Minimum Spanning Trees

Minimum Spanning Tree

- In the design of electronic circuitry, it is often necessary to make the pins of several components electrically equivalent by wiring together.
- To interconnect a set of n pins, we can use an arrangement of n-1 pins.
- Of all such arrangements, the one using the least amount of wire is the most desirable.

Minimum Spanning Tree

- Given a connected, undirected, weighted graph
- Find a spanning tree using edges that minimizes the total weight

Minimum Spanning Tree

- We can model this wiring problem with a connected, undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where
- V is the set of pins
- E is the set of possible interconnections between pair of pins
- A weight $w(u, v)$ for each edge $(u, v) \in E$ that specifying the cost to connect u and v
- Find an acyclic subset T¢E that connects all of the vertices and whose total weight $w(T)=\sum_{(u, v) \in T} w(u, v)$ is minimized.
- Since T is acyclic and connects all the vertices, we call a minimum spanning tree.

Minimum Spanning Tree

GENERIC-MST(G, w)

1. $\mathrm{A}=\varnothing$
2. while A does not form a spanning tree
3. find an edge (u, v) that is safe for A
4. $A=A \cup\{(u, v)\}$
5. return A

Minimum Spanning Tree

- If $A \cup\{(u, v)\}$ is also a subset of a minimum spanning tree, we call the edge (u, v) a safe edge.
- A cut ($\mathrm{S}, \mathrm{V}-\mathrm{S}$) of an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a partition of V .
- An edge $(u, v) \in E$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in V-S.
- A cut respects a set A of edges if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

One Way of Viewing a Cut (S, V-S)

- Black vertices are in the set S, and green vertices are in V-S.
- The edge (d, c) is the unique light edge crossing the cut.

Another Way of Viewing a Cut (S, V-S)

Theorem 23.1

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected undirected graph with a real-valued weight function w defined on E.
- Let A be a subset of E that is included in some minimum spanning tree for G.
- Let (S,V-S) be any cut of G that respects A and let (u, v) be a light edge crossing ($\mathrm{S}, \mathrm{V}-\mathrm{S}$).
- Then, the edge (u, v) is safe for A

Theorem 23.1 (Proof)

- Let T be a minimum spanning tree that includes A
- Assume that T does not contain the light edge (u,v)
- Construct another minimum spanning tree T^{\prime} that include A U $\{(u, v)\}$ by using a cut-and-paste technique, thereby showing that (u, v) is a safe edge for A

Theorem 23.1 (Proof)

- The edge (x, y) is an edge on the unique simple path p from u to v in T and the edges in A are shaded.

Theorem 23.1 (Proof)

- The light edge (u, v) forms a cycle with the edge on the simple path p from u to v in T.
- Since u and v are on opposite sides of the cut (S, V-S), there is at least one edge in T on the simple path p that also crosses the cut. Let (x, y) be any such edge.
- The edge (x, y) is not in A, since the cut respects A.
- Since (x, y) is on the unique path from u to v in T, removing (x, y) breaks T into two components.
- Adding (u, v) re-connects them to form a new spanning tree $\mathrm{T}^{\prime}=\mathrm{T}-$ $\{(\mathrm{x}, \mathrm{y})\} \cup\{(\mathrm{u}, \mathrm{v})\}$.

Theorem 23.1 (Proof)

- We next show that $T^{\prime}=T-\{(x, y)\} U\{(u, v)\}$ is a minimum spanning tree.
- Since (u, u) is a light edge crossing ($S, V-S$) and (x, y) also crosses this cut, we have $w(u, v) \leq w(x, y)$ resulting that $w\left(T^{\prime}\right)=w(T)-w(x, y)+w(u, v)$ $\leq w(T)$.
- But $w(T) \leq w\left(T^{\prime}\right)$, since T is a minimum spanning tree.
- Thus, T^{\prime} must be a minimum spanning tree.
- Because $A \subseteq T^{\prime}$ and $A \cup\{(u, v)\} \subseteq T^{\prime}$ where T^{\prime} is a minimum spanning tree, (u, v) is safe for A.

