, we can use an arrangement of
n-1 pins.

= Of all such arrangements, the one using the least amount of
wire is the most desirable.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Minimum Spanning Tree

= Given a connected, undirected, weighted
graph

= Find a spanning tree using edges that
minimizes the total weight

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Minimum Spanning Tree

= We can model this wiring problem with a connected, undirected graph
G=(V,E), where
= Vs the set of pins
= E is the set of possible interconnections between pair of pins
= A weight w(u,v) for each edge (u,v)€E that specifying the cost to connect u
and v

= Find an acyclic subset T€E that connects all of the vertices and whose
total weight
W(T) = 2,ver W(U,V) is minimized.

= Since T is acyclic and connects all the vertices, we call a minimum
spanning tree.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Minimum Spanning Tree

GENERIC-MST(G, w)

1. A=0

2. while A does not form a spanning tree
3. find an edge (u,v) that is safe for A
4 A=AU{(uVv)}

5. return A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Minimum Spanning Tree

If AU {(u,v)} is also a subset of a minimum spanning tree, we call the edge (u,v)
a safe edge.

= Acut (S, V-S) of an undirected graph G=(V,E) is a partition of V.
= An edge (u,v)€eE crosses the cut (S, V-S) if one of its endpoints is in S and the
other is in V-S.

= A cut respects a set A of edges if no edge in A crosses the cut.

= An edge is a light edge crossing a cut if its weight is the minimum of any edge
crossing the cut.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L One Way of Viewing a Cut (S, V-S)

= Black vertices are in the set S, and green vertices are in V-S.
= The edge (d,c) is the unique light edge crossing the cut.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Another Way of Viewing a Cut

‘L (S, V-S)
4
.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Theorem 23.1

= Let G=(V,E) be a connected undirected graph with a real-valued
weight function w defined on E.

= Let A be a subset of E that is included in some minimum
spanning tree for G.

= Let (5,V-S) be any cut of G that respects A and let (u,v) be a
light edge crossing (S,V-S).

= Then, the edge (u,v) is safe for A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Theorem 23.1 (Proof)

= Let T be a minimum spanning tree that includes A

= Assume that T does not contain the light edge (u,v)

= Construct another minimum spanning tree T that include A U
{(u,v)} by using a cut-and-paste technique, thereby showing
that (u,v) is a safe edge for A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Theorem 23.1 (Proof)

= The edge (X, y) is an edge on the unique simple path p
from u to vin T and the edges in A are shaded.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Theorem 23.1 (Proof)

= The light edge (u,v) forms a cycle with the edge on the simple path p
fromutovinT.

= Since u and v are on opposite sides of the cut (S, V-S), there is at least
one edge in T on the simple path p that also crosses the cut. Let (x,y)

be any such edge.
= The edge (X, y) is not in A, since the cut respects A.

= Since (X,y) is on the unique path from u to v in T, removing (Xx,y)
breaks T into two components.

= Adding (u,v) re-connects them to form a new spanningtree T' =T —

{(X,Y)} U{(u,v)}.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Theorem 23.1 (Proof)

= We next show that T" = T — {(x,y)} U{(u,v)} is @ minimum spanning
tree.

= Since (u, u) is a light edge crossing (S, V-S) and (X, y) also crosses this
cut, we have w(u,v)<w(X, y) resulting that w(T") = w(T)-w(x,y)+w(u,v)
< w(T).

= But w(T)Sw(T’), since T is a minimum spanning tree.

= Thus, T" must be a minimum spanning tree.

= Because AcT and AU {(u,v)} € T"where T" is a minimum spanning
tree, (u,v) is safe for A.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Understanding of GENERIC-MST

= As the method proceeds, the set A is always acyclic; otherwise, a minimum
spanning tree including A would contain a cycle, which is a contradiction.

= At any point in the execution, the graph G,=(V, A) is a forest, and each of the
connected components of G, is a tree.

= Some of the trees may contain just one vertex, as is the case, for example, when

the method begins: A is empty and the forest contains |V| trees, one for each
vertex.

= Moreover, any safe edge (u,v) for A connects distinct components of G,, since A
U {(u,v)} must be acyclic.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Understanding of GENERIC-MST

= The while loop in lines 2 - 4 of GENERIC-MST executes |V| - 1 times

because it finds one of the |V|-1 edges of a minimum spanning tree in
each iteration.

= Initially, when A = @, there are |V| trees in G,, and each iteration
reduces that number by 1.

= When the forest contains only a single tree, the method terminates.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Corollary 23.2

Let G=(V,E) be a connected, undirected graph with a real-valued
weight function w defined on E.

= Let A be a subset of E that is included in some minimum spanning tree
for G.

s Let C=(Vc,Ec) be a connected component (tree) in the forest Gp=(V,A).

= If (u,v) is a light edge connecting C to some other component in Gp,
then (u,v) is safe for A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

iCoroIIary 23.2 (Proof)

= The cut (V¢, V-V¢) respects A and (u,v) is a light edge for this cut.
= Thus, (u,v) is safe for A.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Kruskal’s and Prim’s Algorithms

= They each use a specific rule to determine a safe edge in line 3 of GENERIC-MST.

= In Kruskal’s algorithm,
= The set A is a forest whose vertices are all those of the given graph.

= The safe edge added to A is always a least-weight edge in the graph that connects two
distinct components.

= In Prim’s algorithm,
= The set A forms a single tree.

= The safe edge added to A is always a least-weight edge connecting the tree to a vertex
not in the tree.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Kruskal’s Algorithm

A greedy algorithm since at each step it adds to the forest an edge of least
possible weight.

s Find a safe edge to add to the growing forest by finding, of all the edges
that connect any two trees in the forest, an edge (u,v) of least weight.

= Let two trees C; and C, are connected by (u,v).

= Since (u,v) must be a light edge connecting C; to some other tree,
Corollary 23.2 implies that (u,v) is a safe edge for C;.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Implementation of Kruskal’s
Algorithm

= It uses a disjoint-set data structure to maintain several disjoint sets of elements.
= Each set contains the vertices in one tree of the current forest.

= The operation FIND-SET(u) returns a representative element from the set that
contains u.

= Thus, we can determine whether two vertices u and v belong to the same tree
by testing whether FIND-SET(u) equals FIND-SET(v).

= To combine trees, Kruskal’s algorithm calls the UNION procedure.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Kruskal’s Algorithm

MST-KRUSKAL(G,w)
1. A=¢O
foreachv € GV
Make-Set(v)
sort the edges of G.E into nondecreasing order
by weight w
for each edge (u,v) € G.E in sorted order
if Find-Set(u) # Find-Set(v)
A=AU{{uyv}}
Union(u,v)

W

O 0N oW

return A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Kruskal’s Algorithm

1 2

5 for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7. A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Kruskal’s Algorithm

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Kruskal’s Algorithm

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Kruskal’s Algorithm

1 2
5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)
7. A=AU{{uv}}
8. Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5 for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7. A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5 for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7. A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5 for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7. A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2
5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)
7. A=AU{{uv}}
8. Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

8 /
4

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

| 2 N

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5 for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7. A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5. for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7 A=AU{{uv}}

8 Union(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

* Kruskal’s Algorithm

1 2

5 for each edge (u,v) € G.E in sorted order
6. if Find—Set(u) # Find—Set(v)

7. A=AU{{uv}}

8 Union(u,v)

9 return A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Kruskal’s Algorithm

MST-KRUSKAL(G,w)

. A=9
2. foreachv e GV
3. Make-Set(v) O(V) Make—-Set() calls
4. sort the edges of G.E into hondecreasing order
by weight w O(E Ig E)
5. for each edge (u,v) € G.E in sorted order
6. if Find-Set(u) # Find-Set(v) | O(E) Find-Set() calls
7. A=AU/{{uyv}}
8. Union(u,v) O(V) Union() calls

9. return A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Running Time of Kruskal’s
Algorithm

= Use the disjoint—set—forest implementation with the union—by-rank and path—
compression heuristics (Section 21.3).
= Sorting the edges in line 4 is O(|E]| Ig |E|).
= The disjoint-set operations takes O((|V|+|E|) a(|V])) time, where a is the very slowly
growing function (Section 21.4).
= The for loop (lines 2-3) performs |V| MAKE-SET operations.
= The for loop (lines 5-8) performs O(|E|) FIND-SET and UNION operations.

= Since G is connected, we have |E| > |V|-1, the disjoint-set operations take
O(IEla(|V])) time.

= Moreover, since a(|V]) = O(lg |V]) = O(lg |E|), Kruskal’s algorithm takes O(|E| Ig |E])
time.