Understanding of GENERIC-MST

- As the method proceeds, the set A is always acyclic; otherwise, a minimum spanning tree including A would contain a cycle, which is a contradiction.
- At any point in the execution, the graph $G_{A}=(V, A)$ is a forest, and each of the connected components of G_{A} is a tree.
- Some of the trees may contain just one vertex, as is the case, for example, when the method begins: A is empty and the forest contains $|\mathrm{V}|$ trees, one for each vertex.
- Moreover, any safe edge (u, v) for A connects distinct components of G_{A}, since A $U\{(u, v)\}$ must be acyclic.

Understanding of GENERIC-MST

- The while loop in lines 2-4 of GENERIC-MST executes |V|-1 times because it finds one of the $|\mathrm{V}|-1$ edges of a minimum spanning tree in each iteration.
- Initially, when $A=\varnothing$, there are $|V|$ trees in G_{A}, and each iteration reduces that number by 1 .
- When the forest contains only a single tree, the method terminates.

Corollary 23.2

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected, undirected graph with a real-valued weight function w defined on E.
- Let A be a subset of E that is included in some minimum spanning tree for G .
- Let $\mathrm{C}=\left(\mathrm{V}_{\mathrm{C}}, \mathrm{E}_{\mathrm{C}}\right)$ be a connected component (tree) in the forest $\mathrm{G}_{\mathrm{A}}=(\mathrm{V}, \mathrm{A})$.
- If (u, v) is a light edge connecting C to some other component in G_{A}, then (u, v) is safe for A

Corollary 23.2 (Proof)

- The cut $\left(V_{C}, V-V_{C}\right)$ respects A and (u, v) is a light edge for this cut.
- Thus, (u, v) is safe for A.

Kruskal's and Prim's Algorithms

- They each use a specific rule to determine a safe edge in line 3 of GENERIC-MST.
- In Kruskal's algorithm,
- The set A is a forest whose vertices are all those of the given graph.
- The safe edge added to A is always a least-weight edge in the graph that connects two distinct components.
- In Prim's algorithm,
- The set A forms a single tree.
- The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree.

Kruskal's Algorithm

- A greedy algorithm since at each step it adds to the forest an edge of least possible weight.
- Find a safe edge to add to the growing forest by finding, of all the edges that connect any two trees in the forest, an edge (u, v) of least weight.
- Let two trees C_{1} and C_{2} are connected by (u,v).
- Since (u,v) must be a light edge connecting C_{1} to some other tree, Corollary 23.2 implies that (u, v) is a safe edge for C_{1}.

Implementation of Kruskal's Algorithm

- It uses a disjoint-set data structure to maintain several disjoint sets of elements.
- Each set contains the vertices in one tree of the current forest.
- The operation FIND-SET(u) returns a representative element from the set that contains u.
- Thus, we can determine whether two vertices u and v belong to the same tree by testing whether FIND-SET(u) equals FIND-SET(v).
- To combine trees, Kruskal's algorithm calls the UNION procedure.

Kruskal's Algorithm

MST-KRUSKAL(G,w)

1. $\mathrm{A}=\varnothing$
2. for each $v \in G . V$
3. Make-Set(v)
4. sort the edges of G.E into nondecreasing order by weight w
5. for each edge $(u, v) \in G . E$ in sorted order
6. if Find-Set(u) \neq Find-Set (v)
7. $\quad A=A \cup\{\{u, v\}\}$
8. Union(u, v)
9. return A

Kruskal's Algorithm

Kruskal's Algorithm

MST-KRUSKAL(G,w)

1. $\mathrm{A}=\varnothing$
2. for each $v \in G . V$
3. Make-Set(v)

O(V) Make-Set() calls
4. sort the edges of G.E into nondecreasing order
by weight w O(Elg E)
5. for each edge $(u, v) \in G . E$ in sorted order
6. if Find-Set(u) \neq Find-Set(v) $\quad O(E)$ Find-Set() calls
7. $\quad A=A \cup\{\{u, v\}\}$
8. Union($u, v) \quad O(v)$ Union() calls
9. return A