= Observing that |E| < |V|2 = Ig |E| = O(lg V), the total running time of Kruskal’s
algorithm becomes O(E Ig V).

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Running Time of Kruskal’s
Algorithm

= Inanut shell, O(|V]) Make-Set() calls
= Sort edges: O(|E| Ig |E|) O(IEl) Find-Set() calls
= Disjoint-set operations O(IVI]) Union() calls

= O(]V|+|E]) operations = O((|V|+|E|) a(|V])) time
= |E[>|V|-1 = O(E| a(|V])) time
= Since a(n) can be upper bounded by the height of the tree,
a(|V[)=0(lg [V[)=0O(lg |E[).
= Thus, the total running time of Kruskal’s algorithm is is O(|E| Ig |E|)
= By observing that |E| < |V|?2 = Ig |E| = O(lg |V]), it becomes O(|E| Ig |V|]).

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

Special case of the generic minimum-spanning-tree method.

= A greedy algorithm since at each step it adds to the tree an edge that
contributes the minimum amount possible to the tree’s weight.

= The edges in the set A always form a single tree.

= Each step adds to the tree A a light edge that connects A to an isolated vertex —
one on which no edge of A is incident.

= By Corollary 23.2, this rule adds only edges that are safe for A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Implementation of Prim’s
algorithm

= Inputis a connected Graph G and the root r of the minimum spanning tree.

= During execution of the algorithm, all vertices that are not in the tree reside in a
min-priority queue Q based on a key attribute.

= For each v, v.key is the minimum weight of any edge connecting v to a vertex in
the tree.

= By convention, v.key = oo if there is no such edge.

= The attribute v.r names the parent of v in the tree.

= The algorithm maintains the set A from Generic-MST as A={(v, v.n):veV-{r}-Q}.
= It terminates when the min-priority queue Q is empty.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

MST-PRIM(G, w, r)
1. foreachu e GV

2 u.key = o

3 u.t=NIL

4. rkey=0

5. Q=GV

6. whileQ=0

7 u = Extract-Min(Q)

8 for each v € G.Adj[u]

9 if ve Qand w(u,v) < v.key
10. V.T = u

11. v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Prim’s Algorithm

foreachu e G.V

u.key = oo

u.mt=NIL
r.key =0
Q=G.V

A

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7 u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v e G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v e G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

‘_L Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v.e Qandw(u,v) <v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

7. u = Extract—-Min(Q)

8. for each v € G.Adj[u]

9 if v e Qandwl(u,v) < v.key
10. v.t=u

11 v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

6. while Q # @
7. u = Extract—-Min(Q)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Running Time of Prim’s
Algorithm

= The running time of Prim’s algorithm depends on how we implement
the min-priority queue Q.
= If we implement Q as a binary min-heap,
= EXTRACT-MIN takes O(lg |V]) time.
= DECREASE-KEY takes O(lg |V|) time.
= If we implement Q as a simple array,
= EXTRACT-MIN takes O(|V]) time.
= DECREASE-KEY O(1) time.
= If we implement Q as a Fibonacci heap,
= EXTRACT-MIN takes O(lg V|) amortized time.
= DECREASE-KEY O(1) amortized time.

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

MST-PRIM(G, w, r) e oVl
. foreachu e G.V

u.key = oo
u.t=NIL

Q: Implement as a binary min—
rkey=0 ~ reap

1
2
3
4
5. Q=GV
6
7
8
9

while Q = @ OVl lg IVI)
u = Extract-Min(Q) /—

for each v € G.Adj[u]
if ve Qand w(u,v) < v.key

10. V.t =u | OUEl Ig IV])

_ DECREASE-KEY O(E
11. V-key = W(U,V) times =

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

MST-PRIM(G, w, r) e oVl
. foreachu e G.V

u.key = o
u.t=NIL

Q: Implement as an array
rkey=0 -~

1
2
3
4
5, Q=G.V
6
7
8
9

while Q = @ ——Lo(VvI]?)
u = Extract-Min(Q)

for each v € G.Adj[u]
if ve Qand w(u,v) < v.key

10. V.Tt = U — | O(|E])
11. v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

i Prim’s Algorithm

MST-PRIM(G, w,) ya O(lV])
. foreachu e G.V

u.key = oo
u.t=NIL

Q: Implement as a Fibonacci mean—
rkey=0 -~ heap

1
2
3
4
5. Q=GV
6
7
8
9

while Q = @ OVl lg IVI)
u = Extract-Min(Q) /—

for each v € G.Adj[u]
if ve Qand w(u,v) < v.key

10. V.Tt = U — | O(|E])
11. v.key = w(u,v)

Thomas T. Cormen , Charles E. Leiserson , Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009

Minimum-Cost Spanning Trees

Cost of a spanning tree
= Sum of the costs (weights) of the edges in the spanning tree

Min-cost spanning tree
= A spanning tree of least cost

Greedy method

= At each stage, make the best decision possible at the time
= Based on either a least cost or a highest profit criterion

= Make sure the decision will result in a feasible solution
= Satisfy the constraints of the problem

To construct min-cost spanning trees

= Best decision : least-cost

= Constraints
= Use only edges within the graph

= Use exactly n-1 edges
= May not use edges that produce a cycle

Kruskal's Algorithm

= Procedure

= Build a min-cost spanning tree T by adding edges to T one at
a time

= Select edges for inclusion in T in nondecreasing order of
their cost

=« Edgeis added to T if it does not form a cycle

Kruskal's Algorithm (Cont.)

@ED PO \@ © e @ ¢ e @
Qlj) A @ @
22 @ @
(a) (b) ©

10 O)
OO’
SED /
2 22\@ 12
(h)

Figure 6.23 : Stages in Kruskal's algorithm

Kruskal's Algorithm (Cont.)

T=0;

while((T contains less than n—1 edges) && (E not empty)) {
choose an edge (v,w) from E of the lowest cost;
delete (v,w) from E;
if((v,w) does not create a cycle in T) add (v,w) to T;
else discard (v,w);

}

if (T contains fewer than n—1 edge) cout << “no spanning tree” << endl;

€O Nl ©b O o= Co S =

Program 6.6: Kruskal’s algorithm

= Time Complexity

= When we use a min heap to determine the lowest cost edge ,
O(eloge)

Prim’s Algorithm

= Property
= At all times during the algorithm the set of selected edges

forms a tree

= Procedure
= Begin with a tree T that contains a single vertex
= Add a least-cost edge (u,v) to T such that Tu{(u,v)} is also a

tree
= Repeat until T contains n-1 edges

i Prim’s Algorithm (Cont.)

1y@ ©, 10 ©,

o6 Y &
(a) (b)
2o e
16
S0 o & ®
25 25

Figure 6.24: Stages in Prim’s algorithm

Prim’s Algorithm (Cont.)

// Assume that G has at least one vertex.
TV=9{01}; // start with vertex 0 and no edges
for(T = ®; T contains fewer than n—1 edges; add (u,v) to T)

{
Let (u,v) be a least—cost edge such thatu € TVandv e TV;
if(there is no such edge) break;
addvto TV;

}

if(T contains fewer than n—1 edges) cout << “no spanning tree” << endl;

€9 €0 X ©p O o= GO RS =

Program 6.7: Prim’s algorithm

!'_ Fibonacci Heaps

Introduction to Data Structures
Kyuseok Shim
ECE, SNU.

Priority Queues Summary

Lmked Binary FlbonaCC|

make-heap
is-empty 1 1
insert 1 log n
delete-min n log n

decrease-key

n = number of elements in priority queue t amortized

Fibonacci Heaps

= Fibonacci heap history. Fredman and Tarjan (1986)
= Ingenious data structure and analysis.
= Original motivation - V insert, V delete-min, E decrease-key

= Improve Dijkstra's shortest path algorithm from O(E log V)
to O(E + Vliog V).

= Also improve MST(minimum spanning tree) algorithm.
= Basic idea
= Similar to binomial heaps, but less rigid structure.
= Fibonacci heap: defer consolidation until next delete-min.
= Decrease-key and union run in O(1) time.

Structure of Fibonacci

i Heaps

(a) @ @ ..
(b) (23 (7)

Fibonacci Heaps

= Advantages of using circular doubly linked lists
= Inserting a node in to any location takes O(1) time.
= Removing a node from anywhere takes O(1) time.

= Concatenating two such lists into one circular doubly linked list
takes O(1) time.