Running Time of Kruskal's Algorithm

- Use the disjoint-set-forest implementation with the union-by-rank and pathcompression heuristics (Section 21.3).
- \quad Sorting the edges in line 4 is $\mathrm{O}(|\mathrm{E}| \mathrm{Ig}|\mathrm{E}|)$.
- The disjoint-set operations takes $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \alpha(|\mathrm{V}|))$ time, where α is the very slowly growing function (Section 21.4).
- The for loop (lines 2-3) performs |V| MAKE-SET operations.
- The for loop (lines 5-8) performs O(|E|) FIND-SET and UNION operations.
- Since G is connected, we have $|E| \geq|V|-1$, the disjoint-set operations take O(|E| $\alpha(|V|))$ time.
- Moreover, since $\alpha(|V|)=O(|g| V \mid)=O(|g| E \mid)$, Kruskal's algorithm takes $O(|E| \lg |E|)$ time.
- Observing that $|E|<|V|^{2} \Rightarrow \lg |E|=O(\lg V)$, the total running time of Kruskal's algorithm becomes $\mathrm{O}(\mathrm{E} \lg \mathrm{V})$.

Running Time of Kruskal's Algorithm

- In a nut shell,
- Sort edges: $\mathrm{O}(|E| \lg |E|)$
- Disjoint-set operations

$$
\begin{gathered}
\text { O(|V|) Make-Set() calls } \\
\text { O(|E|) Find-Set() calls } \\
\text { O(|V|) Union() calls }
\end{gathered}
$$

- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ operations $\Rightarrow \mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \alpha(|\mathrm{V}|))$ time
- $|\mathrm{E}| \geq|\mathrm{V}|-1 \Rightarrow \mathrm{O}(\mathrm{E} \mid \alpha(|\mathrm{V}|))$ time
- Since $\alpha(\mathrm{n})$ can be upper bounded by the height of the tree,

$$
\alpha(|\mathrm{V}|)=\mathrm{O}(\lg |\mathrm{~V}|)=\mathrm{O}(\mathrm{Ig}|\mathrm{E}|) .
$$

- Thus, the total running time of Kruskal's algorithm is is $\mathrm{O}(|\mathrm{E}| \mathrm{lg}|\mathrm{E}|)$
- By observing that $|\mathrm{E}|<|\mathrm{V}|^{2} \Rightarrow \lg |\mathrm{E}|=\mathrm{O}(\lg |\mathrm{V}|)$, it becomes $\mathrm{O}(|\mathrm{E}| \lg |\mathrm{V}|)$.

Prim's Algorithm

- Special case of the generic minimum-spanning-tree method.
- A greedy algorithm since at each step it adds to the tree an edge that contributes the minimum amount possible to the tree's weight.
- The edges in the set A always form a single tree.
- Each step adds to the tree A a light edge that connects A to an isolated vertex one on which no edge of A is incident.
- By Corollary 23.2, this rule adds only edges that are safe for A

Implementation of Prim's algorithm

- Input is a connected Graph G and the root r of the minimum spanning tree.
- During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue Q based on a key attribute.
- For each v, v.key is the minimum weight of any edge connecting v to a vertex in the tree.
- By convention, v.key $=\infty$ if there is no such edge.
- The attribute $v . \pi$ names the parent of v in the tree.
- The algorithm maintains the set A from Generic-MST as $A=\{(v, v . \pi): v \in V-\{r\}-Q\}$.
- It terminates when the min-priority queue Q is empty.

Prim's Algorithm

MST-PRIM(G, w, r)

1. for each $u \in G . V$
2. u.key $=\infty$
3. u. $\pi=\mathrm{NIL}$
4. \quad r.key $=0$
5. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
6. while $\mathrm{Q} \neq \varnothing$
7. $u=$ Extract-Min(Q)
8. for each $v \in G . A d j[u]$
9. if $v \in Q$ and $w(u, v)$ < v.key
10. $\quad \mathrm{v} . \pi=\mathrm{u}$
11. v.key $=w(u, v)$

Prim's Algorithm

Prim's Algorithm

6. while $Q \neq \varnothing$
7. $u=$ Extract $-\operatorname{Min}(Q)$

Running Time of Prim's Algorithm

- The running time of Prim's algorithm depends on how we implement the min-priority queue Q.
- If we implement Q as a binary min-heap,
- EXTRACT-MIN takes $\mathrm{O}(\mathrm{lg}|\mathrm{V}|)$ time.
- DECREASE-KEY takes $\mathrm{O}(\mathrm{lg}|\mathrm{V}|)$ time.
- If we implement Q as a simple array,
- EXTRACT-MIN takes O(|V|) time.
- DECREASE-KEY O(1) time.
- If we implement Q as a Fibonacci heap,
- EXTRACT-MIN takes $\mathrm{O}(\mathrm{lg} \mathrm{V} \mid)$ amortized time.
- DECREASE-KEY O(1) amortized time.

Prim's Algorithm

Prim's Algorithm

Prim's Algorithm

Minimum-Cost Spanning Trees

- Cost of a spanning tree
- Sum of the costs (weights) of the edges in the spanning tree
- Min-cost spanning tree
- A spanning tree of least cost
- Greedy method
- At each stage, make the best decision possible at the time
- Based on either a least cost or a highest profit criterion
- Make sure the decision will result in a feasible solution
- Satisfy the constraints of the problem
- To construct min-cost spanning trees
- Best decision : least-cost
- Constraints
- Use only edges within the graph
- Use exactly n-1 edges
- May not use edges that produce a cycle

Kruskal's Algorithm

- Procedure
- Build a min-cost spanning tree T by adding edges to T one at a time
- Select edges for inclusion in T in nondecreasing order of their cost
- Edge is added to T if it does not form a cycle

Kruskal's Algorithm (Cont.)

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

Figure 6.23 : Stages in Kruskal's algorithm

Kruskal's Algorithm (Cont.)

```
. T = Ф;
2. while( (T contains less than n-1 edges) && (E not empty) ) {
3. choose an edge (v,w) from E of the lowest cost;
4. delete (v,w) from E;
5. if( (v,w) does not create a cycle in T ) add (v,w) to T;
6. else discard (v,w);
7. }
8. if (T contains fewer than n-1 edge) cout << "no spanning tree" << endl;
```

Program 6.6: Kruskal's algorithm

- Time Complexity
- When we use a min heap to determine the lowest cost edge , O(eloge)

Prim's Algorithm

- Property
- At all times during the algorithm the set of selected edges forms a tree
- Procedure
- Begin with a tree T that contains a single vertex
- Add a least-cost edge (u,v) to T such that $\operatorname{Tu}\{(u, v)\}$ is also a tree
- Repeat until T contains n-1 edges

Prim's Algorithm (Cont.)

(4)

(d)

(b)

(e)

(c)

(f)

Figure 6.24: Stages in Prim's algorithm

Prim's Algorithm (Cont.)

1. // Assume that G has at least one vertex.
2. $\mathrm{TV}=\{0\}$; // start with vertex 0 and no edges
3. f for $(T=\Phi ; T$ contains fewer than $n-1$ edges; add (u, v) to $T)$
4. \{
5. Let (u, v) be a least-cost edge such that $u \in T V$ and $v!\in T V$;
6. if(there is no such edge) break;
7. add v to TV;
8. \}
9. if(T contains fewer than $n-1$ edges) cout << "no spanning tree" << endl;

Program 6.7: Prim's algorithm

Fibonacci Heaps

Introduction to Data Structures

Kyuseok Shim
ECE, SNU.

Priority Queues Summary

Operation	Linked List	Binary Heap	Fibonacci Heap ${ }^{+}$
make-heap	1	1	1
is-empty	1	1	1
insert	1	$\log n$	1
delete-min	n	$\log n$	$\log n$
decrease-key	n	$\log n$	1
	n	$\log n$	$\log n$
			1
			1
n= number of elements in priority queue	+ amortized		

Fibonacci Heaps

- Fibonacci heap history. Fredman and Tarjan (1986)
- Ingenious data structure and analysis.
- Original motivation - V insert, V delete-min, E decrease-key
- Improve Dijkstra's shortest path algorithm from $\mathrm{O}(E \log V)$ to $O(E+V \log V)$.
- Also improve MST(minimum spanning tree) algorithm.
- Basic idea
- Similar to binomial heaps, but less rigid structure.
- Fibonacci heap: lazily defer consolidation until next delete-min.
- Decrease-key and union run in $\mathrm{O}(1)$ time.

Structure of Fibonacci Heaps

Fibonacci Heaps

- Advantages of using circular doubly linked lists
- Inserting a node in to any location takes O(1) time.
- Removing a node from anywhere takes O(1) time.
- Concatenating two such lists into one circular doubly linked list takes $\mathrm{O}(1)$ time.