‘L Fibonacci Heaps: Structure

= Fibonacci heap.
= Set of trees.
= Maintain pointer to minimum element.
« Set of marked nodes.

Fibonacci Heaps:
i Implementation

= Represent trees using left-child, right sibling pointers and
circular, doubly linked list.

= can quickly splice off subtrees
= Roots of trees connected with circular doubly linked list.
= fast union

s Pointer to root of tree with min element.
= fast find-min

‘L Fibonacci Heaps: Insert

= Insert.
= Create a new singleton tree.

i Fibonacci Heaps: Insert

s Insert.

= Add to left of min pointer.
= Update min pointer.

Fibonacci Heaps: Potential
i Function

s ®(H)=t(H) + 2m(H)

= D(n) = max degree of any node in Fibonacci heap with n

nodes.
= Mark[x] = mark of node x (black or gray).
« t(H) = number of trees in heap H.
= m(H) = number of marked nodes in heap H.
t(H) =5, m(H) =3 min

degree = 3 l

Fibonacci Heaps: Potential

i Function

= Intuition

Root node=2 $c credit= Jt&.
Marked node= 2 $c creditS JH2&.
L H K| internal node= 2 $0 credit= Jt&.

NodeJl root list2 22t [H0l= $c creditES EHF=10
marked nodeO| ™ $c credit= unmarkot=0l A= stCt.

[(t2t N, 2= root node=E $c credit= XA &. min

i Fibonacci Heaps: Insert

= ®(H)=t(H) + 2m(H)

= The initial value of ®(H) = 0.
= Amortized cost. O(1)

= Actual cost = 1.

= Change in potential = +1.

= Amortized cost = 2.

Fibonacci Heaps: Insert
i Analysis

= Notation.
= D(n) = max degree of any node in Fibonacci heap with n nodes.
= t(H) = number of trees in heap H.
= m(H) = number of marked nodes in heap H.
« ®O(H) = t(H) + 2m(H).
| ACD(H) =1
= Before extracting minimum node
= ®(H) = t(H) + 2m(H).
= After extracting minimum node, t(H') < D(n) + 1 since no two trees
have same degree
= ®(H) =t(H) + 1 + 2m(H)
= Amortized cost. O(1)
s G=¢+P—D;_;=1+{H+1+2m(H)) — (t(H) + 2m(H)) = 2

i Fibonacci Heaps: Delete

= Linking operation.
= Make larger root be a child of smaller root.

I/arger root ?maller root still hea;;—ordered
tree T, tree T, I

tree T'

$ Fibonacci Heaps: Delete

= Delete min.
= Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min

$ Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

current

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

current
min

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

current

min

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min

current

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min

Merge 17 and 23 trees.

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

. current
min

Merge 7 and 17 trees.

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min current

Merge 7 and 24 trees.

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min current

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min! current

|\

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

current

$ Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.

= Consolidate trees so that no two roots have same degree.

current

l

Merge 41 and 18 trees.

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

!}! current

i Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

!}: T current

- N\

‘_L Fibonacci Heaps: Delete

= Delete min.
s Delete min and concatenate its children into root list.
= Consolidate trees so that no two roots have same degree.

min

Stop.

Fibonacci Heaps: Delete
i Min Analysis

= Notation.
= D(n) = max degree of any node in Fibonacci heap with n nodes.
= t(H) = number of trees in heap H.
= m(H) = number of marked nodes in heap H.
« ®O(H) = t(H) + 2m(H).
= Actual cost. 2D(n) + t(H)
= D(n) + 1 work adding min's children into root list and updating min.
= at most D(n) children of min node
= D(n) + t(H) - 1 work consolidating trees.

= work is proportional to size of root list since number of roots
decreases by one after each merging

= D(n) + t(H) - 1 root nodes at beginning of consolidation

Fibonacci Heaps: Delete
i Min Analysis

= Notation.
= D(n) = max degree of any node in Fibonacci heap with n nodes.
= t(H) = number of trees in heap H.
= m(H) = number of marked nodes in heap H.
= O(H) = t(H) + 2m(H).
= AD(H) = D(n) + 1 -t(H)
= Before extracting minimum node
= ®(H) = t(H) + 2m(H).
= After extracting minimum node, t(H') < D(n) + 1 since no two
trees have same degree
= ®(H) =D(n) + 1 + 2m(H)
= Amortized cost. O(D(n))
s G =c¢+D—D;_; =(2D(n) + t(H)) + (D(n) + 1 + 2m(H)) — (t(H)
+ 2m(H)) = 3D(n)+1=0(D(n))

Fibonacci Heaps: Delete
i Min Analysis

= Is amortized cost of O(D(n)) good?
= Yes, if only Insert, Delete-min, and Union operations
supported.