Fibonacci Heaps: Structure

- Fibonacci heap.
- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

Fibonacci Heaps: Implementation

- Represent trees using left-child, right sibling pointers and circular, doubly linked list.
- can quickly splice off subtrees
- Roots of trees connected with circular doubly linked list.
- fast union
- Pointer to root of tree with min element.
- fast find-min

Fibonacci Heaps: Insert

- Insert.
- Create a new singleton tree.
- Add to left of min pointer.
- Update min pointer.
insert 21

Fibonacci Heaps: Insert

- Insert.
- Create a new singleton tree.
- Add to left of min pointer.
- Update min pointer.
insert 21

Fibonacci Heaps: Potential Function

- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$
- $D(n)=$ max degree of any node in Fibonacci heap with n nodes.
- Mark[x] = mark of node x (black or gray).
- $\mathrm{t}(\mathrm{H}) \quad=$ number of trees in heap H.
- $\mathrm{m}(\mathrm{H}) \quad=$ number of marked nodes in heap H.
$t(H)=5, m(H)=3$
$\Phi(H)=11$

Fibonacci Heaps: Potential Function

- Intuition
- Root node들은 \$c credit을 가짐.
- Marked node들은 \$c credit을 가짐.
- 나머지 internal node들은 \$0 credit을 가짐.
- Node가 root list로 올라갈 때에는 \$c credit을 붙여주고 marked node이면 \$c credit을 unmark하는데 사용한다.
- 따라서, 모든 root node들은 \$c credit을 갖게 됨. min

Fibonacci Heaps: Insert

- $\quad \Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$
- The initial value of $\Phi(H)=0$.
- Amortized cost. $\mathrm{O}(1)$
- Actual cost = 1 .
- Change in potential $=+1$.
- Amortized cost = 2 .

Fibonacci Heaps: Insert Analysis

- Notation.
- $D(n)=$ max degree of any node in Fibonacci heap with n nodes.
- $\mathrm{t}(\mathrm{H})=$ number of trees in heap H.
- $m(H)=$ number of marked nodes in heap H.
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- $\Delta \Phi(\mathrm{H})=1$
- Before extracting minimum node
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- After extracting minimum node, $\mathrm{t}\left(\mathrm{H}^{\prime}\right) \leq \mathrm{D}(\mathrm{n})+1$ since no two trees have same degree
- $\Phi\left(\mathrm{H}^{\prime}\right)=\mathrm{t}(\mathrm{H})+1+2 \mathrm{~m}(\mathrm{H})$
- Amortized cost. O(1)
- $\widehat{c_{i}}=c_{i}+\Phi_{\mathrm{i}}-\Phi_{\mathrm{i}-1}=1+(\mathrm{t}(\mathrm{H})+1+2 \mathrm{~m}(\mathrm{H}))-(\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H}))=2$

Fibonacci Heaps: Delete

- Linking operation.
- Make larger root be a child of smaller root.

tree T^{\prime}

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete

- Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min Analysis

- Notation.
- $D(n)=$ max degree of any node in Fibonacci heap with n nodes.
- $\mathrm{t}(\mathrm{H})=$ number of trees in heap H.
- $m(H)=$ number of marked nodes in heap H.
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- Actual cost. 2D(n) +t(H)
- $\mathrm{D}(\mathrm{n})+1$ work adding min's children into root list and updating min.
- at most $D(n)$ children of min node
- $\mathrm{D}(\mathrm{n})+\mathrm{t}(\mathrm{H})-1$ work consolidating trees.
- work is proportional to size of root list since number of roots decreases by one after each merging
- $\mathrm{D}(\mathrm{n})+\mathrm{t}(\mathrm{H})-1$ root nodes at beginning of consolidation