= Fibonacci heap contains only binomial trees since we only
merge trees of equal root degree

= This implies D(n) < Llog, N
= Yes, if we support Decrease-key in clever way.
- we'll show that D(n) < Llog, NJ, where ¢ is golden ratio
= pP=14+¢
« o =(1++5)/2=1.618..
= limiting ratio between successive Fibonacci numbers!

Fibonacci Heaps:
‘L Decrease Key

= Mark.

= Indicate whether node x has lost a child since the last time x was
made the child of another node.

= Newly created nodes are unmarked.
= Whenever a node is made the child of another node, it is unmarked.

— min

Fibonacci Heaps:
i Decrease Key

= Decrease key of element x to k.

= Case 0: min-heap property not violated.
= Decrease key of x to k
= Change heap min pointer if necessary

Fibonacci Heaps:
i Decrease Key

= Decrease key of element x to k.
= Case 1: parent of x is unmarked.
= decrease key of x to k
= cut off link between x and its parent
= mark parent
= add tree rooted at x to root list, updating heap min pointer
— min

Fibonacci Heaps:
‘L Decrease Key

= Decrease key of element x to k.

= Case 1: parent of x is unmarked.
= decrease key of x to k
= cut off link between x and its parent
= mark parent
= add tree rooted at x to root list, updating heap min pointer

min

Fibonacci Heaps:
‘_L Decrease Key

= Decrease key of element x to k.

= Case 2: parent of x is marked.
= decrease key of x to k
= cut off link between x and its parent p[x], and add x to root list

= cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unrwi?]rk, and repeat.

Fibonacci Heaps:
i Decrease Key

= Decrease key of element x to k.

= Case 2: parent of x is marked.
= decrease key of x to k
= cut off link between x and its parent p[x], and add x to root list

= cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unrwi?]rk, and repeat.

Fibonacci Heaps:
i Decrease Key

= Decrease key of element x to k.

= Case 2: parent of x is marked.
= decrease key of x to k
= cut off link between x and its parent p[x], and add x to root list

= cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unr%il%rk, and repeat.

Fibonacci Heaps:
& Decrease Key

= Decrease key of element x to k.

= Case 2: parent of x is marked.
= decrease key of x to k
= cut off link between x and its parent p[x], and add x to root list

= cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unr|T1]1i?]rk, and repeat.

MarkZ ol OF S X| 8t
Root= marks
otkl 23

Fibonacci Heaps:

i Decrease Key Analysis

= Notation.

D(n) = max degree of any node in Fibonacci heap with n nodes.
t(H) = number of trees in heap H.

m(H) = number of marked nodes in heap H.

®(H) = t(H) + 2m(H).

c = delete® = EQF 10| CSt mark=l ancestor?| 7=

s Actual cost. c

O(1) time for decrease key.
O(1) time for each of ¢ cascading cuts, plus reinserting in root list.

Fibonacci Heaps: Decrease
Key Analysis

Notation.
= D(n) = max degree of any node in Fibonacci heap with n nodes.
= t(H) = number of trees in heap H.
= m(H) = number of marked nodes in heap H.
= ®(H) = t(H) + 2m(H).
= C=delete® =2 10f Ci$t markEl ancestor®| 7H4=
ADH)=-c+4 = 4-cC
= Before decreasing a node
« t(H) + 2m(H).
= After decreasing a node,
= t(H) = t(H) + ¢
= m(H) = m(H)—-c+2
= Each cascading cut unmarks a node
= Last cascading cut could potentially mark a node
Amortized cost. O(1)
n = +P;—P_1=C + (tH)+c+2mH)—c+2)) — (t(H)+c+
2m(H))) = 4

i Fibonacci Heaps: Delete

= Delete node x.
= Decrease key of x to -o.
= Delete min element in heap.

= Amortized cost. O(D(n))
= O(1) for decrease-key.

= O(D(n)) for delete-min.
where D(n) = max degree of any node in Fibonacci heap.

	10-1_MST
	10-2_FibonacciHeap