Fibonacci Heaps: Delete Min Analysis

- Notation.
- $D(n)=$ max degree of any node in Fibonacci heap with n nodes.
- $\mathrm{t}(\mathrm{H})=$ number of trees in heap H.
- $m(H)=$ number of marked nodes in heap H.
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- $\Delta \Phi(\mathrm{H})=\mathrm{D}(\mathrm{n})+1-\mathrm{t}(\mathrm{H})$
- Before extracting minimum node
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- After extracting minimum node, $\mathrm{t}\left(\mathrm{H}^{\prime}\right) \leq \mathrm{D}(\mathrm{n})+1$ since no two trees have same degree
- $\Phi\left(H^{\prime}\right)=\mathrm{D}(\mathrm{n})+1+2 \mathrm{~m}(\mathrm{H})$
- Amortized cost. O(D(n))
- $\widehat{c_{i}}=c_{i}+\Phi_{\mathrm{i}}-\Phi_{\mathrm{i}-1}=(2 \mathrm{D}(\mathrm{n})+\mathrm{t}(\mathrm{H}))+(\mathrm{D}(\mathrm{n})+1+2 \mathrm{~m}(\mathrm{H}))-(\mathrm{t}(\mathrm{H})$
$+2 \mathrm{~m}(\mathrm{H}))=3 \mathrm{D}(\mathrm{n})+1=\mathrm{O}(\mathrm{D}(\mathrm{n}))$

Fibonacci Heaps: Delete Min Analysis

- Is amortized cost of $O(D(n))$ good?
- Yes, if only Insert, Delete-min, and Union operations supported.
- Fibonacci heap contains only binomial trees since we only merge trees of equal root degree
- This implies $D(n) \leq\left\lfloor\log _{2} N\right\rfloor$
- Yes, if we support Decrease-key in clever way.
- we'll show that $D(n) \leq\left\lfloor\log _{\phi} N\right\rfloor$, where ϕ is golden ratio
- $\phi^{2}=1+\phi$
- $\phi=(1+\sqrt{ } 5) / 2=1.618 \ldots$
- limiting ratio between successive Fibonacci numbers!

Fibonacci Heaps: Decrease Key

- Mark.
- Indicate whether node x has lost a child since the last time x was made the child of another node.
- Newly created nodes are unmarked.
- Whenever a node is made the child of another node, it is unmarked.

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 0: min-heap property not violated.
- Decrease key of x to k
- Change heap min pointer if necessary

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 1: parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 1: parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
- If $p[p[x]]$ unmarked, then mark it.
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat.

Decrease 35 to 5 .

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
- If $p[p[x]]$ unmarked, then mark it.
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat.

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
- If $p[p[x]]$ unmarked, then mark it.
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat.

Fibonacci Heaps: Decrease Key

- Decrease key of element x to k.
- Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
- If $p[p[x]]$ unmarked, then mark it.
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat.

Decrease 35 to 5 .

Fibonacci Heaps: Decrease Key Analysis

- Notation.
- $D(n)=$ max degree of any node in Fibonacci heap with n nodes.
- $\mathrm{t}(\mathrm{H})=$ number of trees in heap H.
- $m(H)=$ number of marked nodes in heap H.
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- c = delete될 노드와 그에 대한 mark된 ancestor의 개수
- Actual cost. c
- O(1) time for decrease key.
- O(1) time for each of c cascading cuts, plus reinserting in root list.

Fibonacci Heaps: Decrease Key Analysis

- Notation.
- $D(n)=$ max degree of any node in Fibonacci heap with n nodes.
- $t(H)=$ number of trees in heap H.
- $m(H)=$ number of marked nodes in heap H.
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- $\mathrm{c}=$ delete될 노드와 그에 대한 mark된 ancestor의 개수
- $\Delta \Phi(\mathrm{H})=-\mathrm{C}+4=4-\mathrm{C}$
- Before decreasing a node
- $\mathrm{t}(\mathrm{H})+2 \mathrm{~m}(\mathrm{H})$.
- After decreasing a node,
- $\mathrm{t}\left(\mathrm{H}^{\prime}\right)=\mathrm{t}(\mathrm{H})+\mathrm{c}$
- $m\left(H^{\prime}\right)=m(H)-c+2$
- Each cascading cut unmarks a node
- Last cascading cut could potentially mark a node
- Amortized cost. $\mathrm{O}(1)$
- $\widehat{c_{i}}=c_{i}+\Phi_{\mathrm{i}}-\Phi_{\mathrm{i}-1}=\mathrm{c}+(t(H)+c+2(m(H)-c+2))-(t(H)+c+$ $2 m(H)))=4$

Fibonacci Heaps: Delete

- Delete node x .
- Decrease key of x to $-\infty$.
- Delete min element in heap.
- Amortized cost. O(D(n))
- O(1) for decrease-key.
- $O(D(n))$ for delete-min. where $D(n)=$ max degree of any node in Fibonacci heap.

